


		Robotics Paradigms Hierarchical Paradigm Reactive Paradigm Hybrid Paradigm Example of Collision Avoidance Robot Control
	Overview of the Lecture	
Robotic Paradigms and Control Architectures	Part 1 – Robotic Paradigms and Control Architectures	
Jan Faigl Department of Computer Science	Robotics ParadigmsHierarchical Paradigm	Part I Part 1 – Robotic Paradigms and Control Architectures
Faculty of Electrical Engineering Czech Technical University in Prague	Reactive ParadigmHybrid Paradigm	
B4M36UIR – Artificial Intelligence in Robotics	Example of Collision AvoidanceRobot Control	
an Faigl, 2020 B4M36UIR – Lecture 02: Robotic Paradigms 1 / 46 Robotics Paradigms Hierarchical Paradigm Resctive Paradigm Hybrid Paradigm Example of Collision Avoidance Robot Control	Jan Faigl, 2020 B4M36UIR - Lecture 02: Robotic Paradigms 2 / 46 Robotics Paradigms Hierarchical Paradigm Reactive Paradigm Hybrid Paradigm Example of Collision Avoidance Robot Control	Jan Faigl, 2020 B4M36UIR – Lecture 02: Robotic Paradigms 3 / 46 Robotics Paradigms Hierarchical Paradigm Reactive Paradigm Hybrid Paradigm Example of Collision Avoidance Robot Control
Robot	Robotic Paradigms	Hierarchical Paradigm
<text><image/><image/><image/><image/></text>	 Robotic paradigms define relationship between the robotics primitives: Sense, Plan, and Act. Three fundamental paradigms have been propose. Hierarchical paradigm is purely deliberative system. SENSE + PLAN + ACT Reactive paradigm represents reactive control. SENSE + ACT Hybrid paradigm combines reactive and deliberative. Jan Faigl, 200 Reactive Paradigm Hierarchical Paradigm Reactive Paradigm Reactive Paradigm Reactive and deliberative. 	 a. The robot senses the environment and create the "world model". A "world model" can also be an a priori available, e.g., prior map. b. Then, the robot plans its action and execute it. PLAN ACT a. The advantage is in ordering relationship between the primitives. b. It is a direct "implementation" of the first Al approach to robotics. a. Introduced in Shakey, the first Al robot (1967-70). b. It is a dieleberative architecture. a. It use a generalized algorithm for planning. b. General Problem Solver - STRIPS b. Stanford Research Institute Problem Solver b. It world model contains everything the robot needs to know. Jan Fulg. 200 RM30UR - Lecture 02: Robotic Paradigms b. Mearchical Paradigm B. Hierarchical Paradigm B. Mybrid Paradigm Collision Aveidance B. Robot Controller
 Disadvantages of the Herarchical Model Disadvantages are related to planning and its computational requirements. Planning can be very slow and the "global world" representation has to further contain all information needed for planning Sensing and acting are always disconnected Ine "global world" representation has to be up-to-date. The world model used by the planner has to be frequently updated to achieve a sufficient accuracy for the particular task. A general problem solver needs many facts about the world to search for a solution. Searching for a solution in a huge search space is quickly computationally intractable and the problem is related to the so-called frame problem. Even simple actions need to reason over all (irrelevant) details. Frame problem is a problem of representing the real-word situations to be computationally tractable. Decomposition of the world model into parts that best fit the type of actions. 	 Despite drawbacks of the hierarchical paradigm, it has been deployed in various systems, e.g., Nested Hierarchical Controller and NIST Realtime Control System. It has been used until 1990 when the focus has been changed on the reactive paradigm. The development of hierarchical models further exhibit additional advancements such as a potential to address the frame problem. They also provide a way how to organize the particular blocks of the control architecture. Finally, the hierarchical model represents an architecture that supports evolution and learning systems towards fully autonomous control. 	 Nested Hierarchical Controller Decomposition of the planner into three different subsystems: Mission Planner, Navigation, Pilot. Navigation is planning a path as a sequence of suppoints. Pilot generates an action to follow the path. It can response to sudden objects in the navigation form a complete planning.

Robotics Paradiems Hierarchical Paradiem Reactive Paradiem Hubrid Paradiem Example of Collision Avoidance Robot Control	Robotics Paradisms Hisrarchical Paradism Reactive Paradism Hybrid Paradism Example of Collision Avaidance Robot Control	Robotics Paradisms Hierarchical Paradism Reactive Paradism Hybrid Paradism Example of Collision Avoidance Robot Control
Concurrent Behaviors	Behaviors Summary	Reactive Paradigm Reactive paradigm originates from dissatisfaction with the hierarchical paradigm
 Behaviors can execute concurrently and independently which may result in different interactions. Equilibrium - the behaviors seems to balance each other out. E.g., an undecided behavior of squirrel whether to go for food or rather run avoiding human. Dominance of one - winner takes all as only one behavior can execute and not both simultaneously. Cancellation - the behaviors cancel each other out. E.g., one behavior going to light and the second behavior going out of the light. 	 Behavior is a fundamental element in biological intelligence and is also a fundamental component of intelligence in robotic systems. Complex actions can be decomposed into independent behaviors which couple sensing and acting. Behaviors are inherently parallel and distributed. Straightforward activation mechanisms (e.g., boolean) may be used to simplify the control and coordination of behaviors. Perception filters may be used to sense what is relevant to the behavior (action-oriented perception). 	(S-P-A), and it is influenced by ethology. Sensors Sensors Wander Avoid Collisions
 It is not known how different mechanisms for conflicting behaviors are employed. However, it is important to be aware how the behaviors will interact in a robotic system. 	Direct perception reduces the computational complexity of sensing. Allows actions without memory, inference or interpretation. Behaviors are independent, but the output from one behavior: Can be combined with another to produce the output; May serve to inhibit another behavior. Jan Faigl, 2020 B4M36UIR - Lecture 02: Robotic Paradigms 23 / 46	 Contrary to the S-P-A, which exhibit horizontal decomposition, the reactive paradigm (S-A) provides vertical decomposition. Behaviors are layered, where lower layers are "survival" behaviors. Upper layers may reuse the lower, inhibit them, or create parallel tracks of more advanced behaviors. If an upper layer fails, the bottom layers would still operate. Jan Faigl. 2020 B4M36UIR - Lecture 02: Robotic Paradigms 24 / 46
Robotics Paradigms Hierarchical Paradigm Reactive Paradigm Hybrid Paradigm Example of Collision Avoidance Robot Control	Robotics Paradigms Hierarchical Paradigm Reactive Paradigm Hybrid Paradigm Example of Collision Avoidance Robot Control	Robotics Paradigms Hierarchical Paradigm Reactive Paradigm Hybrid Paradigm Example of Collision Avoidance Robot Control
Multiple, Concurrent Behaviors Strictly speaking, one behavior does not know what another behavior is doing or per- ceiving. Behavior	 Characteristics of Reactive Behaviors 1. Robots are situated agents operating in an ecological niche. Robot has its intentions and goals, it changes the world by its actions, and what it senses influence its goals. 2. Behaviors serve as the building blocks for robotic actions and the overall behavior of 	 An Overview of Subsumption Architecture Subsumption architecture has been deployed in many robots that exhibit walk, collision avoidance, etc. without the "move-think-move-think" pauses of Shakey. Behaviors are released in a stimulus-response way. Modules are organized into layers of competence.
Behavior Behavior SENSE ACT	 the robot is emergent. Only local, behavior-specific sensing is permitted – usage of explicit abstract representation is avoided – ego-centric representation. Eg., robot-centric coordinates of an obstacle are relative and not in the world coordinates. Reactive-based systems follow good software design principles – modularity of behaviors 	1. Modules at higher layer can override (subsume) the output from the behaviors of the lower layer. Winner-take-all – the winner is the higher layer. Sensors Level 1 Actuators
 Mechanisms for handling simultaneously active multiple behaviors are needed for complex reactive architectures. Two main representative methods have been proposed in literature. 	 supports decomposition of a task into particular behaviors. Behaviors can be tested independently. Behaviors can be created from other (primitive) behaviors. 	 Internal states are avoided. A good behavioral design minimizes the internal states, that can be, e.g., used in releasing behavior. A task is accomplished by activating the appropriate layer that activities a lower layer and so on.
 Subsumption architecture proposed by Rodney Brooks. Potential fields methodology studied by Ronald Arkin, David Payton, et al. 	 Reactive-based systems or behaviors are often biologically inspired. Under reactive paradigm, it is acceptable to mimic biological intelligence. 	In practice, the subsumption-based system is not easily taskable. It needs to be reprogrammed for a different task.
Jan Faigl, 2020 B4M36UIR – Lecture 02: Robotic Paradigms 25 / 46	Jan Faigl, 2020 B4M36UIR – Lecture 02: Robotic Paradigms 26 / 46	Jan Faigl, 2020 B4M36UIR – Lecture 02: Robotic Paradigms 27 / 46
Robotics Paradigms Hierarchical Paradigm Reactive Paradigm Hybrid Paradigm Example of Collision Avoidance Robot Control An Example of Subsumption Architecture	Robotics Paradigm Hierarchical Paradigm Reactive Paradigm Hybrid Paradigm Example of Collision Avoidance Robot Control Hybrid Paradigm	Robotics Paradigms Hierarchical Paradigm Reactive Paradigm Hybrid Paradigm Example of Collision Avoidance Robot Control Characteristics of Reactive Paradigm in Hybrid Paradigm
Explore Wander Around	 The main drawback of the reactive-based architectures is a lack of planning and reasoning about the world. E.g., a robot cannot plan an optimal trajectory. Hybrid architecture combines the hierarchical (deliberative) paradigm with the reactive paradigm. Beginning of the 1990's 	 Hybrid paradigm is an extension of the Reactive paradigm. The term behavior in hybrid paradigm includes reflexive, innate, and learned behaviors. In reactive paradigm, it connotes purely reflexive behaviors. Behaviors are also sequenced over timed and more complex emergent behaviors can
Avoid Objects	PLAN	 Behavioural management – planning which behavior to use requires information outside the particular model (a global knowledge). Reactive behavior works without any outside knowledge.
Sensors Actuators		 Performance monitor evaluates if the robot is making progress to its goal, e.g., whether the robot is moving or stucked.
Environment	 Hybrid architecture can be described as Plan, then Sense-Act. Planning covers a long time horizon and it uses global world model. Sense-Act covers the reactive (real-time) part of the control. 	In order to monitor the progress, the program has to know which behavior the robot is trying to accomplish.
Jan Faigl, 2020 B4M36UIR – Lecture 02: Robotic Paradigms 28 / 46	Jan Faigl, 2020 B4M36UIR - Lecture 02: Robotic Paradigms 30 / 46	Jan Faigl, 2020 B4M36UIR - Lecture 02: Robotic Paradigms 31 / 46

