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Planning in 3D – Examples and Motivations
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Dubins Vehicle and Dubins Planning DTP DTSP DTSPN DOP DOPN Planning in 3D

Part I

Part 1 – Data Collection Planning – Aerial
Surveillance Missions
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Motivation – Surveillance Missions with Aerial Vehicles
Provide curvature-constrained path to collect the most valuable
measurements with shortest possible path/time or under limited
travel budget

Formulated as routing problems with Dubins vehicle
Dubins Traveling Salesman Problem with Neighborhoods
Dubins Orienteering Problem with Neighborhoods
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Dubins Vehicle

Non-holonomic vehicle such as car-like or aircraft can be modeled
as the Dubins vehicle

Constant forward velocity
Limited minimal turning radius ρ
Vehicle state is represented by a triplet q = (x , y , θ), where
Position is (x , y) ∈ R2, vehicle heading is θ ∈ S2, and thus
q ∈ SE (2)

The vehicle motion can be
described by the equation
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Optimal Maneuvers for Dubins Vehicle

For two states q1 ∈ SE (2) and q2 ∈ SE (2) in the environment
without obstacles W = R2, the optimal path connecting q1 with
q2 can be characterized as one of two main types

CCC type: LRL, RLR;
CSC type: LSL, LSR, RSL, RSR;

where S – straight line arc, C – circular arc oriented to left (L) or
right (R) L. E. Dubins (1957) – American Journal of Mathematics

The optimal paths are called Dubins maneuvers:
Constant velocity: v(t) = v and turning radius ρ
Six types of trajectories connecting any configuration in SE (2)

without obstacles
The control u is according to C and S type one of three possible
values u ∈ {−1, 0, 1}
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Parametrization of Dubins Maneuvers

Parametrization of each trajectory phase:

{LαRβLγ , RαLβRγ , LαSdLγ , LαSdRγ , RαSdLγ , RαSdRγ}

for α ∈ [0, 2π), β ∈ (π, 2π), d ≥0
Notice the prescribed orientation at q0 and qf .
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Dubins (Multi-Goal) Path

Minimal turning radius ρ
Constant forward velocity v

State of the Dubins vehicle is q = (x , y , θ),
q ∈ SE (2), (x , y) ∈ R2 and θ ∈ S1


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ẋ
ẏ

θ̇


 = v




cos θ
sin θ

u
ρ




Smooth Dubins path connecting a sequence of locations is also
suitable for multi-rotor aerial vehicle

Optimal path connecting q1 ∈ SE (2) and q2 ∈ SE (2) consists only of straight
line arcs and arcs with the maximal curvature, i.e., two types of maneuvers
CCC and CSC and the solution can be found analytically (Dubins, 1957)

The main difficulty is to determine the vehicle headings for a
given sequence of waypoints
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Difficulty of Dubins Vehicle in the Solution of the TSP
For the minimal turning radius ρ, the op-
timal path connecting q1 ∈ SE (2) and
q2 ∈ SE (2) can be found analytically.
L. E. Dubins (1957) – American Journal of Mathematics

p2 θ2

p1

θ1
RSR maneuver

d

Two types of optimal Dubins maneuvers: CSC and CCC
The length of the optimal maneuver L

has a closed-form solution; Can be computed in less than 0.5µs

is piecewise-continuous function;
(continuous for ‖(p1,p2)‖ > 4ρ).
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Dubins Traveling Salesman Problem (DTSP)
Determine (closed) shortest Dubins path visit-
ing each pi ∈ R2 of the given set of n locations
P = {p1, . . . ,pn}.

1. Permutation Σ = (σ1, . . . , σn) of visits (se-
quencing). Combinatorial optimization

2. Headings Θ = {θσ1 , θσ2 , . . . , θσn}, θi ∈ [0, 2π),
for pσi ∈ P. Continuous optimization

DTSP is an optimization problem over all pos-
sible sequences Σ and headings Θ at the
states (qσ1

,qσ2
, . . . ,qσn

) such that qσi
=

(pσi
, θσi ), pσi

∈ P

minimize Σ,Θ

n−1∑

i=1

L(qσi
,qσi+1

) + L(qσn
,qσ1

)

subject to q i = (pi , θi ) i = 1, . . . , n,

where L(qσi
,qσj

) is the length of Dubins path
between qσi

and qσj
.
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Challenges of the Dubins Traveling Salesman Problem

The key difficulty of the DTSP is that the
path length mutually depends on

Order of the visits to the locations
Headings at the target locations

We need the sequence to determine headings, but
headings may influence the sequence

Two fundamental approaches can be found in literature

Decoupled approach based on a given sequence of the locations
E.g., found by a solution of the Euclidean TSP

Sampling-based approach with sampling of the headings at the locations
into discrete sets of values and considering the problem as the variant of
the Generalized TSP

Besides, further approaches are
Genetic and memetic techniques (evolutionary algorithms)
Unsupervised learning based approaches
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Existing Approaches to the DTSP(N)
Heuristic (decoupled & evolutionary)
approaches

Savla et al., 2005
Ma and Castanon, 2006
Macharet et al., 2011
Macharet et al., 2012
Ny et al., 2012
Yu and Hang, 2012
Macharet et al., 2013
Zhant et al., 2014
Macharet and Campost, 2014
Váňa and Faigl, 2015
Isaiah and Shima, 2015
...

Sampling-based approaches
Obermeyer, 2009
Oberlin et al., 2010
Macharet et al., 2016

Convex optimization
(Only if the locations are far
enough)
Goac et al., 2013

Lower bound for the DTSP
Dubins Interval Problem (DIP)
Manyam et al., 2016

DIP-based inform sampling
Váňa and Faigl, 2017

Lower bound for the DTSPN
Using Generalized DIP (GDIP)
Váňa and Faigl, 2018
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Planning with Dubins Vehicle – Summary
The optimal path connecting two configurations can be found analytically

E.g., for UAVs that usually operates in environment without obstacles

The Dubins maneuvers can also be used in randomized-sampling based
motion planners, such as RRT, in the control based sampling
Dubins vehicle model can be considered in the multi-goal path planning

Surveillance, inspection or monitoring missions to periodically visits
given target locations (areas)

Dubins Touring Problem (DTP)
Given a sequence of locations, what is the shortest path visting the locations,
i.e., what are the headings of the vehicle at the locations

Dubins Traveling Salesman Problem (DTSP)
Given a set of locations, what is the shortest Dubins path that visits each
location exactly once and returns to the origin location

Dubins Orienteering Problem (DOP)
Given a set of locations, each with associated reward, what is the Dubins path
visiting the most rewarding locations and not exceeding the given travel budget
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Dubins Touring Problem – DTP

For a sequence of the n waypoint locations P = (p1, . . . pn), pi ∈ R2, the
Dubins Touring Problem (DTP) stands to determine the optimal headings
T = {θ1, . . . , θn} at the waypoints qi such that

minimize T L(T ,P) =
n−1∑

i=1

L(qi , qi+1) + L(qn, q1)

subject to qi = (pi , θi ), θi ∈ [0, 2π), pi ∈ P,

where L(qi , qj) is the length of the Dubins maneuver connecting qi with qj

The DTP is a continuous optimization problem
The term L(qn, q1) is for possibly closed tour that can be for example requested
in the TSP with Dubins vehicle, a.k.a. DTSP

On the other, the DTP can also be utilized for open paths such as solutions of the
OP with Dubins vehicle

In some cases, it may be suitable to relax the heading at the first/last locations
in finding closed tours (i.e., solving DTSP)
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Sampling-based Solution of the DTP

For a closed sequence of the waypoint locations

P = (p1, . . . , pn)

We can sample possible heading values at each
location i into a discrete set of k headings, i.e.,
Θi = {θi1, . . . , θik} and create a graph of all
possible Dubins maneuvers
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For a set of heading samples, the
optimal solution can be found by
a forward search of the graph in
O(nk3) For open sequence we do not need

to evalute all possible initial head-
ings, and the complexity is O(nk2)

The key is to determined the
most suitable heading samples
per each waypoint
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Example of Heading Sampling – Uniform vs. Informed
Uniform sampling

1

4
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N = 224, Tcpu = 128 ms
L = 19.8, LU = 13.8,

Informed sampling

1

4

3

2

7

6 5

N = 128, Tcpu = 76 ms
L = 14.4, LU = 14.2,

N is the total number of samples, i.e., 32 samples per waypoint for
uniform sampling
L is the length of the tour (blue) and LU is the lower bound (red)
determined as a solution of the Dubins Interval Problem (DIP)
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Dubins Interval Problem (DIP)
Dubins Interval Problem (DIP) is a generalization of Dubins maneuvers
to the shortest path connecting two points pi and pj
In the DIP, the leaving interval Θi at pi and the arrival interval Θj at pj
are consider (not a single heading value)
The optimal solution can be found analytically

Manyam et al. (2015)

RSR maneuver

Solution of the DIP is a tight lower bound for the DTP
Solution of the DIP is not a feasible solution of the DTP

Notice, for Θi = Θj = 〈0, 2π) the optimal maneuver for DIP is
a straight line segment
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Lower Bound of the DTP

For a discrete set of heading intervals H = {H1, . . . ,Hn},
where Hi = {Θ1

i ,Θ
2
i , . . . ,Θ

ki
i }, a similar graph as for the

DTP can be constructed with the edge cost determined
by the solution of the associated DIP
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1
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3

Θ2
3

...
Θk3

3

Hn

Θ1
n

Θ2
n

...

Θkn
n

. . .

for all combinations

The forward search of the graph with dense samples pro-
vides a tight lower bound of the DTP

Manyam and Rathinam, 2015
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Lower Bound and Feasible Solution of the DTP
The arrival and departure angles may not be the same

The lower bound solution is not a feasible solution of the DTP

Feasible path

Lower bound

DTP solution – use any particular heading of each interval in the
lower bound solution
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The DIP-based Sampling of Headings in the DTP
Using heading intervals for a sequence of waypoints and a solution of
the DIP, we can determine lower bound of the DTP using the forward
search graph as for the DTP
The ratio between the lower bound and feasible solution of the DTP
provides an estimation of the solution quality
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Iteratively-Refined Informed Sampling (IRIS) of Headings in
the Solution of the DTP

Iterative refinement of the heading intervals
H up to the angular resolution εreq

The angular resolution is gradually de-
creased for the most promising intervals

refineDTP – divide the intervals of the
lower bound solution

solveDTP – solve DTP using the heading
from the refined intervals

It simultaneously provides feasible and lower bound solutions of the DTP
The lower bound provides a tight estimation of the solution quality

The first solution is provided very quickly – any-time algorithm

Algorithm 1: Iterative Informed Sampling-based DTP
Algorithm
Vstup: P – Target locations to be visited
Vstup: εreq – Requested angular resolution
Vstup: αreq – Requested quality of the solution
Výstup: T – A tour visiting the targets
ε← 2π // initial angular resolution;
H ← createIntervals(P, ε) // initial
intervals;
LL ← 0 // init lower bound;
LU ←∞ // init upper bound;
while ε > εreq and LU/LL > αreq do

ε← ε/2;
(H,LL)← refineDTP(P, ε,H);
(T ,LU)← solveDTP(P,H);

end
return T ;

Faigl, Váňa et al. (2017)
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Uniform vs Informed Sampling

ε = 2π/4, N = 28, TCPU= 8 ms
L = 27.9, LU = 13.2

ε = 2π/8, N = 56, TCPU= 16 ms
L = 20.8, LU = 13.2

ε = 2π/16, N = 112, TCPU= 40 ms
L = 20.3, LU = 13.5

ε = 2π/32, N = 224, TCPU= 140 ms
L = 19.8, LU = 13.8

ε = 2π/64, N = 448, TCPU= 456 ms
L = 14.5, LU = 14.5

ε = 2π/128, N = 896, TCPU= 1620 ms
L = 14.5, LU = 14.5

ε = 2π/256, N = 1792, TCPU= 6784 ms
L = 14.4, LU = 14.3

ε = 2π/4, N = 21, TCPU= 8 ms
L = 29.9, LU = 13.2

ε = 2π/8, N = 28, TCPU= 20 ms
L = 21.0, LU = 13.2

ε = 2π/16, N = 35, TCPU= 24 ms
L = 20.1, LU = 13.5

ε = 2π/32, N = 44, TCPU= 32 ms
L = 19.9, LU = 13.8

ε = 2π/64, N = 51, TCPU= 48 ms
L = 19.9, LU = 13.9

ε = 2π/128, N = 70, TCPU= 60 ms
L = 14.8, LU = 14.1

ε = 2π/256, N = 100, TCPU= 88 ms
L = 14.4, LU = 14.3
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Results and Comparison with Uniform Sampling
Random instances of the DTSP with a sequence of visits to the targets
determined as a solution of the Euclidean TSP
The waypoints placed in a squared bounding box with the side s =
(ρ
√
n)/d for the ρ = 1 and density d = 0.5 It matters on the density of targets!

Quality of solution for increasing n
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Comparision with the uniform sampling
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The informed sampling-based approach provides solutions up to 0.01% from the optima
A solution of the DTP is a fundamental bulding block for routing problems with
Dubins vehicle
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Dubins Traveling Salesman Problem (DTSP)

1. Determine a closed shortest Dubins path visit-
ing each location pi ∈ P of the given set of n
locations P = {p1, . . . , pn}, pi ∈ R2

2. Permutation Σ = (σ1, . . . , σn) of visits
Sequencing part of the problem

3. Headings Θ = {θσ1 , θσ2 , . . . , θσn} for pσi ∈ P
Continuous optimization

DTSP is an optimization problem over all possible permutations Σ and
headings Θ in the states (qσ1 , qσ2 , . . . , qσn) such that qσi = (pσi , θσi )

minimize Σ,Θ

n−1∑

i=1

L(qσi , qσi+1) + L(qσn , qσ1) (1)

subject to qi = (pi , θi ) i = 1, . . . , n, (2)

where L(qσi , qσj ) is the length of Dubins path between qσi and qσj
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Decoupled Solution of the DTSP – Alternating Algorithm

Alternating Algorithm (AA) provides a solution of the DTSP for
an even number of targets n

Savla et al. (2005)

1. Solve the related Euclidean
TSP

Relaxed motion constraints

2. Establish headings for even
edges using straight line seg-
ments

3. Determine optimal maneu-
vers for odd edges using the
analytical form for Dubins
maneuvers

Headings are known

Solution of the ETSP

p2

p3

p5

p1

p4

p6

Courtesy of P. Váňa

Jan Faigl, 2019 B4M36UIR – Lecture 06: Data Collection with Dubins Vehicles 28 / 69

Dubins Vehicle and Dubins Planning DTP DTSP DTSPN DOP DOPN Planning in 3D

DTSP with the Given Sequence of the Visits to the Targets

If the sequence of the visits Σ to the target locations is given
the problem is to determine the optimal heading at each location
and the problem becomes the Dubins Touring Problem (DTP)

Váňa and Faigl (2016)

Let for each location gi ∈ G sample possible heading to k values,
i.e., for each gi the set of headings be hi = {θ11, . . . , θk1}.

Since Σ is given, we can construct a graph connecting two
consecutive locations in the sequence by all possible headings
For such a graph and particular headings {h1, . . . , hn}, we can find
an optimal headings and thus, the optimal solution of the DTP.
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DTSP as a Solution of the DTP
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The first layer is duplicated layer to support the forward search method

The edge cost corresponds to the length of Dubins maneuver
Better solution of the DTP can be found for more samples, which
will also improve the DTSP but only for the given sequence

Two questions arise for a practical solution of the DTP
How to sample the headings? Since more samples makes finding
solution more demanding
We need to sample the headings in a “smart” way, i.e., guided sampling using lower bound of the DTP

What is the solution quality? Is there a tight lower bound?
Yes, the lower bound can be computed as a solution of the Dubins Interval Problem (DIP)
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DTP Solver in Solution of the DTSP

The solution of the DTP can be used to solve DTSP for the given se-
quence of the waypoints

E.g., determined as a solution of the Euclidean TSP as in the Alternating Algorithm

Comparision with the Alternating Algorithm (AA), Local Iterative Opti-
mization (LIO), and Memetic algorithm

AA – Savla et al., 2005, LIO – Váňa & Faigl, 2015, Memetic – Zhang et al. 2014
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DTSP – Sampling-based Approach

Sampled heading values can be directly utilized to find the sequence
as a solution of the Generalized Traveling Salesman Problem
(GTSP)

Notice For Dubins vehicle, it is the Generalized Asymmetric TSP (GATSP)

The problem is to determine a shortest tour in a graph that visits
all specified subsets of the graph’s vertices

The TSP is a special case of the GTSP when each subset to be visited
consists just a single vertex.

GATSP → ATSP
Noon and Bean (1991)

ATSP can be solved by LKH
ATSP → TSP, which can be
solved optimally, e.g., by Con-
corde
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Dubins Traveling Salesman Problem with Neighborhoods
In surveillance planning, it may be required to visit a set of target
regions G = {R1, . . . ,Rn} by the Dubins vehicle
Then, for each target region Ri , we have to determine a particular
point of the visit pi ∈ Ri and DTSP becomes the Dubins Traveling
Salesman Problem with Neighborhoods (DTSPN)

In addition to Σ and headings Θ, waypoint locations P have to be determined

DTSPN is an optimization problem over all permutations Σ, head-
ings Θ = {θσ1 , . . . , θσn} and points P = (pσ1 , . . . , pσn) for the
states (qσ1 , . . . , qσn) such that qσi = (pσi , θσi ) and pσi ∈ Rσi :

minimize Σ,Θ,P

n−1∑

i=1

L(qσi , qσi+1) + L(qσn , qσ1) (3)

subject to qi = (pi , θi ), pi ∈ Ri i = 1, . . . , n (4)

L(qσi , qσj ) is the length of the shortest possible Dubins maneuver
connecting the states qσi and qσj
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DTSPN – Approches and Examples of Solution
Similarly to the DTSP, also DTSPN can be addressed by

Decoupled approaches for which a sequence of visits to the
regions can be found as a solution of the ETSP(N)
Sampling-based approaches and formulation as the GATSP

Clusters of sampled waypoint locations each with sampled possible
heading values

Soft-computing techniques such as memetic algorithms
Unsupervised learning techniques

Váňa and Faigl (IROS 2015), Faigl and Váňa (ICANN 2016, IJCNN 2017)

Similarly to the lower bound of the DTSP based on the Dubins
Interval Problem (DIP) a lower bound for the DTSPN can be
computed using Generalized DIP (GDIP)
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DTSPN – Decoupled Approach

1. Determine a sequence of visits to the n target regions as the solution of the ETSP

2. Sample possible waypoint locations and for each such a location sample possible
heading values, e.g., s locations per each region and h heading per each location

3. Construct a search graph and determine a solution in O(n(sh)3)

4. An example of the search graph for n = 6, s = 6, and h = 6
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Dubins Touring Region Problem (DTRP)
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DTSPN – Local Iterative Optimization (LIO)
Instead of sampling into a discrete set of waypoint locations each with
sampled possible headings, we can perform local optimization, e.g., hill-
climbing technique
At each waypoint location pi , the heading can be θi ∈ [0, 2π)

A waypoint location pi can be parametrized as a point on the bounday
of the respective region Ri , i.e., as a parameter α ∈ [0, 1) measuring a
normalized distance on the boundary of Ri

The multi-variable optimization is treated independenly for each particular
variable θi and αi iteratively

Algorithm 2: Local Iterative Optimization (LIO) for the DTSPN
Data: Input sequence of the goal regions G = (Rσ1 , . . . ,Rσn), for the permutation Σ
Result: Waypoints (qσ1 , . . . , qn), qi = (pi , θi ), pi ∈ δRi

initialization() // random assignment of qi ∈ δRi ;
while global solution is improving do

for every Ri ∈ G do
θi := optimizeHeadingLocally(θi );
αi := optimizePositionLocally(αi );
qi := checkLocalMinima(αi , θi );

end
end Váňa and Faigl (IROS 2015)
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Lower Bound for the DTSP with Neighborhoods
Generalized Dubins Interval Problem

In the DTSPN, we need to determined not only the headings, but the
waypoint locations themselves

Dubins Interval Problem is not sufficient to provide tight lower-bound

Generalized Dubins Interval Problem (GDIP) can be utilized for the
DTSPN similarly as the DIP for the DTSP

Váňa and Faigl: Optimal Solution of the Generalized Dubins Interval Problem, RSS 2018, best student paper
finalist.
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Generalized Dubins Interval Problem (GDIP)
and its Optimal Solution

Determine the shortest Dubins maneuver connecting Pi and Pj given the
angle intervals θi ∈ [θmin

i , θmax
i ] and θj ∈ [θmin

j , θmax
j ]

Full problem (GDIP)

RSR maneuver ⇒

One-side version (OS-GDIP)

RSR maneuver

Optimal solution – Closed-form expressions for (1–6) and convex optimization (7)
1) S type 2) CS type 3) Cψ type

7) CCψ type

4) CSC type 5) CSC type 6) CCψC type

Average computational time

Problem Time [µs] Ratio

Dubins maneuver 0.4 1.0
DIP 1.1 3.0
GDIP 5.4 14.5

https://github.com/comrob/gdip

Váňa and Faigl: Optimal Solution of the Generalized Dubins Interval Problem, RSS 2018, best student paper
finalist.
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GDIP-based Informed Sampling for the DTSPN

Iterative refinement of the neighborhood samples and heading samples
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GDIP-based Informed Sampling for the DTSPN

Iterative refinement of the neighborhood samples and heading samples
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GDIP-based Informed Sampling for the DTSPN

Iterative refinement of the neighborhood samples and heading samples
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GDIP-based Informed Sampling for the DTSPN

Iterative refinement of the neighborhood samples and heading samples
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GDIP-based Informed Sampling for the DTSPN

Iterative refinement of the neighborhood samples and heading samples
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GDIP-based Informed Sampling for the DTSPN

Iterative refinement of the neighborhood samples and heading samples
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GDIP-based Informed Sampling for the DTSPN

Iterative refinement of the neighborhood samples and heading samples
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DTSPN – Convergence to the Optimal Solution
For a given sequence of visits to the target regions (locations)
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The algorithm scales linearly with the number of locations
Complexity of the algorithm is approximately O(nk1.8)

https://github.com/comrob/gdip

Váňa and Faigl: Optimal Solution of the Generalized Dubins Interval Problem, RSS 2018, best student paper
finalist.
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Data Collection / Surveillance Planning with Travel Budget
Visit the most important targets because of limited travel budget
The problem can be formulated as the Orienteering Problem with Du-
bins vehicle, a.k.a. Dubins Orienteering Problem (DOP)

Robert Pěnička, Jan Faigl, Petr Váňa and Martin Saska, RA-L 2017

http://mrs.felk.cvut.cz/icra17dop
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Dubins Orienteering Problem

Curvature-constrained data collection path respecting Dubins vehicle model
with the minimal turning radius ρ and constant forward velocity v

The path is a sequence of waypoints qi ∈ SE (2), q = (s, θ), θ ∈ S1.

In addition to Sk , k ,Σ (OP) determine
headings Θ = (θσ1 , . . . , θσk

) such that

maximize
k,Sk ,Σ

R =
k∑

i=1

rσi

subject to
k∑

i=2

L(qσi−1 , qσi ) ≤ Tmax ,

qσi = (sσi , θσi ), sσi ∈ S , θσi ∈ S1

sσ1 = s1, sσk
= sn

The problem combines discrete combinatorial optimization (OP) with
the continuous optimization for determining the vehicle headings
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Variable Neighborhood Search (VNS)

Variable Neighborhood Search (VNS) is a general
metaheuristic for combinatorial optimization (routing problems)

Hansen, P. and Mladenović, N. (2001): Variable neighborhood search: Principles and
applications. European Journal of Operational Research.

The VNS is based on shake and local search procedures
Shake procedure aims to escape from local optima by changing the
solution within the neighborhoods N1,...,kmax

The neighborhoods are particular operators

Local search procedure searches fully specific neighborhoods of the
solution using lmax predefined operators
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Variable Neighborhood Search (VNS) for the DOP

The solution is the first k locations of the sequence of all target locations
satisfying Tmax

VNS for the OP – Sevkli, Z. et al. (2006)

It is an improving heuristics, i.e., an initial solution has to be provided
A set of predefined neighborhoods are explored to find a better solution

Shake – explores the configuration space and
escape from a local minima using

Insert – moves one random element
Exchange – exchanges two random elements

Local Search – optimizes the solution
Path insert – moves a random sub-sequence
Path exchange – exchanges two random
sub-sequences

Randomized VNS – examines only n2 changes
in the Local Search procedure in each iteration

S1 S6 S4 S2 S5 S3 S7 S10

Insert

S1 S6 S4 S2 S5 S3 S7 S10

Exchange

S1 S5 S3 S6 S4 S7 S2 S10

Path insert

S1 S3 S2 S5 S6 S4 S7 S10

Path exchange
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Evolution of the VNS Solution to the DOP

Initial solution 4710th iteration
(4th improvement)

4790th iteration
(12th improvement)

5560th iteration
(16th improvement)

TCPU = 10.9 s,
L = 79.6, R = 960

TCPU = 144.8 s,
L = 79.7, R = 990

TCPU = 147.3 s,
L = 79.3, R = 1008

TCPU = 170.0 s,
L = 79.1, R = 1050
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Possible Solutions of the Dubins Orienteering Problem
1. Solve the Euclidean OP (EOP) and then determine Dubins path

The final path may exceed the budget and the vehicle can miss the locations because
of motion control

2. Directly solve the Dubins Orienteering Problem (DOP), e.g.,

Sample possible heading values and use Variable Neighborhood Search (VNS)
Pěnička, Faigl, Váňa, Saska (RA-L 2017)

Unsupervised learning based on Self-Organizing Maps (SOM)
Faigl (WSOM+ 2017)
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VNS-based approach provides better solutions than SOM, but it tends to be
more computationally demanding
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Dubins Orienteering Problem with Neighborhoods

Curvature-constrained path respecting Dubins vehicle model
Each waypoint consists of location p ∈ R2 and the heading θ ∈ S1

In addition to Sk , k ,Σ determine locations
Pk = (pσ1 , . . . , pσk ) and headings
Θ = (θσ1 , . . . , θσk ) such that

maximize
k,Sk ,Σ

R =
k∑

i=1

rσi

subject to
k∑

i=2

L(qσi−1 , qσi ) ≤ Tmax ,

qσi = (pσi , θσi ), pσi ∈ R2, θσi ∈ S1

||pσi , sσi || ≤ δ, sσi ∈ Sk

pσ1 = s1, pσk = sn

We need to solve the continuous optimization for determining the vehicle heading
at each waypoint and the waypoint locations Pk = {pσ1 , . . . , pσk }, pσi ∈ R2
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Variable Neighborhoods Search (VNS) for the DOPN

Algorithm 3: VNS based method for the DOPN
Input : S – Set of the target locations
Input : Tmax – Maximal allowed budget
Input : o – Initial number of position waypoints for each

target
Input : m – Initial number of heading values for each

waypoints
Input : ri – Local waypoint improvement ratio
Input : lmax – Maximal neighborhood number
Output: P – Found data collecting path
Sr ← getReachableLocations(S , Tmax)
P ← createInitialPath(Sr ,Tmax) // greedy
while Stopping condition is not met do

l ← 1
while l ≤ lmax do

P ′ ← shake(P, l)
P ′′ ← localSearch(P ′, l , ri )
if Ld(P ′′) ≤ Tmax and
[[R(P ′′) > R(P)] or [R(P ′′) == (P) and
Ld(P ′′) < Ld(P)Ld(P ′′)]] then

P ← P ′′

l ← 1
else

l ← l + 1
end

end
end

The particular l for the individual op-
erators of the shake procedure are:

Waypoint Shake (l = 1)

Path Move (l = 2)

Path Exchange (l = 3)

The local search procedure consists
of three operators and the particular
l for the individual operators of the
local search procedure are:

Waypoint Improvement (l = 1)

One Point Move (l = 2)

One Point Exchange (l = 3)

Pěnička, R., Faigl, J., Saska, M., Váňa, P. (2017)
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VNS for DOPN – Example of the Shake Operators
Path Move
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Comparision of the DOPN Solvers
VNS-based DOPN solver with s = 16 sampled waypoint locations per
sensor and h = 16 heading samples per waypoint location

Pěnička, Faigl, et al. (ICUAS 2017)

SOM-based DOPN solver with h = 3 Faigl, Pěnička (IROS 2017)

Aggregate results using average relative percentage error (ARPE) and
relative percentage error (RPE) to the reference (best found) solution

Problem set
VNS-based SOM-based (h = 3)

ARPE Tcpu∗ [s] RPE ARPE Tcpu [s]

Set 3, δ = 0.0 1.0 1,178.9 3.6 7.4 7.0
Set 3, δ = 0.5 0.9 13,273.3 6.6 10.6 7.9
Set 3, δ = 1.0 0.5 13,304.4 5.5 9.2 8.3
Set 64, δ = 0.0 1.9 5,272.2 17.4 23.8 17.9
Set 64, δ = 0.5 2.8 13,595.6 18.7 24.2 20.2
Set 64, δ = 1.0 1.3 13,792.3 9.9 15.2 22.2
Set 66, δ = 0.0 1.5 6,546.6 3.6 9.1 22.9
Set 66, δ = 0.5 1.4 13,650.1 6.7 11.8 25.5
Set 66, δ = 1.0 3.2 13,824.5 16.1 21.3 26.7

*The results have been obtained with a grid Xeon CPUs running at 2.2 GHz
to 3.4 GHz due to computational requirements.

ρ = 1.0, δ = 1.25, R = 1185
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DOPN – Example of Solution and Practical Deployment
VNS-based solution of the DOPN

Robert Pěnička, Jan Faigl, Martin Saska and Petr Váňa, ICUAS 2017

http://mrs.felk.cvut.cz/jint17dopn
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3D Data Collection Planning with Dubins Airplane Model

Dubins Airplane model describes the ve-
hicle state q = (p, θ, ψ), p ∈ R3 and
θ, ψ ∈ S1 as




ẋ
ẏ
ż

θ̇


 = v




cos θ · cos ψ
sin θ · cos ψ

sin ψ
uθ · ρ−1


 (5)

Chitsaz, H., LaValle, S.M. (2017)

Constant forward velocity v , the mini-
mal turning radius ρ, and limited pitch
angle, i.e., ψ ∈ [ψmin, ψmax ]

uθ controls the vehicle heading, |uθ| ≤ 1, and v is the forward velocity
Generation of the 3D trajectory is based on the 2D Dubins maneuver
If altitude changes are too high, additional helix segments are inserted
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DTSPN in 3D

Using the same principles as for the DTSPN
in 2D, we can generalize the approaches
for 3D planning using the Dubins Airplane
model instead of simple Dubins vehicle
The regions can be generalized to 3D and
the problem can be addressed by decoupled
or sampling-based approaches, i.e., using
GATSP formulation
In the case of LIO, we need a parametriza-
tion of the possible waypoint location, e.g.,

CCC maneuver

CSC maneuver

•ci
•pi

β

α •ci

•
pi

β

α •ci
•pi

β
α
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Solutions of the 3D-DTSPN
Algorithm 4: LIO-based Solver for 3D-DTSPN

Data: Regions R
Result: Solution represented by Q and Σ
Σ ← getInitialSequence(R);
Q ← getInitialSolution(R,Σ);
while terminal condition do
Q ← optimizeHeadings(Q,R,Σ);
Q ← optimizeAlpha(Q,R,Σ);
Q ← optimizeBeta(Q,R,Σ);

end
return Q,Σ;

Solutions based on LIO (ETSP+LIO), TSP with the travel cost according to Dubins Airplane Model (DAM-
TSP+LIO), and sampling-based approach with transformation of the GTSP to the ATSP solved by LKH
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Váňa and Faigl (2017)
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3D Surveillance Planning
Parametrization of smooth 3D multi-goal trajectory as a sequence of Bézier curves
Unsupervised learning for the TSPN can be generalized for such trajectories
During the solution of the sequencing part of the problem, we can determine a velocity
profile along the curve and compute the so-called Travel Time Estimation (TTE)
Bézier curves better fit the limits of the multi-rotor UAVs that are limited by the
maximal accelerations and velocities rather than minimal turning radius as for Dubins
vehicle
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High altitude differences
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Faigl and Váňa (2017)

Low altitude differences saturate horizontal velocity while high altitudes changes saturate vertical velocity
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Multi-Vehicle Multi-Goal Planning with Limited Travel Budget –

Curvature-Constrained Team Orienteering Problem (with Neighborhoods)

Operational time of multi-rotor
aerial vehicles is limited and only
a subset of locations can be vis-
ited.

Planning multi-goal trajectories
as a sequence of Bézier curves.

−40 −20
0

20
40 0

20

40

5

10

15

20

25

x [m]

y
[m

]
z

[m
]

Targets are mised in a case of colliding trajectories, be-
cause of local collision avoidance and optimal trajectory
following.

There is a practical need to include coordination in
multi-vehicle multi-goal trajectory planning.
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Faigl, Váňa and Pěnička: Multi-Vehicle Close Enough Orienteering Problem with Bézier Curves for Multi-
Rotor Aerial Vehicles. ICRA 2019.
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Topics Discussed

Summary

Data collection planning with curvature-constrained vehicles
The Traveling Salesman Problem (TSP) and Orienteering Problem (OP)
with Dubins Vehicle, i.e., DTSP and DOP
It is a combination of the combinatorial and continuous (determining optimal
headings) optimization
The continuous part can be solved using Dubins Touring Problem (DTP)
Using a solution of the Dubins Interval Problem (DIP) we can establish tight
lower bound of the DTP and DTSP with a particular sequence of visits
The problems can be further extended to DTSP with Neighborhoods (DTSP)
and OP with Neighborhoods (DOPN), and its Close Enough variants

The key ideas of the presented problems and approaches are
Consider proper assumptions that fits the original problem being solved

Suitability of the vehicle model, requirements on the solution quality, and benefit of
optimal or computationally demanding solutions

Employing lower bound based on “a bit different problem” such as the DIP and
GDIP, to find high quality solutions, even using decoupled approaches
Challenging problems with continuous optimization can be addressed by decou-
pled and sampling-based approaches

Be aware that the optimal solutions found for discretized problems, e.g., using ILP or
combinatorial solvers, are not optimal solutions of the original (continuous) problem!
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Topics Discussed

Topics Discussed

Dubins vehicles and planning – Dubins maneuvers
Dubins Interval Problem (DIP)
Dubins Touring Problem (DTP)
Dubins Traveling Salesman Problem (DTSP) and Dubins
Traveling Salesman with Neighborhoods (DTSPN)

Decoupled approaches – Alternating Algorithm
Sampling-based approaches – GATSP

Dubins Orienteering Problem (OP) and Dubins Orienteering
Problem with Neighborhoods (DOPN)
Data collection and surveillance planning in 3D

Next: Sampling-based motion planning
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