
1 Cooperating Programs – Why?

What’s Wrong – Reliability

� Business loses millions of dollars every minute the server is down.

� Have you ever tried to run server? How much downtime did you have?

� Critical systems need 99.999 % reliability = 5 minutes/year.

� Examples of failure: “České spořitelně v sobotu několik hodin nefungovalo interne-
tové bankovnictv́ı.”

� Amazon cloud 2017: https://en.wikipedia.org/wiki/Timeline_of\
_Amazon_Web_Services\#Amazon_Web_Services_outages

� Solution: Backup systems

� Problem: double/triple price, same performance

What’s Wrong – Scaling

� Hardware doesn’t scale well

� RAM scaling:

– 16 GB CZK 1.839

– 32 GB CZK 4.819

– 64 GB CZK 12.090

– 128 GB is the highest capacity of RAM module available for enterprise (DDR
4) cost $4,054.93, 6 RAM slots, e.g. 768 GB/ per machine

– 1 TB ??? How? Mainframe? Great for very rich customers.

� The same problem is with disks (RAID helps a bit), CPU. . .

Solution – Horizontal Scaling

� Let’s use backup system to cooperate on processing data!

� Let’s have multiple cheap computers, where price of 1 TB RAM = 16× 64 GB,
CZK 193.440 (compare to 128 GB, $4.000)

� Similar approach as RAID (Redundant Array of Inexpensive Disks)

� How to distribute the tasks?

1

Figure 1: Application pipeline diagram.

Distributed Systems

� Distributed (fault tolerant) systems

– Able to process requests concurrently

– Scalable

– Can handle faults, only decrease performance

� Caveats

– Less predictable

– More complex

– More difficult to secure

– Effort to manage the system

2 Approaches

2.1 Low-level

File

� Applications exchange data by writing into a shared file

� Pipeline processing

� ⇒ Local system

� Problems: format, schema, scalability, concurrency, notifications

Database

� Applications share database, possibly use different views of the same database

� No integration layer needed, application data always up to date

� Problems: schema (general or complex), schema evolution, notifications

2

Figure 2: Applications using shared database.

2.2 Platform-specific

Java RMI

� Remote Method Invocation

� Object-oriented equivalent of remote procedure call (see later)

� Java-specific technology for distributed systems

� Java Remote Method Protocol

– Wire-level protocol (application layer) on top of TCP

– Binary

� RMI supports primitive types and Serializable

Java RMI

� Client invokes methods of a remote interface on a local stub

– Stub is a RMI-generated proxy object representing the remote implementation

� Server implements remote interface to export methods which can be called remotely

� RMI registry

– Server registers at RMI registry as a provider of remote objects

– Client uses RMI registry to look up remote objects

RMI Alternatives
Similar technologies exist for

� Python – RPyC

� Ruby – Distributed Ruby

� Erlang – built into the language itself

3

Figure 3: Schema of Java RMI components.

2.3 Platform-independent

RPC

� Remote Procedure Call

� Invocation of subroutine in a different address space (usually a different computer)

� Client-server architecture

� Typically synchronous

XML-RPC

� Standard for remote procedure call using XML as message format

� Platform independent

� Over HTTP

XML-RPC Example
Request

<?xml version="1.0"?>
<methodCall>

<methodName>examples.getStateName</methodName>
<params>

<param>
<value><int>41</int></value>

</param>
</params>

</methodCall>

Response

<?xml version="1.0"?>
<methodResponse>

<params>
<param>

<value><string>South Dakota</string></value>
</param>

</params>
</methodResponse>

4

XML-RPC – Try it Yourself

1. Download/clone a simplistic XML-RPC server implementation from https://
gitlab.fel.cvut.cz/ear/xmlrpcserver

2. Start the server using mvn package exec:java

3. Open Postman or other HTTP client

4. Send a POST request to http://localhost:8080 with body

<?xml version="1.0"?>
<methodCall>

<methodName>EarServer.hello</methodName>
<params>

<param>
<value><string>Master Chief</string></value>

</param>
</params>

</methodCall>

CORBA

� Common Object Request Broker Architecture

� OMG standard for language and platform-independent distributed computing
architecture

� Similar to RPC but object-oriented

� Transparent location – client is unaware whether invocation is local or remote

– Also a caveat – local invocation cannot be optimized and has to go through
the whole ORB machinery

� Standards for interface definition, communication protocols, location

CORBA – Concepts

Interface Definition Language (IDL)

� Standardized language for specification of interface provided by an object

� Mappings for IDL exist in all major programming languages

� Used to generate Stub/Skeleton code

Object Request Broker (ORB)

� Middleware allowing transparent local and remote invocation

5

� Handles data serialization/deserialization based on IDL

� Knows location of the actual service implementation

� Is able to handle, e.g., transactions

CORBA – Concepts

General InterORB Protocol – GIOP

� Protocol for communications between ORBs

� Best known (and most often used) is IIOP (Internet InterORB Protocol) which
uses TCP/IP

� Other versions exist, e.g., HTIOP, SSLIOP

CORBA – IDL Interface Example

module HelloApp {
interface Hello {
string sayHello();
oneway void shutdown();
};

};

CORBA – Java Implementation Example

class HelloImpl extends HelloPOA {
private ORB orb;

public void setORB(ORB orb_val) {
orb = orb_val;

}

public String sayHello() {
return "\nHello world !!\n";

}

public void shutdown() {
orb.shutdown(false);

}
}

6

What is a web service?

A Web service is a software system designed to support interoperable machine-
to-machine interaction over a network.

— W3C, Web Services Glossary

We can identify two major classes of Web services:

� REST-compliant Web services, in which the primary purpose of the
service is to manipulate XML representations of Web resources using a
uniform set of ”stateless” operations; and

� arbitrary Web services, in which the service may expose an arbitrary set
of operations.

— W3C, Web Services Architecture (2004)

SOAP

� Simple Object Access Protocol

� Standard protocol for web service communication

� Combo SOAP + WSDL + UDDI

� XML-based

� In contrast to CORBA:

– Universal, no language binding (IDL) required

– XML-based (CORBA protocols binary)

– Stateless

– Possibly asynchronous

SOAP

WSDL

� Web Service Description Language

� XML-based description of web service interface

� Clients know how to communicate with web service based on WSDL description

– No generated skeleton or stub needed

UDDI

� Universal Description, Discovery and Integration

� Universal register of WSDL descriptions of SOAP web services

� Simplifies web service discovery

7

Figure 4: SOAP+WSDL+UDDI. Source:
http://www.wst.univie.ac.at/workgroups/sem-nessi/index.php?t=
semanticweb

SOAP

SOAP

� XML-based protocol

� Messages consist of:

– Envelope – single per request/response

– (Optional) header – additional information, e.g., timeout, security

– Body – data

– (Optional) Fault – error handling

� Over HTTP POST

� Caveats:

– Verbosity and slow parsing of XML

– Client-server interaction model (one is always client, the other is always client)

– Complex structure

SOAP

3 Architectures

General Remarks
Different characteristics of architectures

8

� Vertical distribution

– Distribution of logical levels of the system

� Horizontal distribution

– Distribution of clients and servers

� Temporal distribution

– Communication is synchronous or asynchronous?

Client-Server vs. Distributed Objects

Client-Server

� Clients and servers are treated differently

� Servers process requests, provide functionality

� Clients make requests, consume functionality

� Example: SOAP, REST, HTTP

Distributed Objects

� Objects are equivalent, can call each other

� Example: Java RMI, CORBA

Vertical Distribution

N-tier Architecture

� Layers are distributed between processes, can be distributed between machines as
well

� Examples

– Single-tier – terminal/mainframe configuration

– Two-tier – client + server

– Three-tier – typical, separate client, server application and database

9

Figure 5: Source: https://managementmania.com/en/three-tier-architecture

Services

Service Oriented Architecture (SOA)

� System is split into self-contained separate units – services

� Services use each other to provide functionality

� Services can be developed separately, use different technologies, be removed or
replaced without affecting the system as a whole

� NOT to confuse with Web Services

� Example: SSO, text analysis service

Microservices

� No precise definition exists, for some it is a more advanced (purer) implementation
of SOA

� Software units communicating over lightweight mechanisms (HTTP), deployed
using automated machinery and DevOps

Communication in SOA

Enterprise Service Bus (ESB)

� ESB is a middleware

� Indirection in service communication – decoupling, routing, synchronous or asyn-
chronous communication

� May support multiple protocols – SOAP, REST

� Simple or Advanced

10

Figure 6: Source: https://www.researchgate.net/figure/Blockchain-P2P-Network_
fig1_320127088

– Simple – RabbitMQ, Apache Kafka, Apache ActiveMQ

– Advanced – Oracle, IBM, Microsoft

Smart Services and Dumb Pipes

� Microservices – decentralized orchestration, often peer to peer

– Each service may have configuration of other possible services it can use

� Or single service registry

Peer to Peer (P2P)

� Decentralized architecture where nodes function as servers and clients

� Content distribution, sharing, grid computing

� Types

– Unstructured – no central node, peers discover each other (each peer starts
with a few possible connections and builds a list of other peers)

– Structured – network has a topology, more efficient peer discovery

– Hybrid – combination of P2P and client/server – usually server helps clients
discover other peers, search etc.

P2P

11

4 Conclusions

Conclusions

� Most of today’s applications are distributed

– At least tiered – backend and frontend separate

� Most applications are integrated using web services

� Services allow to build systems from independent modules

Coming Next Week

� HTTP

� Currently most popular Web service architecture – REST

The End

Thank You

Resources

� https://martinfowler.com/bliki/IntegrationDatabase.html

� M. Fowler: Patterns of Enterprise Application Architecture

� http://xmlrpc.scripting.com/spec.html

� http://www.corba.org/

� K. Richta: Standardy pro webové služby WSDL, UDDI

– https://www.ksi.mff.cuni.cz/˜richta/publications/Richta-MD-2003.pdf

� https://www.slideshare.net/PeterREgli/soap-wsdl-uddi

� http://www.aqualab.cs.northwestern.edu/component/attachments/download/228

� https://ifs.host.cs.st-andrews.ac.uk/Books/SE7/Presentations/PDF/ch12.pdf

� https://www.ibm.com/support/knowledgecenter/en/SSMQ79_9.5.1/com.ibm.egl.pg.
doc/topics/pegl_serv_overview.html

� https://martinfowler.com/articles/microservices.html

12

