Description Logic \mathcal{ALC}

Petr Křemen

November 9, 2023

1 Understanding \mathcal{ALC}

Consider the following \mathcal{ALC} theory $\mathcal{K} = (\mathcal{T}, \{\})$, where \mathcal{T} contains the following axioms:

Man	\Box	Person
Woman		$Person \sqcap \neg Man$
Father	\equiv	$Man \sqcap \exists hasChild \cdot Person$
GrandFather	\equiv	$\exists hasChild \cdot \exists hasChild \cdot \top$
Sister	\equiv	$Person \sqcap \neg Man \sqcap \exists hasSibling \cdot Person$

Ex. 1 — What is the meaning of these axioms ? Do they reflect your understanding of reality ?

Ex. 2 — Consider the following interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \bullet^{\mathcal{I}})$:

$$\Delta^{\mathcal{I}} = Person^{\mathcal{I}} = \{B, A\}$$

$$Man^{\mathcal{I}} = \{B\}$$

$$Woman^{\mathcal{I}} = \{A\}$$

$$Father^{\mathcal{I}} = GrandFather^{\mathcal{I}} = \{B\}$$

$$hasChild^{\mathcal{I}} = \{(B, B)\}$$

$$hasSibling^{\mathcal{I}} = \{\}$$

$$Sister^{\mathcal{I}} = \{B\}$$
(1)

1. Is ${\mathcal I}$ a model ${\mathcal K}$? If yes, decide, whether ${\mathcal I}$ reflects reality.

2.We know that \mathcal{ALC} has the tree model property and finite model property. In case \mathcal{I} is a model, is \mathcal{I} tree-shaped? If not, find a model that is tree-shaped.

Ex. 3 — How does the situation change when we consider \mathcal{I}_1 which coincides with \mathcal{I} , except that $Sister_1^{\mathcal{I}} = \{\}$?

Ex. 4 — Using the vocabulary from \mathcal{K} , define the concept "A father having just sons."

Ex. 5 — Using the vocabulary from \mathcal{K} , define the concept "A man who has no brother, but at least one sister with at least one child."

Ex. 6 — During knowledge modeling, it is often necessary to specify:

global domain and range of given role, e.g. "By *hasChild* (role) we always connect a *Person* (domain) with another *Person* (range)".

local range of given role, e.g. "Every father having only sons (domain) can be connected by *hasChild* (role) just with a *Man* (range)".

Show, in which way it is possible to model global domain and range of these roles in \mathcal{ALC} .

2 Inference Procedures

Ex. 7 — Why inconsistency of an OWL-DL ontology is a problem? What is its consequence?

Ex. 8 — Show that disjointness of two concepts can be reduced to unsatisfiability of a single concept.

Ex. 9 — A concept *C* is satisfiable w.r.t. \mathcal{K} iff it is interpreted as a non-empty set in at least one model of \mathcal{K} . Is it possible to find out that *C* is interpreted as a non-empty set in all models of \mathcal{K} ?

3 Tableaux Algorithm for ALC

Ex. 10 — Decide, whether the \mathcal{ALC} concept $\exists hasChild \cdot (Student \sqcap Employee) \sqcap \neg(\exists hasChild \cdot Student \sqcap \exists hasChild \cdot Employee)$ is satisfiable (w.r.t. an empty TBox). Show the run of the tableau algorithm in detail.

Ex. 11 — Decide, whether the theory/ontology $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ is consistent. Show the run of the tableau algorithm in detail.

•
$$\mathcal{T} = \{ \exists hasChild \cdot \top \equiv Parent \}$$

 $\bullet \mathcal{A} = \{ hasChild(JOHN, MARY), Woman(MARY) \}$

Ex. 12 — Decide and show, whether the ontology

$$\mathcal{K}_1 = (\mathcal{T} \cup \{Parent \sqsubseteq \forall hasChild \cdot \neg Woman\}, \mathcal{A})$$

is consistent.

Ex. 13 — Decide and show, whether the ontology

 $\mathcal{K}_2 = (\mathcal{T} \cup \{Parent \sqsubseteq \exists hasChild \cdot Parent\}, \mathcal{A})$

is consistent.

4 Practically

Ex. 14 — Go through the Protégé Crash Course on the tutorial web pages.

Ex. 15 — Model the ontology in Section 1 in Protégé and check (using the Pellet/HermiT reasoner) whether your solutions in the previous tasks were correct.

Ex. 16 — Adjust the Pizza ontology (https://github.com/owlcs/pizza-ontology), so that the class *IceCream* and *CheeseyVegetableTopping* become satisfiable. Explain, why the Pizza ontology is consistent, although it contains unsatisfiable classes.

Ex. 17 — Upload the original pizza ontology into GraphDB - try different repository types (OWL-Max, OWL-Horst) and see how the inferences differ (e.g. Find all kinds of food, find all kinds of CheeseyPizza). Notice the weak OWL reasoning capabilities in GraphDB – to use more complicated OWL reasoning you might export inferences using "Export inferred axioms as ontology" and import into GraphDB.