KATEDRA POČítAČOVÉ GRAFIKY A INTERAKCE

APG

 Raster Graphics - Line JIŘí ŽÁRA
About this course

J. Žára a kol.: Moderní počítačová grafika

J. Hughes et al.:

Computer Graphics: Principles and Practice

- About 90\% of knowledge given in Lectures
- About 10\% of knowledge from literature (above)

Contents

- About Computer Graphics
- Raster graphics
- Line drawing
- DDA algorithm
- Bresenham algorithm
- Dashed line
- Thick line
- Antialiasing

Computer Graphics

- Vector VERSUS Raster
- Conversion from abstract description into digital form (pixels) = digitization (2D), rendering (3D)

Raster

$$
k=\frac{\Delta y}{\Delta x}=\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right)
$$

APG - Line Drawing

Line

- Mathematics - infinitely thin line
- Computer Graphics
- Sequence of neighboring pixels (pixel, px, picture element)
- Digitization = sampling of a continuous function
- Slope defines a driving/major axis for sampling
(by 1 pixel step)

Line drawing methods

- DDA (Digital Differential Analyzer) [float]
- Bresenham algorithm [int]

APG - Line Drawing
(7)

DDA (Digital Differential Analyzer)

$$
\begin{aligned}
& \text { step } X=1 \\
& \text { step } Y=\frac{\Delta y}{\Delta x}=k
\end{aligned}
$$

$$
\begin{aligned}
& x_{i+1}=x_{i}+1 \\
& y_{i+1}=y_{i}+k
\end{aligned}
$$

Note: k is a real (float) number

APG - Line Drawing

DDA algorithm

DDA (int $x 1$, int $y 1$, int $x 2$, int $y 2$) \{ double k, Y;
$\mathrm{k}=(\mathrm{y} 2-\mathrm{y} 1) /(\mathrm{x} 2-\mathrm{x} 1)$; setPixel (x1, y1);
$\mathrm{Y}=\mathrm{y} 1$;
for (int $\mathrm{i}=\mathrm{x} 1+1$; $\mathrm{i}<=\mathrm{x} 2$; $\mathrm{i}++$) $\{$
setPixel (i, round (Y)); \}
\}

$$
Y+=k ;
$$

Endpoints preprocessing:

- Coordinate rounding (to int)
- Driving axis determination
- Orientation (from left/bottom)

$k \in<0,1>$
 $$
x 1<x 2
$$ x1 < x2

Jack Elton Bresenham, *1937

Integer only algorithm

- IBM, developed in 1962, published in 1965

APG - Line Drawing

Bresenham algorithm (1/2)

$$
\begin{aligned}
& y_{\text {real }}=k\left(x_{i}+1\right)+b \\
& d_{1}=y_{\text {real }}-y_{i} \\
& d_{2}=y_{i}+1-y_{\text {real }}
\end{aligned}
$$

$$
\begin{aligned}
& d=d_{1}-d_{2}=2 k \cdot\left(x_{i}+1\right)-2 y_{i}+2 b-1 \\
& p_{i}=\Delta x \cdot\left(d_{1}-d_{2}\right)
\end{aligned}
$$

$$
\mathrm{k}=\frac{\Delta \mathrm{y}}{\Delta \mathrm{x}}
$$

$$
=2 \Delta y \cdot x_{i}-2 \Delta x \cdot y_{i}+\underbrace{2 \Delta y+\Delta x \cdot(2 b-1)}_{\text {Const. }}
$$

$$
p_{i+1}=p_{i}+2 \Delta y-2 \Delta x\left(y_{i+1}-y_{i}\right)
$$

prediction

Bresenham algorithm (2/2)

$y_{i+1}=y_{i}+1$
$p_{i+1}=p_{i}+2 \Delta y-2 \Delta x$

$$
\begin{gathered}
{\left[x_{i}, y_{i}, p_{i}\right] \Longrightarrow\left[x_{i+1}, y_{i+1}, p_{i+1}\right]} \\
x_{i+1}=x_{i}+1
\end{gathered}
$$

$$
p_{i+1}=p_{i}+2 \Delta y-2 \Delta x\left(y_{i+1}-y_{i}\right)
$$

p_{i}

$$
\begin{aligned}
& y_{i+1}=y_{i} \\
& p_{i+1}=p_{i}+2 \Delta y
\end{aligned}
$$

\pm

Note: $p_{0}=2 \Delta y-\Delta x$
from $p_{i}=\ldots$, where $x_{0}=y_{0}=b=0$

Bresenham algorithm - code

Bresenham (int x 1 , int y 1 , int x 2 , int y) $\{$
int $\mathrm{c} 0, \mathrm{c} 1, \mathrm{p}$;
init (c0, c1, p);
setPixel (x1, y1);

$$
\text { for (int } \mathrm{i}=\mathrm{x} 1+1 ; \mathrm{i}<=\mathrm{x} 2 ; \mathrm{i}++)\{
$$

$$
\text { if }(p<0)\{
$$

$$
\mathrm{p}+=\mathrm{c} 0 ;
$$

\} else \{

$$
\mathrm{p}+=\mathrm{c} 1
$$

y1++;

$$
\}
$$

setPixel (i, y1);
\}

$$
\begin{aligned}
& k \in<0,1> \\
& x 1<x 2
\end{aligned}
$$

Multi-step methods - interesting research

- Pairs/triplets of pixel

- Computing distance to minor axis change

APG - Line Drawing
(15)

Dashed line

- Line appearance defined in a length segment array
- Odd segment drawn, even skipped class DashedLine \{ int numberOfSegments; // e.g. 6 int [] lengths;
\}
- Two possible approaches:

1. By individual segments
2. The whole line at once (modified Bresenham alg.)

1. Drawing by segments

2. Drawing the whole line at once

- Bresenham algorithm modification
- Blocking setPixel() according to odd/even segment:
a) int segm; int segmLength;
b) segm $\bmod 2 \Longrightarrow$ enable/disable setPixel()
c) decrement segmLength, when $0 \Longrightarrow$ prepare for next segment

Problems with raster metric

- length VERSUS Nr. of pixels
- Oblique lines appear thinner

- Modified Bresenham = bad approach
- By segments = good technique

Thick line

a) Trivial solution - Bresenham modified setPixel $\Longrightarrow \mathrm{T} \times$ setPixel (in a proper direction)

b) Angular correction

$T_{\text {REAL }}$

$$
\begin{aligned}
T & =T_{\text {REAL }} \\
& =T_{V E R T I C A L} \cdot \cos \alpha
\end{aligned}
$$

$$
T_{V E R T I C A L}=\frac{T}{\cos \alpha}
$$

c) Filling boundary line (outline) $=$ correct solution

Outline computation + polygon filling (see next lectures)

APG - Line Drawing

Thick lines ending

- a) Bresenham
- b) Fill area
- Ending types:

4) General outline

Aliasing \& Antialiasing of lines

- Aliasing = causes jaggy lines (result of subsampling)
- Antialiasing = smoothing (via pixel intensities)

Aliasing

Antialiasing

APG - Line Drawing

Antialiasing

- Local (Line) antialiasing
- when individual line is drawn
- Global (Full screen) antialiasing
- after the whole image/screen is generated
- image processing technique (filtering)

Global antialiasing

- Input = image memory
- Final pixel intensity influenced by neighboring intensities

$$
I^{\prime}(x, y)=H(i, j) \cdot I(x+i, y+j)
$$

$$
\left.H(i, j)=\begin{array}{c}
i / j \\
-1 \\
-1
\end{array} \begin{array}{ccc}
0 & 1 \\
0 & 1 & \frac{1}{16} \\
\frac{2}{16} & \frac{1}{16} \\
\frac{2}{16} & \frac{4}{16} & \frac{2}{16} \\
\frac{1}{16} & \frac{2}{16} & \frac{1}{16}
\end{array}\right]
$$

Thank you for your attention Jiří Žára, 23.09.2020

... and study "Circle Digitizing" methods @home

