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Overview of the Lecture

® Part 1 — Multi-goal Planning

= Inspection Planning
= Multi-goal Planning

® Part 2 — Unsupervised Learning for Multi-goal Planning
= Unsupervised Learning for Multi-goal Planning

= TSPN in Multi-goal Planning with Localization Uncertainty
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Inspection Planning

Part |

Part 1 — Multi-goal Planning

Jan Faigl, 2020 B4M36UIR — Lecture 05: Multi-goal Planning

Multi-goal Planning

Inspection Planning

Robotic Information Gathering in Inspection of Vessel's Propeller

m The planning problem is to determine a shortest inspection path for an Autonomous
Underwater Vehicle (AUV) to inspect the vessel's propeller.

https://www.youtube.com/watch?v=8azP_9VnMtM

Englot, B., Hover, F.S.: Three-dimensional coverage planning for an underwater inspection robot,
International Journal of Robotics Research, 32(9-10):1048-1073, 2013.
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Inspection Planning

Example of Inspection Planning in Search Scenario

m Periodically visit particular locations of the environment and return to the starting locations.
® Use available floor plans to guide the search, e.g., finding victims in search-and-rescue scenario.
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Inspection Planning

Inspection Planning

= Inspection/coverage planning stands to determine a plan ‘
(path) to inspect/cover the given areas or point of interest. ‘
= We can directly find inspection/coverage plan using ‘

m predefined covering patterns such as ox-plow motion;
® 3 “general’ path satisfying coverage constraints. ‘

Galceran, E., Carreras, M.: A survey on coverage path planning for
robotics, Robotics and Autonomous Systems, 61(12):1258-1276, 2013.

m Decoupled approach where locations to be visited are deter-

mined before path planning as the sensor placement prob-
lem.

Trapezoidal decomposition method
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Inspection Planning Multi

Inspection Planning — Decoupled Approach
1. Determine sensing locations such that the whole environment would be inspected (seen) by
visiting them (Sampling design problem).
In the geometrical-based approach, a solution of the Art Gallery Problem.
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Convex Partitioning Randomized Dual Sampling Boundary Placement
(Kazazakis and Argyros, 2002) (Gonzalez-Bafios et al., 1998) (Faigl et al., 2006)

The problem is related to the sensor placement and sampling design.

2. Create a roadmap connecting the sensing location.

E.g., using visibility graph or randomized sampling based approaches.

3. Find the inspection path visiting all the sensing locations as a solution of the multi-goal path
planning (a solution of the robotic TSP).
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Inspection Planning

Planning to Capture Areas of Interest using UAV
m Determine a cost-efficient path from which a given set of target
regions is covered.

® For each target region a subspace S C R3 from which the target
can be covered is determined. S represents the neighborhood.
m We search for the best sequence of visits to the regions.

Combinatorial optimization

® The PRM is utilized to construct the planning roadmap (a graph).

PRM — Probabilistic Roadmap Method — sampling-based motion planner, see lecture 8.

® The problem can be formulated as the Traveling Salesman Problem with Neighborhoods,
as it is not necessary to visit exactly a single location to capture the area of interest.

Janousek and Faigl, ICRA 2013
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Inspection Planning

Inspection Planning — " Continuous Sensing”

= |f we do not prescribe a discrete set of sensing locations, we can formulate the problem
as the Watchman route problem.

Given a map of the environment 1V determine the shortest, closed, and collision-free
path, from which the whole environment is covered by an omnidirectional sensor with
the radius p.

S

Faigl, J.: Approximate Solution of the Multiple Watchman Routes Problem with Restricted Visibility Range, ““
IEEE Transactions on Neural Networks, 21(10):1668-1679, 2010. ‘
Jan Faigl, 2020

B4M36UIR — Lecture 05: Multi-goal Planning 10 / 46

Multi-goal Planning

Multi-Goal Planning

® Having a set of locations to be visited, determine the cost-efficient path to visit them.
= Locations where a robotic arm or mobile robot performs some task. The operation can be repeated—closed path.
m The problem is called robotic task sequencing problem for robotic manipulators.

Robotic Task
Sequencing Problem

Multiple IK Obstacle avoidance Robot base layout
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Alatartsev, S., Stellmacher, S., Ortmeier, F. (2015): Robotic Task Sequencing Problem: A Survey. Journal of
Intelligent & Robotic Systems.

® The problem is also called Multi-goal Path Planning (MTP) problem or Multi-goal Planning
(MGP).

Also studied in ints Multi-goal Motion Planning (MGMP) variant. |
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Multi-goal Planning

Multi-Goal Path Planning (MTP)

= Multi-goal planning problem is a problem how to visit the given set of locations.
® |t consists of point-to-point path planning on how to reach one location from another.
m The challenge is to determine the optimal sequence of the visits to the locations w.r.t. cost-

efficient path to visit all the given locations.

(]
m Determination the sequence of visits is a combinatorial optimization problem that can be
formulated as the Traveling Salesman Problem (TSP).
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Multi-goal Planning

Traveling Salesman Problem (TSP)

Given a set of cities and the distances between each pair of cities, what is the shortest
possible route that visits each city exactly once and returns to the origin city.

® The TSP can be formulated for a graph G(V/, E), where V denotes a set of locations
(cities) and E represents edges connecting two cities with the associated travel cost ¢
(distance), i.e., for each v;, v; € V there is an edge e; € E, e = (v;, vj) with the cost
Cij -

= |f the associated cost of the edge (v;, v;) is the Euclidean distance ¢;; = |(v;, vj)|, the
problem is called the Euclidean TSP (ETSP).

® |t is known, the TSP is NP-hard (its decision variant) and several algorithms can be
found in literature.

William J. Cook (2012) — In Pursuit of the Traveling Salesman: Mathematics at the Limits
of Computation.
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Multi-goal Planning

Traveling Salesman Problem (TSP)

® Let S be a set of n sensor locations S = {sq, ..
from s; to s;
® Traveling Salesman Problem (TSP) is a problem to determine a closed tour visiting each
s € S such that the total tour length is minimal.
® We are searching for the optimal sequence of visits ¥ = (o7, ..

.»Sn}, s;i € R? and c(s;, s;) is a cost of travel

.,0p) such that

n—1
minimize 5 L= Z c(So;s50141) | + (56,1 501)

i— (1)
subject to Y =(01,...,00),1 <0; < n,o; # oj for i #j.

The TSP can be considered on a graph G(V/, E) where the set of vertices V represents sensor
locations S and E are edges connecting the nodes with the cost c(s;, s;).

For simplicity we can consider c(s;,s;) to be Euclidean distance; otherwise, we also need to
address the path/motion planning problem. Euclidean TSP

If c(si,s;) # c(sj,sj) it is the Asymmetric TSP.

The TSP is known to be NP-hard unless P=NP.

Traveling vs Travelling — http://wuw.math.uwaterloo.ca/tsp/history/travelling.html -
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Multi-goal Planning

Existing Approaches to the TSP

= Exact solutions
® Branch&Bound, Branch&Cut, and Integer Linear Programming (ILP).

Concorde-http://www.math.uwaterloo.ca/tsp/concorde.html
= Approximation algorithms
= Minimum Spanning Tree (MST) heuristic with L < 2Lopt.

u Christofides’s algorithm with L < % .
opt

Heuristic algorithms
= Constructive heuristic — Nearest Neighborhood (NN) algorithm
m 2-Opt — local search algorithm proposed by Croes 1958
= LKH — K. Helsgaun efficient implementation of the Lin-Kernighan

heuristic (1998). http://www.akira.ruc.dk/“keld/research/LKH/ Problem Berlin52 from the TSPLIB

® Combinatorial meta-heuristics

= Variable Neighborhood Search (VNS)
= Greedy Randomized Adaptive Search Procedures (GRASP)

Soft-computing techniques, evolutionary methods, and unsupervised learning
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Multi-goal Planning

MST-based Approximation Algorithm to the TSP

= Minimum Spanning Tree heuristic

1. Compute the MST (denoted T) of the input graph G.
2. Construct a graph H by doubling every edge of T.
3. Shortcut repeated occurrences of a vertex in the tour.

m For the triangle inequality, the length of such a tour L is
L< 2Loptimala
where Loptimar is the cost of the optimal solution of the TSP.
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Multi-goal Planning

Christofides’s Algorithm to the TSP

m Christofides's algorithm

1. Compute the MST of the input graph G.

2. Compute the minimal matching on the odd-
degree vertices.

3. Shortcut a traversal of the resulting Eulerian

graph. MST

® For the triangle inequality, the length of such a tour L is

Matching Final tour

L < ELoptimala

where Loptimar is the cost of the optimal solution of the TSP.
Length of the MST is < Loptimal

Sum of lengths of the edges in the matching < %Lopt,-m,;/
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Inspection Planning

2-Opt Heuristic

1. Use a construction heuristic to create an initial route
= NN algorithm, cheapest insertion, farther insertion

2. Repeat until no improvement is made

2.1 Determine swapping that can shorten the tour (i, ) for
1<i<nandi+1<j<n

route[0] to route]i-1];

routeli] to route[j] in reverse order;

route[j] to route[end];

Determine length of the route;

Update the current route if the length is shorter than the
existing solution.

Croes, G.A.: A method for solving traveling salesman problems, Operations Research 6:791-812, 1958. /)%
AV
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Multi-goal Planning

Inspection Planning

Overview of the Variable Neighborhood Search (VNS) for the TSP

= The Variable Neighborhood Search (VNS) is a metaheuristic for solving combinatorial optimization and global
optimization problems by searching distant neighborhoods of the current incumbent solution using shake and local
search procedures. Mladenovi¢ and Hansen, 1997

1. Shake explores the neighborhood of the current solution to Insert

escape from a local minima using operators

= Insert — moves one element;
= Exchange — exchanges two elements.

2. Local search improves the solution by

= Path insert — moves a subsequence;
= Path exchange — exchanges two subsequences.

Algorithm 1: VNS-based Solver to the TSP

Input: S — Set of the target locations to be visited.
Output: ¥ — Found sequence of visits to locations S.
T* « Initial sequence found by cheapest insertion
while terminal condition is not met do

Y/ ¢ shake(X*)

for n?-times do

L ¥ « localSearch(X')

if £ is “better” than ¥’ then
| ¥y // Select T” instead of ¥’

if X' is “better” than ©* then
| Z* X' // neplace the incumbent sequence.

&
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return ¥*

Jan Faigl, 2020

Inspection Planning

Multi-Goal Path Planning (MTP) Problem

® MTP problem is a robotic variant of the TSP with the edge
costs as the length of the shortest path connecting the locations.

® Variants of the robotic TSP includes additional constraints arising
from limitations of real robotic systems such as
m obstacles, curvature-constraints, sensing range, location precision.

® For n locations, we need to compute up to n? shortest paths.

® Having a vroadmap (graph) representing Cfee, the
paths can be found in the graph (roadmap), from
which the G(V,E) for the TSP can be constructed.
Visibility graph as a roadmap for a point robot provides a straight forward
solution, but such a shortest path may not be necessarily feasible for more
complex robots.

= We can determine the roadmap using randomized sampling-based

motion planning techniques.

See lecture 8.
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Inspection Planning Multi-goal Planning

Multi-goal Path Planning with Goal Regions

= |t may be sufficient to visit a goal region instead of the particular point location.

-
Cameraifors—
navigation

Not only a sequence of goals visit has to be determined, but also an appropriate location at each region has to be found.

The problem with goal regions can be considered as a variant of the
Traveling Salesman Problem with Neighborhoods (TSPN).
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Multi-goal Planning

Traveling Salesman Problem with Neighborhoods

Given a set of n regions (neighbourhoods), what is the shortest closed path that visits
each region.

m The problem is NP-hard and APX-hard, it cannot be approximated to within factor

2 — ¢, where € > 0. Safra and Schwartz (2006) — Computational Complexity

m Approximate algorithms exist for particular problem variants such as disjoint unit disk
neighborhoods.

m TSPN provides a suitable problem formulation for planning various inspection
and data collection missions.

® |t enables to exploit non-zero sensing range, and thus find shortest (more cost-efficient)
data collection plans.
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Multi-goal Planning

Traveling Salesman Problem with Neighborhoods (TSPN)

® Instead visiting a particular location s € S, s € R? as in the TSP, we request to visit a set of
regions R = {r,...,r,}, ri C R? to save travel cost.

® The TSP becomes the TSP with Neighborhoods (TSPN) where, in addition to the deter-
mination of the sequence X, we determine a suitable locations of visits P = {py,...,p,},
p; € ri.

® The problem is a combination of combinatorial optimization to determine ¥ with continuous
optimization to determine P.

n—1
L= (Z c(p,,. pa,.“)> + (P, Poy)

i=1

minimize s p

subject to R={n,...,rn},rn CR?
P= {plv--.apn}7pi €T
z:((fl,...,O'n),lSO','Sn,

o #ojfori#j
Foreach r; € R there is p; € r;.
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Multi-goal Planning
Approaches to the TSPN

m A direct solution of the TSPN — approximation algorithms and heuristics

E.g., using evolutionary techniques or unsupervised learning

® Euclidean TSPN with, disk-shaped ¢ neighborhoods is called Closed Enough TSP (CETSP).
= Simplified variant with regions as disks with radius § — remote sensing with the § communication range.
m Decoupled approach
1. Determine sequence of visits * independently on the locations P, e.g., as a solution of
the TSP using centroids of the (convex) regions R.
2. For the sequence ¥ determine the locations P to minimize the total tour length using
= Touring polygon problem (TPP);
® Sampling possible locations and use a forward search for finding the best locations;
= Continuous optimization such as hill-climbing.
E.g., Local Iterative Optimization (LIO), Vana & Faigl (IROS 2015)
m Sampling-based approaches

® For each region, sample possible locations of visits into a discrete set of locations for each region.
® The problem can be then formulated as the Generalized Traveling Salesman Problem (GTSP).
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Multi-goal Planning

Close Enough Traveling Salesman Problem (CETSP)
® Close Enough TSP (CETSP) is a variant of the TSPN with disk shaped d-neighborhoods.

A solution of the TSP for the centers of the disks
Jan Faigl, 2020

A solution of the CETSP
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Multi-goal Planning

Decoupled Sampling-based Solution of the TSPN / CETSP

® Decoupled — Determine sequence of visits as a solution of the Euclidean TSP for the repre-
sentatives of the regions R, e.g., using centroids.

® Sample each region (neighborhood) with k samples, e.g., k = 6.

= Construct graph and find the shortest tour in by graph search in O(nk3) for n regions and nk?
edges in the sequence.

For the closed path, we need to examine all k possible starting locations.

1 T r3 ry
pi 1% ps| | P,
° ® ° °
pi 71;2 71;2 p

1 \‘2 \.3 .n

- J - J

for all combinations
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lterative Refinement in the Multi-goal Planning Problem with Regions

m Let the sequence of n polygon regions be R = (r,..., ).
Li, F., Klette, R.: Approximate algorithms for touring a sequence of polygons. 2008

1. Sampling regions into a discrete set of points and determine all shortest paths
between each sampled points in the sequence of visits to the regions.
E.g., using visibility graph
2. Initialization: Construct an initial touring polygons path using a sampled point
of each region. Let the path be defined by P = (py, p5,...,p,), where p; € r;
and L(P) be the length of the shortest path induced by P.
3. Refinement: For i =1,2,...,n:
= Find p} € r; minimizing the length of the path d(p;_1,p}) + d(p},P;11).
where d(py, p;) is the path length from p, to p;, py = p,, and p,, . ; = p;.
= If the total length of the current path over point p7 is shorter than over p;,
replace the point p; by p;}.
4. Compute the path length Lpew using the refined points.
Termination condition: If Lpew — L < € Stop the refinement.
L < Lpew and go to Step 3.
6. Final path construction: Use the last points and construct the path using the
shortest paths among obstacles between two consecutive points.

On-line sampling during the iterations — Local Iterative Optimization (LIO),
Vana & Faigl (IROS 2015).

Otherwise
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Part 2 — Unsupervised Learning for Multi-goal Planning
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Unsupervised Learning for Multi-goal Planning

Unsupervised Learning based Solution of the TSP
® |terative learning procedure where neurons (nodes) adapt
to the target locations.
= Based on self-organizing map by T. Kohonen.
Somhom, S., Modares, A., Enkawa, T. (1999)
® Deployed in robotic problems such as inspection and

search-and-rescue planning. Faigl, J. et al. (2011)
= Generalized to polygonal domain with (overlapping) regions.
® Evolved to Growing Self-Organizing Array (GSOA).

A general heuristic for various routing problems with neighborhoods; in-
cluding routing problems with profit aka the orienteering problem.

I
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Unsupervised Learning for Multi-goal Planning

Unsupervised Learning based Solution of the TSP

Kohonen's type of unsupervised two-layered neural network (Self-Organizing Map)

= Neurons’ weights represent nodes N’ = {v1,...,vm}) connection 1 sensor location i
in a plane (input space R?). %::l?;:ed weights 5=0,085,)
= Nodes are organized into a ring that evolved in the out- s=05,8) 2 PR
put space R?). 5, . Y
= Target locations S = {s1,...sn} are presented to the i / \
network in a random order. .
= Nodes compete to be winner according to their distance s \ / Sl
i2 .
to the presented goal s m-1 ring of connected
- input layer nodes
v* = argmin, ¢ [D({v, 5)|. input fay . .‘,.M2 .
. . . . output units S,
® The winner and its neighbouring nodes are adapted !

(moved) towards the target according to the neighbour-

\ ! = For the Euclidean TSP, D is the Euclidean distance
ing function V'« pf(o,d)(v —s)

= However, for problems with obstacles, the multi-goal
path planning, D should correspond to the length of
for d < m/ng, the shortest, collision-free path.

otherwise,

_d
f(o,d) = { 8 o2
Fort, J.C. (1988), Angéniol, B. et al. (1988), Somhom, _

. . . S. et al. (1997), and further improvements.
® Best matching unit v to the presented prototype s is

determined according to the distance function |D(v, s)|.
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Unsupervised Learning based Solution of the TSP - Detail

= Target (sensor) locations S = {s1,...,s,}, s; € R?; Neurons N = (v1,...,vm), v; € R?2, m = 2.5n.
= Learning gain o; epoch counter i; gain decreasing rate « = 0.1; learning rate p = 0.6.
N < init ring of neurons as a small ring around some s; € S, e.g., a circle with radius 0.5.

i<+ 0; o+ 12.41n+ 0.06;
<0
foreach s € 1(S)
4.1 v* < argmin,epn ||(v, 8)|]
4.2 foreach v in d neighborhood of v*
v v+ uf(o,d)(s —v)

_&
f(o-,d):{ e o2

connection 1
weights

tod sensor location i
presente = (5,05,,)
location L
5= (s,

(a permutation of S) St

//clear inhibited neurons
2

oY)
1
; / \
\ / .s'H/‘
ring of connected

nodes

o

Termination condition can be

TS

A w e

input layer
2

for d < 0.2m,
otherwise,

output units

0
43 1« IU{v*}

// inhibit the winner

= Maximal number of learning epochs i < imax, e.g.,
5. o+ (l—a)o i+ i+1; imax = 120.
6. If (termination condition is not satisfied) Goto Step 3;  ® Winner neurons are negligibly close to sensor locations,

e.g., less than 0.001.

Somhom, S., Modares, A., Enkawa, T. (1999): Competition-based neural network for the multiple travelling salesmen
problem with minmax objective. Computers & Operations Research.

Faigl, J. et al. (2011): An application of the self-organizing map in the non-Euclidean Traveling Salesman Problem. ’
Neurocomputing.

Otherwise retrieve solution.
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Unsupervised Learning for Multi-goal Planning

Example of Unsupervised Learning for the TSP

[ ] [ ]
[ ] [ ]
[ ]
° e © ° r)
Learning epoch 12 Learning epoch 35
@ °
L]
[ ] L J
Learning epoch 42 Learning epoch 53
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Unsupervised Learning for Multi-goal Planning

Unsupervised Learning for the Multi-Goal Path Planning

® Unsupervised learning procedure for the Multi-goal Path Planning (MTP) problem a robotic
variant of the Traveling Salesman Problem (TSP).

Algorithm 2: SOM-based MTP solver
N <« initialization(v1, . .., vm);
repeat
error < 0;
foreach g € I(S) do
v
selectWinner argmin, ¢ |S(g,v)|;
adapt(S(g. ). uf (0. IS(g, )]):
error < max{error, |S(g,v*)|};

o+ (1—a)o;
until error < §;

® For multi-goal path planning — the selectWinner and
adapt procedures are based on the solution of the
path planning problem.

Faigl, J., Kulich, M., Vonasek, V., Preucil, L.: An Application of Self~-Organizing Map in the non-Euclidean
Traveling Salesman Problem, Neurocomputing, 74(5):671-679, 2011.
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Unsupervised Learning for Multi-goal Planning

SOM for the TSP in the Watchman Route Problem — Inspection Planning

During the unsupervised learning, we can compute coverage of W from the current ring (solution
represented by the neurons) and adapt the network towards uncovered parts of W.

= Convex cover set of W created on top of a triangular mesh.

= Incident convex polygons with a straight line segment are found by walking in a triangular mesh.

Faigl, J.: Approximate solution of the multiple watchman routes problem with restricted visibility range, |IEEE
Transactions on Neural Networks, 21(10):1668-1679, 2010.
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Unsupervised Learning for Multi-goal Planning

Unsupervised Learning for the TSPN

A suitable location of the region can be sampled during the winner selection.

= We can use the centroid of the region for the shortest path computation from
v to the region r presented to the network.

Then, an intersection point of the path with the region can be used as an
alternate location.

Faigl, J. et al. (2013): Visiting convex regions in a polygonal map. Robotics and Autonomous
Systems.

For the Euclidean TSPN with disk-shaped § neighborhoods, we can compute
the alternate location directly from the Euclidean distance.

S
connected neurons ®

v/

—
connected neurm.
communication range &

P o éitemate
location
o —
[
Jan Faigl, 2020
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Unsupervised Learning for Multi-goal Planning

SOM for the Traveling Salesman Problem with Neighborhoods (TSPN)

® Unsupervised learning of the SOM for the TSP allows to generalize the adaptation procedure to the TSPN.
® |t also provides solutions for non-convex regions, overlapping regions, and coverage problems.

Convex Cover Set

Polygonal Goals Non-Convex Goals
n=9, T=0.32s n=106, T=5.1s n=5, T=0.1s
Faigl, J., Vonasek, V., Preucil, L.: Visiting Convex Regions in a Polygonal Map, Robotics and Autonomous

Systems, 61(10):1070-1083, 2013.
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Unsupervised Learning for Multi-goal Planning

Growing Self-Organizing Array (GSOA)

= Growing Self-Organizing Array (GSOA) is generalization of the unsupervised learning to routing problems
motivated by data collection planning, i.e., routing with neighborhoods such as the Close Enough TSP.

® The GSOA is an array of nodes N = {v1, ..

® The array adapts to each s € S (in a random order) and for each s a new winner node v* is determined
together with the corresponding sp, such that ||(sp, s)|| < d(s).

.,vpm} that evolves in the problem space using unsupervised learning.

It adaptively adjusts the number of nodes.
® The winner and its neighborhoods are adapted (moved) towards sp.

= After the adaptation to all s € S, each s has its v and sp, and the array defines the sequence X and the
requested waypoints P.

S5

o
S

Jan Faigl, 2020
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Unsupervised Learning for Multi-goal Planning

TSPN in Multi-goal Planning with Localization Uncertainty

GSOA — Winner Selection and Its Adaptation

® Selecting winner node v* for s and its waypoint s, ® Winner adaptation

Unsupervised Learning for Multi-goal Planning TSPN in Multi-goal Planning with Localization Uncertainty

GSOA Evolution in solving the 3D CETSP

100 -
80
60 -
Mgl
. 20 -
® For each s € S, we create new node v*, and therefore, all not winning nodes are removed after
processing all locations in S (one learning epoch) to balance the number of nodes in the GSOA. i
m After each learning epoch, the GSOA encodes a feasible solution of the CETSP. L
=
L . . . . i =
® The power of adaptation is decreasing using a cooling schedule after each learning epoch. i:“:\,__
m The GSOA converges to a stable solution in tens of epochs. Number of epochs can be set. ; i o 20 40 60 80
f : 20 2 %
Faigl, J. (2018): GSOA: Growing Self-Organizing Array - Unsupervised learning for the Close-Enough Traveling Salesman Problem f \jof,:‘]' y [m] x [m] al
and other routing problems. Neurocomputing 312: 120-134 (2018).
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Example — TSPN for Planning with Localization Uncertainty

® Teach-and-repeat autonomous navigation using vision-based position position
bearing corrections that are more precise than estimation of uncertainty
etry measurements.

the traveled distance based on odom

Journal of Field Robotics, 27(5):511-533, 2010.

waypoint

increased uncertainty
in longitudial direction

L
% #*

Krajnik, T., Faigl, J., Vonasek, V., Kosnar, K., Kulich, M., o3 E- K -
and Preuéil, L.: Simple yet stable bearing-only navigation,

® The localization uncertainty can be decreased by visiting # # # #
auxiliary navigation waypoints prior the target locations.

= |t can be formulated as a variant of the TSPN with auxiliary

navigation waypoints.

uncertainty

auxiliary naviga

—

selected perimeter

® The adaptation procedure is modified to select the aux-

iliary navigation waypoint to decrease the expected lo-

calization error at the target locations.

Faigl, J., Krajnik, T., Vonasek, V., and Preudil, L.: On localization uncertainty in an autonomous inspection, |EEE

Jan Faigl, 2020

International Conference on Robotics and Automation (ICRA), 2012, pp. 1119-1124.
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Example — Results on the TSPN for Planning with Localization Uncertainty

= Deployment of the method in indoor and outdoor environment with ground mo-
bile robots and aerial vehicle in indoor environment.

® In the indoor with the small MMPS5 robot, the error decreased from 16.6 cm —
12.8 cm.

= In the outdoor with the P3AT robot, the real overall error at the goals decreased
from 0.89 m — 0.58 m (about 35%).

= Deployment with a small aerial vehicle the Parrot AR.Drone, the success of the
locations’ visits improved from 83% to 95%.

RO R RO

TSP: L=184 m, E;jg=0.57 m TSPN: L=202 m, E./=0.35 m
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Topics Discussed

Topics Discussed

® Robotic information gathering in inspection missions
® Inspection planning and multi-goal path planning - coverage planning
® Multi-goal path planning (MTP)

Summary of the Lecture , ;
® Robotic Traveling Salesman Problem (TSP)

= Traveling Salesman Problem with Neighborhoods (TSPN) and Close Enough Traveling
Salesman Problem (CETSP)
= Decoupled and Sampling-based approaches
TSP can be solved by efficient heuristics such as LKH

Optimal, approximation, and heuristics solutions
Generalized TSP (GTSP)

Next: Data collection planning
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