Multi-goal Planning

Jan Faigl

Department of Computer Science Faculty of Electrical Engineering Czech Technical University in Prague

Lecture 05

B4M36UIR - Artificial Intelligence in Robotics

Jan Faigl, 2020 B4M36UIR - Lecture 05: Multi-goal Planning Jan Faigl, 2020

B4M36UIR - Lecture 05: Multi-goal Planning

Inspection Planning

Part I

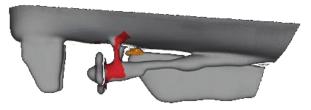
Part 1 – Multi-goal Planning

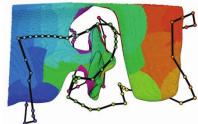
Overview of the Lecture

- Part 1 Multi-goal Planning
 - Inspection Planning
 - Multi-goal Planning
- Part 2 Unsupervised Learning for Multi-goal Planning
 - Unsupervised Learning for Multi-goal Planning
 - TSPN in Multi-goal Planning with Localization Uncertainty

Robotic Information Gathering in Inspection of Vessel's Propeller

■ The planning problem is to determine a shortest inspection path for an Autonomous Underwater Vehicle (AUV) to inspect the vessel's propeller.





Englot, B., Hover, F.S.: Three-dimensional coverage planning for an underwater inspection robot International Journal of Robotics Research, 32(9-10):1048-1073, 2013.

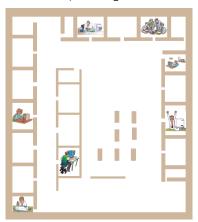
Jan Faigl, 2020 B4M36UIR - Lecture 05: Multi-goal Planning Jan Faigl, 2020

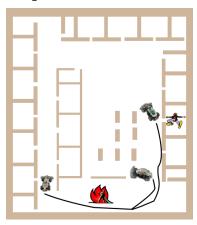
B4M36UIR - Lecture 05: Multi-goal Planning

Inspection Planning Multi-goal Planning

Example of Inspection Planning in Search Scenario

- Periodically visit particular locations of the environment and return to the starting locations.
- Use available floor plans to guide the search, e.g., finding victims in search-and-rescue scenario.





B4M36UIR - Lecture 05: Multi-goal Planning Jan Faigl, 2020

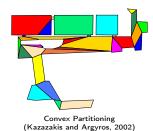
Jan Faigl, 2020 Multi-goal Planning Inspection Planning

B4M36UIR - Lecture 05: Multi-goal Planning

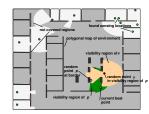
Inspection Planning – Decoupled Approach

1. Determine sensing locations such that the whole environment would be inspected (seen) by visiting them (Sampling design problem).

In the geometrical-based approach, a solution of the Art Gallery Problem.



Inspection Planning



Randomized Dual Sampling (González-Baños et al., 1998)

Boundary Placement (Faigl et al., 2006)

The problem is related to the sensor placement and sampling design.

2. Create a roadmap connecting the sensing location.

E.g., using visibility graph or randomized sampling based approaches.

3. Find the inspection path visiting all the sensing locations as a solution of the multi-goal path planning (a solution of the robotic TSP).

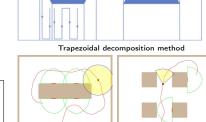
Inspection Planning Multi-goal Planning

Inspection Planning

- Inspection/coverage planning stands to determine a plan (path) to inspect/cover the given areas or point of interest.
- We can directly find inspection/coverage plan using
 - predefined covering patterns such as ox-plow motion;
 - a "general" path satisfying coverage constraints. Galceran, E., Carreras, M.: A survey on coverage path planning for robotics, Robotics and Autonomous Systems, 61(12):1258–1276, 2013.

Decoupled approach where locations to be visited are deter-

mined before path planning as the sensor placement prob-



Kafka, Faigl, Váňa: ICRA 2016

Planning to Capture Areas of Interest using UAV

- Determine a cost-efficient path from which a given set of target regions is covered.
- For each target region a subspace $S \subset \mathbb{R}^3$ from which the target can be covered is determined. S represents the neighborhood.
- We search for the best sequence of visits to the regions.

Combinatorial optimization

- The PRM is utilized to construct the planning roadmap (a graph) PRM - Probabilistic Roadmap Method - sampling-based motion planner, see lecture 8.
- The problem can be formulated as the Traveling Salesman Problem with Neighborhoods. as it is not necessary to visit exactly a single location to capture the area of interest.

Janoušek and Faigl, ICRA 2013

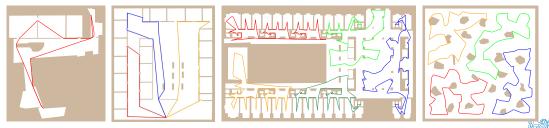
B4M36UIR - Lecture 05: Multi-goal Planning 8 / 46 Jan Faigl, 2020 B4M36UIR - Lecture 05: Multi-goal Planning

Inspection Planning Multi-goal Planning

Inspection Planning - "Continuous Sensing"

• If we do not prescribe a discrete set of sensing locations, we can formulate the problem as the Watchman route problem.

Given a map of the environment \mathcal{W} determine the shortest, closed, and collision-free path, from which the whole environment is covered by an omnidirectional sensor with the radius ρ .



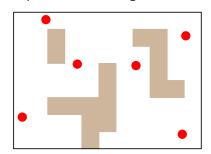
Faigl, J.: Approximate Solution of the Multiple Watchman Routes Problem with Restricted Visibility Range, JEEE Transactions on Neural Networks, 21(10):1668-1679, 2010.

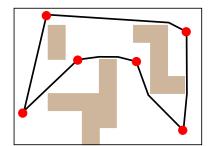
Faigl, 2020 B4M36UIR – Lecture 05: Multi-goal Planning

Inspection Planning Multi-goal Planning Inspect

Multi-Goal Path Planning (MTP)

- Multi-goal planning problem is a problem how to visit the given set of locations.
- It consists of point-to-point path planning on how to reach one location from another.
- The challenge is to determine the optimal sequence of the visits to the locations w.r.t. costefficient path to visit all the given locations.



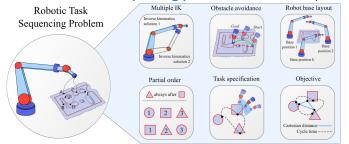


Determination the sequence of visits is a combinatorial optimization problem that can be formulated as the Traveling Salesman Problem (TSP).

spection Planning Multi-goal Planning

Multi-Goal Planning

- Having a set of locations to be visited, determine the cost-efficient path to visit them.
 - Locations where a robotic arm or mobile robot performs some task. The operation can be repeated-closed path
- The problem is called robotic task sequencing problem for robotic manipulators.



Alatartsev, S., Stellmacher, S., Ortmeier, F. (2015): Robotic Task Sequencing Problem: A Survey. Journal of Intelligent & Robotic Systems.

The problem is also called <u>Multi-goal Path Planning</u> (MTP) problem or <u>Multi-goal Planning</u> (MGP).
Also studied in ints Multi-goal Motion Planning (MGMP) variant.

riant. /

Jan Faigl, 2020 B4M36UIR – Lecture 05: Multi-goal Planning 12 / 46

Multi-goal Planning

Traveling Salesman Problem (TSP)

Given a set of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city.

- The TSP can be formulated for a graph G(V, E), where V denotes a set of locations (cities) and E represents edges connecting two cities with the associated travel cost c (distance), i.e., for each $v_i, v_j \in V$ there is an edge $e_{ij} \in E$, $e_{ij} = (v_i, v_j)$ with the cost c_{ij} .
- If the associated cost of the edge (v_i, v_j) is the Euclidean distance $c_{ij} = |(v_i, v_j)|$, the problem is called the Euclidean TSP (ETSP).
- It is known, the TSP is NP-hard (its decision variant) and several algorithms can be found in literature.

William J. Cook (2012) – In Pursuit of the Traveling Salesman: Mathematics at the Limits of Computation.

an Faigl, 2020 B4M36UIR - Lecture 05: Multi-goal Planning 13 / 46 Jan Faigl, 2020 B4M36UIR - Lecture 05: Multi-goal Planning 14 / 46

Traveling Salesman Problem (TSP)

- Let S be a set of n sensor locations $S = \{s_1, \dots, s_n\}, s_i \in \mathbb{R}^2$ and $c(s_i, s_i)$ is a cost of travel from s_i to s_i
- Traveling Salesman Problem (TSP) is a problem to determine a closed tour visiting each $s \in S$ such that the total tour length is minimal.
 - We are searching for the optimal sequence of visits $\Sigma = (\sigma_1, \dots, \sigma_n)$ such that

minimize
$$_{\Sigma}$$

$$L = \left(\sum_{i=1}^{n-1} c(\mathbf{s}_{\sigma_i}, \mathbf{s}_{\sigma_{i+1}})\right) + c(\mathbf{s}_{\sigma_n}, \mathbf{s}_{\sigma_1})$$
 subject to $\Sigma = (\sigma_1, \dots, \sigma_n), 1 \le \sigma_i \le n, \sigma_i \ne \sigma_i \text{ for } i \ne j.$ (1)

- The TSP can be considered on a graph G(V, E) where the set of vertices V represents sensor locations S and E are edges connecting the nodes with the cost $c(s_i, s_i)$.
- For simplicity we can consider $c(s_i, s_i)$ to be Euclidean distance; otherwise, we also need to address the path/motion planning problem. **Euclidean TSP**
- If $c(s_i, s_i) \neq c(s_i, s_i)$ it is the **Asymmetric TSP**.
- The TSP is known to be NP-hard unless P=NP.

Traveling vs Travelling - http://www.math.uwaterloo.ca/tsp/history/travelling.html

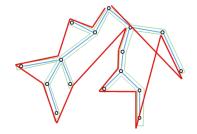
B4M36UIR - Lecture 05: Multi-goal Planning

Jan Faigl, 2020

Multi-goal Planning

MST-based Approximation Algorithm to the TSP

- Minimum Spanning Tree heuristic
- 1. Compute the MST (denoted T) of the input graph G.
- 2. Construct a graph H by doubling every edge of T.
- 3. Shortcut repeated occurrences of a vertex in the tour.



• For the triangle inequality, the length of such a tour L is

$$L \leq 2L_{optimal}$$
,

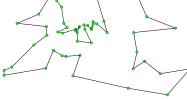
where $L_{optimal}$ is the cost of the optimal solution of the TSP.

Existing Approaches to the TSP

- Exact solutions
 - Branch&Bound, Branch&Cut, and Integer Linear Programming (ILP).

Concorde-http://www.math.uwaterloo.ca/tsp/concorde.html

- Approximation algorithms
 - Minimum Spanning Tree (MST) heuristic with $L \leq 2L_{opt}$.
 - Christofides's algorithm with $L \leq \frac{3/2}{L}$
- Heuristic algorithms
 - Constructive heuristic Nearest Neighborhood (NN) algorithm
 - 2-Opt local search algorithm proposed by Croes 1958
 - LKH K. Helsgaun efficient implementation of the Lin-Kernighan heuristic (1998). http://www.akira.ruc.dk/~keld/research/LKH/



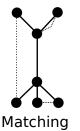
Problem Berlin52 from the TSPLIB

- Combinatorial meta-heuristics
 - Variable Neighborhood Search (VNS)
 - Greedy Randomized Adaptive Search Procedures (GRASP)
- Soft-computing techniques, evolutionary methods, and unsupervised learning

Multi-goal Planning

Christofides's Algorithm to the TSP

- Christofides's algorithm
- 1. Compute the MST of the input graph G.
- 2. Compute the minimal matching on the odddegree vertices.
- 3. Shortcut a traversal of the resulting Eulerian



• For the triangle inequality, the length of such a tour L is

$$L \leq \frac{3}{2}L_{optimal},$$

where $L_{optimal}$ is the cost of the optimal solution of the TSP.

Length of the MST is $\leq L_{optimal}$

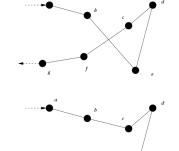
Sum of lengths of the edges in the matching $\leq \frac{1}{2}L_{optimal}$

B4M36UIR - Lecture 05: Multi-goal Planning Jan Faigl, 2020 B4M36UIR - Lecture 05: Multi-goal Planning Jan Faigl, 2020

Inspection Planning

2-Opt Heuristic

- 1. Use a construction heuristic to create an initial route
 - NN algorithm, cheapest insertion, farther insertion
- 2. Repeat until no improvement is made
 - 2.1 Determine swapping that can shorten the tour (i, j) for 1 < i < n and i + 1 < j < n
 - route[0] to route[i-1];
 - route[i] to route[j] in reverse order;
 - route[j] to route[end]:
 - Determine length of the route;
 - Update the current route if the length is shorter than the existing solution.



Croes, G.A.: A method for solving traveling salesman problems, Operations Research 6:791-812, 1958.

Multi-goal Planning

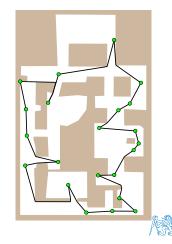
Multi-goal Planning

B4M36UIR - Lecture 05: Multi-goal Planning Jan Faigl, 2020

19 / 46

Multi-Goal Path Planning (MTP) Problem

- MTP problem is a robotic variant of the TSP with the edge costs as the length of the shortest path connecting the locations.
- Variants of the robotic TSP includes additional constraints arising from limitations of real robotic systems such as
 - obstacles, curvature-constraints, sensing range, location precision.
- For *n* locations, we need to compute up to n^2 shortest paths.
- a roadmap (graph) representing C_{free} , paths can be found in the graph (roadmap). which the G(V, E) for the TSP can be constructed. Visibility graph as a roadmap for a point robot provides a straight forward solution, but such a shortest path may not be necessarily feasible for more complex robots.
- We can determine the roadmap using randomized sampling-based motion planning techniques.

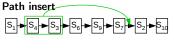


Multi-goal Planning Inspection Planning

Overview of the Variable Neighborhood Search (VNS) for the TSP

- The Variable Neighborhood Search (VNS) is a metaheuristic for solving combinatorial optimization and global optimization problems by searching distant neighborhoods of the current incumbent solution using shake and local search procedures.
- 1. Shake explores the neighborhood of the current solution to escape from a local minima using operators
 - Insert moves one element;
 - Exchange exchanges two elements.
- 2. Local search improves the solution by
 - Path insert moves a subsequence;
 - Path exchange exchanges two subsequences.

Algorithm 1: VNS-based Solver to the TSP Input: S - Set of the target locations to be visited Output: Σ - Found sequence of visits to locations S. $\Sigma^* \leftarrow$ Initial sequence found by cheapest insertion while terminal condition is not met do $\Sigma' \leftarrow \mathsf{shake}(\Sigma^*)$ for n2-times do $\Sigma'' \leftarrow localSearch(\Sigma')$ if Σ'' is "better" than Σ' then $\Sigma^* \leftarrow \Sigma'$ // Replace the incumbent sequence



Jan Faigl, 2020

Multi-goal Plannin

Multi-goal Path Planning with Goal Regions

It may be sufficient to visit a goal region instead of the particular point location.

Not only a sequence of goals visit has to be determined, but also an appropriate location at each region has to be found.

The problem with goal regions can be considered as a variant of the Traveling Salesman Problem with Neighborhoods (TSPN).

B4M36UIR - Lecture 05: Multi-goal Planning

B4M36UIR - Lecture 05: Multi-goal Planning

B4M36UIR - Lecture 05: Multi-goal Planning Jan Faigl, 2020

Jan Faigl, 2020

Multi-goal Planning

Traveling Salesman Problem with Neighborhoods

Given a set of n regions (neighbourhoods), what is the shortest closed path that visits each region.

- The problem is NP-hard and APX-hard, it cannot be approximated to within factor $2 - \epsilon$, where $\epsilon > 0$. Safra and Schwartz (2006) - Computational Complexity
- Approximate algorithms exist for particular problem variants such as disjoint unit disk neighborhoods.
- TSPN provides a suitable problem formulation for planning various inspection and data collection missions.
- It enables to exploit non-zero sensing range, and thus find shortest (more cost-efficient) data collection plans.

Multi-goal Planning

B4M36UIR - Lecture 05: Multi-goal Planning

Multi-goal Plannin

Approaches to the TSPN

■ A direct solution of the TSPN – approximation algorithms and heuristics

E.g., using evolutionary techniques or unsupervised learning

- **Euclidean TSPN** with, disk-shaped δ neighborhoods is called **Closed Enough TSP** (CETSP).
 - Simplified variant with regions as disks with radius δ remote sensing with the δ communication range.
- Decoupled approach
 - 1. Determine sequence of visits Σ independently on the locations P. e.g., as a solution of the TSP using centroids of the (convex) regions R.
 - 2. For the sequence Σ determine the locations P to minimize the total tour length using
 - Touring polygon problem (TPP);
 - Sampling possible locations and use a forward search for finding the best locations;
 - Continuous optimization such as hill-climbing.

E.g., Local Iterative Optimization (LIO), Váňa & Faigl (IROS 2015)

- Sampling-based approaches
 - For each region, sample possible locations of visits into a discrete set of locations for each region.
 - The problem can be then formulated as the Generalized Traveling Salesman Problem (GTSP).

Traveling Salesman Problem with Neighborhoods (TSPN)

- Instead visiting a particular location $s \in S$, $s \in \mathbb{R}^2$ as in the TSP, we request to visit a set of
- The TSP becomes the TSP with Neighborhoods (TSPN) where, in addition to the determination of the sequence Σ , we determine a suitable locations of visits $P = \{p_1, \dots, p_n\}$,
- \blacksquare The problem is a combination of combinatorial optimization to determine Σ with continuous optimization to determine P.

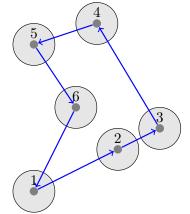
 $L = \left(\sum_{i=1}^{n-1} c(\boldsymbol{p}_{\sigma_i}, \boldsymbol{p}_{\sigma_{i+1}})\right) + c(\boldsymbol{p}_{\sigma_n}, \boldsymbol{p}_{\sigma_1})$ $R = \{r_1, \dots, r_n\}, r_i \subset \mathbb{R}^2$ $P = \{\boldsymbol{p}_1, \dots, \boldsymbol{p}_n\}, \boldsymbol{p}_i \in r_i$ subject to $\Sigma = (\sigma_1, \ldots, \sigma_n), 1 \leq \sigma_i \leq n,$ $\sigma_i \neq \sigma_i$ for $i \neq i$ Foreach $r_i \in R$ there is $\mathbf{p}_i \in r_i$.

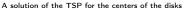
regions $R = \{r_1, \dots, r_n\}, r_i \subset \mathbb{R}^2$ to save travel cost.

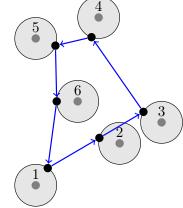
Multi-goal Plannin

Close Enough Traveling Salesman Problem (CETSP)

■ Close Enough TSP (CETSP) is a variant of the TSPN with disk shaped δ -neighborhoods.







A solution of the CETSE

B4M36UIR - Lecture 05: Multi-goal Planning

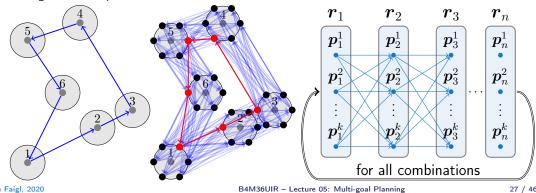
B4M36UIR - Lecture 05: Multi-goal Planning Jan Faigl, 2020

25 / 46

Multi-goal Planning Inspection Planning Multi-goal Planning

Decoupled Sampling-based Solution of the TSPN / CETSP

- Decoupled Determine sequence of visits as a solution of the Euclidean TSP for the representatives of the regions R, e.g., using centroids.
- Sample each region (neighborhood) with k samples, e.g., k = 6.
- Construct graph and find the shortest tour in by graph search in $\mathcal{O}(nk^3)$ for n regions and nk^2 edges in the sequence. For the closed path, we need to examine all k possible starting locations.



Unsupervised Learning for Multi-goal Planning

TSPN in Multi-goal Planning with Localization Uncertainty

Part II

Part 2 – Unsupervised Learning for Multi-goal Planning

Iterative Refinement in the Multi-goal Planning Problem with Regions

- Let the sequence of *n* polygon regions be $R = (r_1, \ldots, r_n)$.
 - Li, F., Klette, R.: Approximate algorithms for touring a sequence of polygons. 2008
- 1. Sampling regions into a discrete set of points and determine all shortest paths between each sampled points in the sequence of visits to the regions.

E.g., using visibility graph

- 2. Initialization: Construct an initial touring polygons path using a sampled point of each region. Let the path be defined by $P = (\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_n)$, where $\mathbf{p}_i \in r_i$ and L(P) be the length of the shortest path induced by P.
- 3. *Refinement:* **For** i = 1, 2, ..., n:
 - Find $\mathbf{p}_i^* \in r_i$ minimizing the length of the path $d(\mathbf{p}_{i-1}, \mathbf{p}_i^*) + d(\mathbf{p}_i^*, \mathbf{p}_{i+1})$, where $d(\boldsymbol{p}_k, \boldsymbol{p}_l)$ is the path length from \boldsymbol{p}_k to \boldsymbol{p}_l , $\boldsymbol{p}_0 = \boldsymbol{p}_n$, and $\boldsymbol{p}_{n+1} = \boldsymbol{p}_1$.
 - If the total length of the current path over point p_i^* is shorter than over p_i , replace the point \mathbf{p}_i by \mathbf{p}_i^* .
- 4. Compute the path length L_{new} using the refined points.
- 5. Termination condition: If $L_{new}-L<\epsilon$ Stop the refinement. Otherwise $L \leftarrow L_{new}$ and go to Step 3.
- 6. Final path construction: Use the last points and construct the path using the shortest paths among obstacles between two consecutive points.

On-line sampling during the iterations - Local Iterative Optimization (LIO), Váňa & Faigl (IROS 2015).

B4M36UIR - Lecture 05: Multi-goal Planning

Jan Faigl, 2020 Unsupervised Learning for Multi-goal Planning

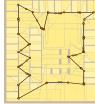
TSPN in Multi-goal Planning with Localization Uncertainty

Unsupervised Learning based Solution of the TSP

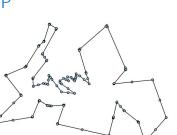
- Iterative learning procedure where neurons (nodes) adapt to the target locations.
- Based on self-organizing map by T. Kohonen.

Somhom, S., Modares, A., Enkawa, T. (1999)

- Deployed in robotic problems such as inspection and search-and-rescue planning. Faigl, J. et al. (2011)
 - Generalized to polygonal domain with (overlapping) regions.
- Evolved to Growing Self-Organizing Array (GSOA). A general heuristic for various routing problems with neighborhoods; including routing problems with profit aka the orienteering problem



Jan Faigl, 2020 B4M36UIR - Lecture 05: Multi-goal Planning B4M36UIR - Lecture 05: Multi-goal Planning



Unsupervised Learning based Solution of the TSP

Kohonen's type of unsupervised two-layered neural network (Self-Organizing Map)

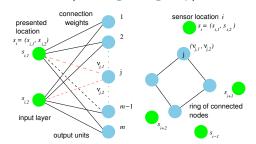
- Neurons' weights represent nodes $\mathcal{N} = \{\nu_1, \dots, \nu_m\}$ in a plane (input space \mathbb{R}^2).
- Nodes are organized into a ring that evolved in the output space \mathbb{R}^2).
- Target locations $S = \{s_1, \dots s_n\}$ are presented to the network in a random order.
- Nodes compete to be winner according to their distance to the presented goal s

$$u^* = \operatorname{argmin}_{\boldsymbol{\nu} \in \mathcal{N}} |\mathcal{D}(\{\boldsymbol{\nu}, \boldsymbol{s})|.$$

■ The winner and its neighbouring nodes are adapted (moved) towards the target according to the neighbouring function $\nu' \leftarrow \mu f(\sigma, d)(\nu - s)$

$$f(\sigma,d) = \left\{ egin{array}{ll} \mathrm{e}^{-rac{d^2}{\sigma^2}} & \mathrm{for} \ d < m/n_f, \ 0 & \mathrm{otherwise}, \end{array}
ight.$$

Best matching unit ν to the presented prototype **s** is determined according to the distance function $|\mathcal{D}(\nu, s)|$.



- ullet For the Euclidean TSP, ${\mathcal D}$ is the Euclidean distance
- However, for problems with obstacles, the multi-goal path planning, \mathcal{D} should correspond to the length of the shortest, collision-free path.

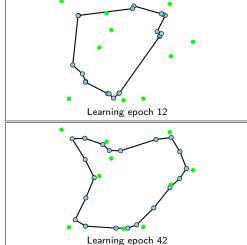
Fort, J.C. (1988), Angéniol, B. et al. (1988), Somhom, S. et al. (1997), and further improvements.

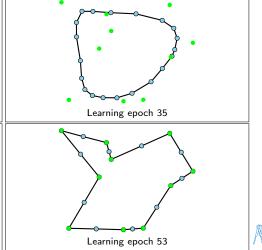
Unsupervised Learning for Multi-goal Planning

B4M36UIR - Lecture 05: Multi-goal Planning

TSPN in Multi-goal Planning with Localization Uncertainty

Example of Unsupervised Learning for the TSP





Unsupervised Learning for Multi-goal Planning

Unsupervised Learning based Solution of the TSP - Detail

- Target (sensor) locations $S = \{s_1, \dots, s_n\}$, $s_i \in \mathbb{R}^2$; Neurons $\mathcal{N} = (\nu_1, \dots, \nu_m)$, $\nu_i \in \mathbb{R}^2$, m = 2.5n.
- Learning gain σ ; epoch counter i; gain decreasing rate $\alpha = 0.1$; learning rate $\mu = 0.6$.
- 1. $\mathcal{N} \leftarrow \text{init ring of neurons as a small ring around some } \mathbf{s}_i \in \mathcal{S}$, e.g., a circle with radius 0.5.
- 2. $i \leftarrow 0$; $\sigma \leftarrow 12.41n + 0.06$;
- 1 ← ∅ //clear inhibited neurons
- 4. **foreach** $s \in \Pi(S)$ (a permutation of S)
 - 4.1 $\nu^* \leftarrow \operatorname{argmin}_{\nu \in \mathcal{N} \setminus I} \| (\nu, s) \|$
 - 4.2 foreach ν in d neighborhood of ν^*

$$\begin{split} \boldsymbol{\nu} \leftarrow \boldsymbol{\nu} + \mu f(\sigma, d) (\boldsymbol{s} - \boldsymbol{\nu}) \\ f(\sigma, d) = \left\{ \begin{array}{ll} \mathrm{e}^{-\frac{d^2}{\sigma^2}} & \text{for } d < 0.2m, \\ 0 & \text{otherwise,} \end{array} \right. \end{split}$$

- 4.3 $I \leftarrow I | |\{\nu^*\}|$ // inhibit the winner
- 5. $\sigma \leftarrow (1-\alpha)\sigma$; $i \leftarrow i+1$;
- 6. If (termination condition is not satisfied) Goto Step 3; Otherwise retrieve solution.
- ring of connected

Termination condition can be

- Maximal number of learning epochs $i \le i_{max}$, e.g.
- Winner neurons are negligibly close to sensor locations, e.g., less than 0.001.

Somhom, S., Modares, A., Enkawa, T. (1999): Competition-based neural network for the multiple travelling salesmen problem with minmax objective. Computers & Operations Research.

Faigl, J. et al. (2011): An application of the self-organizing map in the non-Euclidean Traveling Salesman Problem

Neurocomputing.

B4M36UIR - Lecture 05: Multi-goal Planning

Unsupervised Learning for Multi-goal Planning

Jan Faigl, 2020

TSPN in Multi-goal Planning with Localization Uncertaint

Unsupervised Learning for the Multi-Goal Path Planning

Unsupervised learning procedure for the Multi-goal Path Planning (MTP) problem a robotic

variant of the Traveling Salesman Problem (TSP).

```
Algorithm 2: SOM-based MTP solver
\mathcal{N} \leftarrow \text{initialization}(\nu_1, \dots, \nu_m);
repeat
     error \leftarrow 0:
     foreach g \in \Pi(S) do
           selectWinner argmin<sub>\nu \in \mathcal{N}</sub> |S(g, \nu)|;
           adapt(S(g, \nu), \mu f(\sigma, l)|S(g, \nu)|);
           error \leftarrow \max\{error, |S(g, \nu^*)|\};
     \sigma \leftarrow (1 - \alpha)\sigma;
until error < \delta;
```

■ For multi-goal path planning – the selectWinner and adapt procedures are based on the solution of the path planning problem.

Faigl, J., Kulich, M., Vonásek, V., Přeučil, L.: An Application of Self-Organizing Map in the non-Euclidean Traveling Salesman Problem, Neurocomputing, 74(5):671-679, 2011.

B4M36UIR - Lecture 05: Multi-goal Planning

Jan Faigl, 2020

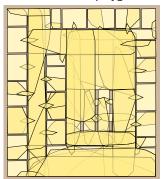
B4M36UIR - Lecture 05: Multi-goal Planning

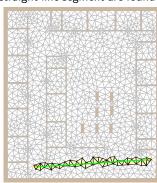
Jan Faigl, 2020

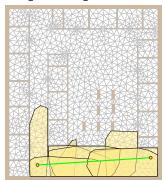
SOM for the TSP in the Watchman Route Problem – Inspection Planning

During the unsupervised learning, we can compute coverage of W from the current ring (solution represented by the neurons) and adapt the network towards uncovered parts of W.

- Convex cover set of \mathcal{W} created on top of a triangular mesh.
- Incident convex polygons with a straight line segment are found by walking in a triangular mesh.







Faigl, J.: Approximate solution of the multiple watchman routes problem with restricted visibility range, IEEE Transactions on Neural Networks, 21(10):1668-1679, 2010.

Jan Faigl, 2020 Unsupervised Learning for Multi-goal Planning B4M36UIR - Lecture 05: Multi-goal Planning

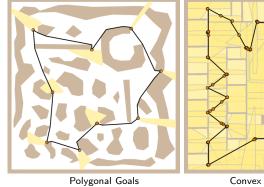
Jan Faigl, 2020

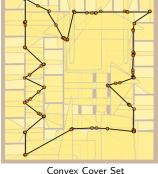
B4M36UIR - Lecture 05: Multi-goal Planning

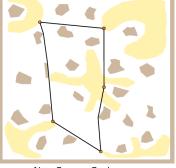
TSPN in Multi-goal Planning with Localization Uncertainty

SOM for the Traveling Salesman Problem with Neighborhoods (TSPN)

- Unsupervised learning of the SOM for the TSP allows to generalize the adaptation procedure to the TSPN.
- It also provides solutions for non-convex regions, overlapping regions, and coverage problems.







n=9. T=0.32 s

Jan Faigl, 2020

n=106. T=5.1 s

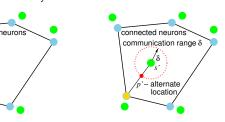
Non-Convex Goals

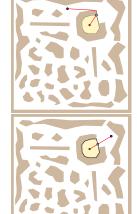
n=5. T=0.1 s

Faigl, J., Vonásek, V., Přeučil, L.: Visiting Convex Regions in a Polygonal Map, Robotics and Autor Systems, 61(10):1070-1083, 2013.

Unsupervised Learning for the TSPN

- A suitable location of the region can be sampled during the winner selection.
- We can use the centroid of the region for the shortest path computation from ν to the region r presented to the network.
- Then, an intersection point of the path with the region can be used as an alternate location.
 - Faigl, J. et al. (2013): Visiting convex regions in a polygonal map. Robotics and Autonomous
- For the Euclidean TSPN with disk-shaped δ neighborhoods, we can compute the alternate location directly from the Euclidean distance.

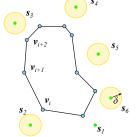


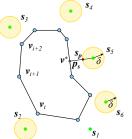


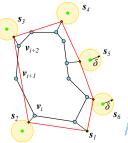
Unsupervised Learning for Multi-goal Planning

Growing Self-Organizing Array (GSOA)

- Growing Self-Organizing Array (GSOA) is generalization of the unsupervised learning to routing problems motivated by data collection planning, i.e., routing with neighborhoods such as the Close Enough TSP.
- The GSOA is an array of nodes $\mathcal{N} = \{\nu_1, \dots, \nu_M\}$ that evolves in the problem space using unsupervised learning.
- The array adapts to each $s \in S$ (in a random order) and for each s a new winner node ν^* is determined together with the corresponding s_p , such that $||(s_p, s)|| \le \delta(s)$. It adaptively adjusts the number of nodes
- The winner and its neighborhoods are adapted (moved) towards s_p .
- After the adaptation to all $s \in S$, each s has its ν and s_p , and the array defines the sequence Σ and the requested waypoints P.



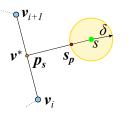




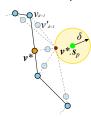
B4M36UIR - Lecture 05: Multi-goal Planning B4M36UIR - Lecture 05: Multi-goal Planning

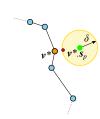
GSOA – Winner Selection and Its Adaptation

• Selecting winner node ν^* for s and its waypoint s_p



Winner adaptation





- For each $s \in S$, we create new node ν^* , and therefore, all not winning nodes are removed after processing all locations in S (one learning epoch) to balance the number of nodes in the GSOA.
- After each learning epoch, the GSOA encodes a feasible solution of the CETSP.
- The power of adaptation is decreasing using a cooling schedule after each learning epoch.
- The GSOA converges to a stable solution in tens of epochs.

Number of epochs can be set.

Faigl, J. (2018): GSOA: Growing Self-Organizing Array - Unsupervised learning for the Close-Enough Traveling Salesman Problem and other routing problems. Neurocomputing 312: 120-134 (2018).

Faigl, J., Krajník, T., Vonásek, V., and Přeučil, L.: On localization uncertainty in an autonomous inspection, IEEE

B4M36UIR - Lecture 05: Multi-goal Planning

International Conference on Robotics and Automation (ICRA), 2012, pp. 1119-1124.

B4M36UIR - Lecture 05: Multi-goal Planning

Jan Faigl, 2020

B4M36UIR - Lecture 05: Multi-goal Planning

x [m]

Unsupervised Learning for Multi-goal Planning

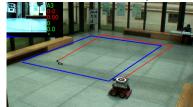
TSPN in Multi-goal Planning with Localization Uncertainty

Unsupervised Learning for Multi-goal Planning

TSPN in Multi-goal Planning with Localization Uncertainty

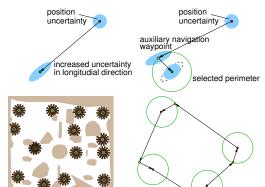
Example – TSPN for Planning with Localization Uncertainty

 Teach-and-repeat autonomous navigation using vision-based bearing corrections that are more precise than estimation of the traveled distance based on odometry measurements.



Krajník, T., Faigl, J., Vonásek, V., Košnar, K., Kulich, M., and Přeučil, L.: Simple yet stable bearing-only navigation, Journal of Field Robotics, 27(5):511-533, 2010.

- The localization uncertainty can be decreased by visiting auxiliary navigation waypoints prior the target locations.
- It can be formulated as a variant of the TSPN with auxiliary navigation wavpoints.



The adaptation procedure is modified to select the auxiliary navigation waypoint to decrease the expected lo-

calization error at the target locations.

Example – Results on the TSPN for Planning with Localization Uncertainty

Deployment of the method in indoor and outdoor environment with ground mobile robots and aerial vehicle in indoor environment.

y [m]

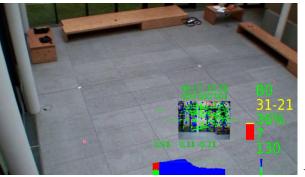
GSOA Evolution in solving the 3D CETSP

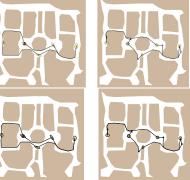
z [m]

20

100

- lacksquare In the indoor with the small MMP5 robot, the error decreased from 16.6 cm ightarrow
- In the outdoor with the P3AT robot, the real overall error at the goals decreased from 0.89 m \rightarrow 0.58 m (about 35%)
- Deployment with a small aerial vehicle the Parrot AR.Drone, the success of the locations' visits improved from 83% to 95%.





B4M36UIR - Lecture 05: Multi-goal Planning

TSP: L=184 m, $E_{avg}=0.57$ m TSPN: L=202 m, $E_{avg}=0.35$ m

Jan Faigl, 2020

Jan Faigl, 2020

Topics Discussed

Summary of the Lecture

Topics Discussed

Topics Discussed

- Robotic information gathering in inspection missions
- Inspection planning and multi-goal path planning coverage planning
- Multi-goal path planning (MTP)
 - Robotic Traveling Salesman Problem (TSP)
 - Traveling Salesman Problem with Neighborhoods (TSPN) and Close Enough Traveling Salesman Problem (CETSP)
 - Decoupled and Sampling-based approaches
 - TSP can be solved by efficient heuristics such as LKH
 - Optimal, approximation, and heuristics solutions
 - Generalized TSP (GTSP)
- Next: Data collection planning

Jan Faigl, 2020 B4M36UIR - Lecture 05: Multi-goal Planning

Jan Faigl, 2020

B4M36UIR - Lecture 05: Multi-goal Planning