

Photorealism

Diří Bittner

 <

Outline

- Introduction
- Photorealistic rendering

MPG 15.1-15.7

Rendering - Introduction

Compute image

... from scene description

Photorealistic Rendering

(images from master thesis of R. Hub, ČVUT FEL 2014)

https://area.autodesk.com/fakeorfoto/

Scene Description (Review)

- Geometry
 - Objects & positions
 - Commonly a B-rep
- Surface materials
 - Color, reflectivity, ...
- Light sources
 - Position, direction, size
 - Directional and spatial distribution, color
- Camera
 - Perspective, parallel, spherical ...

Different Approaches to Rendering

- Non-photorealistic rendering
 - Mimic artistic styles
 - Technical drawings
 - Emphasizing selected information

Photorealistic rendering

- Goals: images match reality
- Simulation of light transport
- Our topic

Photorealistic Rendering

- For every visible point **p** in the scene
 - Compute the amount of light reflected towards camera

[Kajiya 86]

Hemispherical formulation

[Kajiya 86]

Area formulation

Global Illumination – Gl

Only direct illumination

- Light bounces ONCE on path from light source to camera

Images © PDI/Dreamworks

Global illumination

- Global = Direct + Indirect
- Light transport among scene patches
- Many light bounces

Global Illumination Effects

- Ideal reflection/refraction
- Color bleeding
- Caustics

Modeling: Stephen Duck; Rendering: Henrik Wann Jensen

Ideal Specular Reflection

Reflection on Water Surface

Ideal Specular Refraction

Color Bleeding

- From one diffuse surface to another
- Important in painting
 - subconscious understanding of spatial relationships

Caustics

- 1. Light concentration due to reflection/refraction
- 2. Local increase of light intensity
- 3. Incidence with diffuse surface

reality

simulation

Rendering Water

- Reflection/refraction on water surface
- Caustics on the pool bottom

Underwater Caustics

Global Illumination Simulation

- We need
 - Description of "amount of light" in space radiometry
 - Description of light reflection on surface <u>BRDF</u>
 - Description of stationary light distribution <u>rendering equation</u>
 - Efficient algorithms!
- Details in Realistic Image Synthesis (A4M39RSO)

