Description Logics - Querying

Petr Křemen

petr.kremen@fel.cvut.cz
December 20, 2023

Outline

(1) What if OWL is not enough?
(2) Complex Queries

- Evaluation of Conjunctive Queries in $\mathcal{A L C}$
(3) Modeling Error Explanation
- Black-box methods
- Algorithms based on CS-trees
- Algorithm based on Reiter's Algorithm
- Algorithm based on Reiter's Algorithm

Problems

- OWL cannot express everything, can we do more?
- Is there any more powerful "query" language (beyond consistency checking)?
- What to do if an ontology is inconsistent?

What if OWL is not enough?
(2) Complex Queries

- Evaluation of Conjunctive Queries in ALC
(3) Modeling Error Explanation
- Black-box methods
- Algorithms based on CS-trees
- Algorithm based on Reiter's Algorithm
- Algorithm based on Reiter's Algorithm

What if OWL is not enough?

SROIQ (OWL) Revision

Man $\sqsubseteq P e r s o n$
Man $\sqsubseteq \neg$ Woman
Man $\sqcap \exists h a s C h i l d \cdot M a n \sqsubseteq$ FatherOfSons
hasSon $\sqsubseteq ~ h a s C h i l d ~$
hasParent \circ hasBrother \sqsubseteq hasUncle
trans(hasDescendant)
sym(hasSpouse)
fun(hasMother)
hasWife \sqsubseteq hasHusband $^{-}$
How to express hasStepSibling?

How to express hasStepSibling?

How to express hasStepSibling?

hasSpouse(?m1,?f), hasSpouse(?m2,?f), hasChild(?m1,? $c 1)$, hasChild(?m2, ?c2),
hasChild(?f, ?c1), hasChild(?f, ?c2), ? $c 1!=? c 2$
\rightarrow hasStepSibling(?c1, ?c2)

OWL2-DL + rules undecidable

... unless variables in rules are restricted to match named individuals only.

DL-safe Rules

A rule is DL-safe, if its variables are distinguished, i.e. thet can only match named individuals in the ontology. Consistency checking of OWL2-DL + DL-safe rules is decidable.
(2) Complex Queries

- Evaluation of Conjunctive Queries in $\mathcal{A L C}$
(3) Modeling Error ExplanationBlack-box methods
- Algorithms based on CS-trees
- Algorithm based on Reiter's Algorithm
- Algorithm based on Reiter's Algorithm

Complex Queries

What if we need to answer a complex query?

How many czech writers died in the Czech Republic according to DBPedia ?

```
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX dcterms: <http://purl.org/dc/terms/>
SELECT COUNT (?x)
{
    ?x dbo:deathPlace dbr:Czech_Republic ;
    dcterms:subject dbr:Category:Czech_writers
```

\}
at the following endpoint:
http: / /dbpedia-live.openlinksw.com/sparql/

To remind - SPARQL Evaluation Semantics


```
PREFIX : <http://ex.org/e1>
SELECT ?X
WHERE { ?x :madeFromFruit _:y }
```

Simple-entailment No result.

Chardonay(BancroftChardonnay). Chardonay $\sqsubseteq \exists m a d e F r o m G r a p e \cdot \top$ madeFrom Grape \sqsubseteq madeFromFruit

To remind - SPARQL Evaluation Semantics


```
PREFIX : <http://ex.org/e1>
SELECT ?x
WHERE { ?x :madeFromFruit _:y }
```

Simple-entailment No result. RDF-entailment No result.

> Chardonay(BancroftChardonnay). Chardonay $\sqsubseteq \exists m a d e F r o m G r a p e \cdot \top$ madeFrom Grape \sqsubseteq madeFromFruit

To remind - SPARQL Evaluation Semantics


```
PREFIX : <http://ex.org/e1>
SELECT ? x
WHERE { ?x :madeFromFruit _:y }
```

Simple-entailment No result.
RDF-entailment No result.
RDFS-entailment One result: ?x=:ChateauDYchemSauterne.

Chardonay(BancroftChardonnay).
Chardonay $\sqsubseteq \exists m a d e F r o m G r a p e \cdot \top$ madeFrom Grape \sqsubseteq madeFromFruit

To remind - SPARQL Evaluation Semantics


```
PREFIX : <http://ex.org/e1>
SELECT ?X
WHERE { ?x :madeFromFruit _:y }
```

Simple-entailment No result.
RDF-entailment No result.
RDFS-entailment One result: ?x=:ChateauDYchemSauterne.
OWL-entailment Two results: ? $x=:$ ChateauDYchemSauterne and
?x=:BancroftChardonnay.
Chardonay(BancroftChardonnay).
Chardonay $\sqsubseteq \exists m a d e F r o m G r a p e \cdot \top$ madeFrom Grape \sqsubseteq madeFromFruit

Conjunctive Queries

TBox

Conjunctive ABox Queries.

"Get all teachers and their students."

Metaqueries

Query Types

Conjunctive (ABox) queries - queries asking for individual tuples complying with a graph-like pattern.

Query Types

Conjunctive (ABox) queries - queries asking for individual tuples complying with a graph-like pattern.

Example

"Find all mothers and their daughters having at least one brother."

$$
\begin{aligned}
& Q(? x, ? z) \leftarrow \quad \text { Woman }(? x), \text { hasChild }(? x, ? y), \text { hasChild }(? x, ? z) \\
& \operatorname{Man}(? y), \text { Woman }(? z)
\end{aligned}
$$

Query Types

Conjunctive (ABox) queries - queries asking for individual tuples complying with a graph-like pattern.

Example

"Find all mothers and their daughters having at least one brother."

$$
\begin{aligned}
Q(? x, ? z) \leftarrow & \text { Woman }(? x), \text { hasChild }(? x, ? y), \text { hasChild }(? x, ? z), \\
& \operatorname{Man}(? y), \text { Woman }(? z)
\end{aligned}
$$

Metaqueries - queries asking for individual/concept/role tuples. There are several languages for metaqueries, e.g. SPARQL-DL, OWL-SAIQL, etc.

Query Types

Conjunctive (ABox) queries - queries asking for individual tuples complying with a graph-like pattern.

Example

"Find all mothers and their daughters having at least one brother."

$$
\begin{aligned}
Q(? x, ? z) \leftarrow & \text { Woman }(? x), \text { hasChild }(? x, ? y), \text { hasChild }(? x, ? z), \\
& \operatorname{Man}(? y), \text { Woman }(? z)
\end{aligned}
$$

Metaqueries - queries asking for individual/concept/role tuples. There are several languages for metaqueries, e.g. SPARQL-DL, OWL-SAIQL, etc.

Example

"Find all people together with their type." in SPARQL-DL:

$$
Q(? x, ? c) \leftarrow \operatorname{TYPE}(? x, ? c), S \cup B C L A S S O F(? c, \text { Person })
$$

Conjunctive (ABox) queries

Conjunctive (ABox) queries are analogous to database SELECT-PROJECT-JOIN queries.

Conjunctive Query

$$
Q\left(? x_{1}, \ldots, ? x_{D}\right) \leftarrow t_{1}, \ldots t_{T}
$$

where each t_{i} is either

- $C\left(y_{k}\right)$ (where C is a concept)
- $R\left(y_{k}, y_{l}\right)$ (where R is a role)
and y_{i} is either (i) an individual, or (ii) variable from a new set V (variables will be differentiated from individuals by the prefix "?"). We need all ? x_{i} to be present also in one of t_{i}.

Conjunctive ABox Queries - Semantics

- Conjunctive queries of the form $Q()$ are called boolean - such queries only test existence of a relational structure in each model \mathcal{I} of the ontology \mathcal{K}.
- Consider any interpretation $\mathcal{I}=\left(\Delta^{\mathcal{I}}, \cdot{ }^{\mathcal{I}}\right)$. Evaluation η is a function from the set of individuals and variables into $\Delta^{\mathcal{I}}$ that coincides with \mathcal{I} on individuals.
- Then $\mathcal{I} \models_{\eta} Q()$, iff
- $\eta\left(y_{k}\right) \in C^{\mathcal{I}}$ for each atom $C\left(y_{k}\right)$ from $Q()$ and
- $\left\langle\eta\left(y_{k}\right), \eta\left(y_{l}\right)\right\rangle \in R^{\mathcal{I}}$ for each atom $R\left(y_{k}, y_{l}\right)$ from $Q()$
- Interpretation \mathcal{I} is a model of $Q()$, iff $\mathcal{I} \neq_{\eta} Q()$ for some η.
- Next, $\mathcal{K} \models Q()(Q()$ is satisfiable in $\mathcal{K})$ iff $\mathcal{I} \models Q()$ whenever $\mathcal{I} \models \mathcal{K}$

Conjunctive ABox Queries - Variables

- Queries without variables are not practically interesting. For queries with variables we define semantics as follows. An N-tuple $\left\langle i_{1}, \ldots, i_{n}\right\rangle$ is a solution to $Q\left(? x_{1}, \ldots, ? x_{n}\right)$ in theory \mathcal{K}, whenever $\mathcal{K} \models Q^{\prime}()$, for a boolean query Q^{\prime} obtained from Q by replacing all occurences of $? x_{1}$ in all t_{k} by an individual i_{1}, etc.

Conjunctive ABox Queries - Variables

- Queries without variables are not practically interesting. For queries with variables we define semantics as follows. An N-tuple $\left\langle i_{1}, \ldots, i_{n}\right\rangle$ is a solution to $Q\left(? x_{1}, \ldots, ? x_{n}\right)$ in theory \mathcal{K}, whenever $\mathcal{K} \models Q^{\prime}()$, for a boolean query Q^{\prime} obtained from Q by replacing all occurences of $? x_{1}$ in all t_{k} by an individual i_{1}, etc.
- In conjunctive queries two types of variables can be defined:

Conjunctive ABox Queries - Variables

- Queries without variables are not practically interesting. For queries with variables we define semantics as follows. An N-tuple $\left\langle i_{1}, \ldots, i_{n}\right\rangle$ is a solution to $Q\left(? x_{1}, \ldots, ? x_{n}\right)$ in theory \mathcal{K}, whenever $\mathcal{K} \models Q^{\prime}()$, for a boolean query Q^{\prime} obtained from Q by replacing all occurences of $? x_{1}$ in all t_{k} by an individual i_{1}, etc.
- In conjunctive queries two types of variables can be defined: distinguished occur in the query head as well as body, e.g. ? $x, ? z$ in the previous example. These variables are evaluated as domain elements that are necessarily interpretations of some individual from \mathcal{K}. That individual is the binding to the distinguished variable in the query result.

Conjunctive ABox Queries - Variables

- Queries without variables are not practically interesting. For queries with variables we define semantics as follows. An N-tuple $\left\langle i_{1}, \ldots, i_{n}\right\rangle$ is a solution to $Q\left(? x_{1}, \ldots, ? x_{n}\right)$ in theory \mathcal{K}, whenever $\mathcal{K} \models Q^{\prime}()$, for a boolean query Q^{\prime} obtained from Q by replacing all occurences of ? x_{1} in all t_{k} by an individual i_{1}, etc.
- In conjunctive queries two types of variables can be defined: distinguished occur in the query head as well as body, e.g. ? $x, ? z$ in the previous example. These variables are evaluated as domain elements that are necessarily interpretations of some individual from \mathcal{K}. That individual is the binding to the distinguished variable in the query result.
undistinguished occur only in the query body, e.g. ?y in the previous example. Their can be interpretated as any domain elements.

Conjunctive Queries - Examples

Example

Let's have a theory $\mathcal{K}_{4}=\left(\emptyset,\left\{\left(\exists R_{1} \cdot C_{1}\right)\left(i_{1}\right), R_{2}\left(i_{1}, i_{2}\right), C_{2}\left(i_{2}\right)\right\}\right)$.

- Does $\mathcal{K} \models Q_{1}()$ hold for $Q_{1}() \leftarrow R_{1}\left(? x_{1}, ? x_{2}\right)$?
- What are the solutions of the query $Q_{2}\left(? x_{1}\right) \leftarrow R_{1}\left(? x_{1}, ? x_{2}\right)$ for \mathcal{K} ?
- What are the solutions of the query $Q_{3}\left(? x_{1}, ? x_{2}\right) \leftarrow R_{1}\left(? x_{1}, ? x_{2}\right)$ for \mathcal{K} ?

Evaluation of Conjunctive Queries in $\mathcal{A L C}$

(1) What if OWL is not enough?
(2) Complex Queries

- Evaluation of Conjunctive Queries in $\mathcal{A L C}$
(3) Modeling Error Explanation
- Black-box methods
- Algorithms based on CS-trees
- Algorithm based on Reiter's Algorithm
- Algorithm based on Reiter's Algorithm

Satisfiability of $\mathcal{A L C}$ Boolean Queries

- Satisfiability of the boolean query $Q()$ having a tree shape can be checked by means of the rolling-up technique.

Rolling-up Technique

- Each two atoms $C_{1}\left(y_{k}\right)$ and $C_{2}\left(y_{k}\right)$ can be replaced by a single query atom of the form $\left(C_{1} \sqcap C_{2}\right)\left(y_{k}\right)$.

Rolling-up Technique

- Each two atoms $C_{1}\left(y_{k}\right)$ and $C_{2}\left(y_{k}\right)$ can be replaced by a single query atom of the form $\left(C_{1} \sqcap C_{2}\right)\left(y_{k}\right)$.
- Each query atom of the form $R\left(y_{k}, y_{l}\right)$ can be replaced by the term $(\exists R \cdot X)\left(y_{k}\right)$, if y_{l} occurs in at most one other query atom of the form $C\left(y_{l}\right)$ (if there is no $C\left(y_{l}\right)$ atom in the query, consider w.l.o.g. that C is $T)$. X equals to

Rolling-up Technique

- Each two atoms $C_{1}\left(y_{k}\right)$ and $C_{2}\left(y_{k}\right)$ can be replaced by a single query atom of the form $\left(C_{1} \sqcap C_{2}\right)\left(y_{k}\right)$.
- Each query atom of the form $R\left(y_{k}, y_{l}\right)$ can be replaced by the term $(\exists R \cdot X)\left(y_{k}\right)$, if y_{l} occurs in at most one other query atom of the form $C\left(y_{l}\right)$ (if there is no $C\left(y_{l}\right)$ atom in the query, consider w.l.o.g. that C is $T)$. X equals to
- (i) C, whenever y_{l} is a variable,

Rolling-up Technique

- Each two atoms $C_{1}\left(y_{k}\right)$ and $C_{2}\left(y_{k}\right)$ can be replaced by a single query atom of the form $\left(C_{1} \sqcap C_{2}\right)\left(y_{k}\right)$.
- Each query atom of the form $R\left(y_{k}, y_{l}\right)$ can be replaced by the term $(\exists R \cdot X)\left(y_{k}\right)$, if y_{l} occurs in at most one other query atom of the form $C\left(y_{l}\right)$ (if there is no $C\left(y_{l}\right)$ atom in the query, consider w.l.o.g. that C is $T)$. X equals to
- (i) C, whenever y_{l} is a variable,
- (ii) $C \sqcap Y_{l}$, whenever y_{l} is an individual. Y_{l} is a representative concept of individual y_{l} occuring neither in \mathcal{K} nor in Q. For each y_{l} it is necessary to extend ABox of \mathcal{K} with concept assertion $Y_{l}\left(y_{l}\right)$.

Satisfiability of $\mathcal{A L C}$ Boolean Queries (2)

\ldots after rolling-up the query we obtain the query $Q()^{\prime} \leftarrow C(y)$, that is satisfied in \mathcal{K}, iff $Q()$ is satisfied in \mathcal{K} :

- If y is an individual, then $Q^{\prime}()$ is satisfied, whenever $\mathcal{K} \models C(y)$ (i.e. $\mathcal{K} \cup\{(\neg C)(y)\}$ is inconsistent)

Example

Consider a query $Q_{4}() \leftarrow R_{1}\left(? x_{1}, ? x_{2}\right), R_{2}\left(? x_{1}, ? x_{3}\right), C_{2}\left(? x_{3}\right)$. This query can be rolled-up into the query $Q_{4}^{\prime} \leftarrow\left(\exists R_{1} \cdot T \sqcap \exists R_{2} \cdot C_{2}\right)\left(? x_{1}\right)$. This query is satisfiable in \mathcal{K}_{4}, as $\mathcal{K}_{4} \cup\left\{\left(\exists R_{1} \cdot \top \sqcap \exists R_{2} \cdot C_{2}\right) \sqsubseteq \perp\right\}$ is inconsistent.

Satisfiability of $\mathcal{A L C}$ Boolean Queries (2)

\ldots after rolling-up the query we obtain the query $Q()^{\prime} \leftarrow C(y)$, that is satisfied in \mathcal{K}, iff $Q()$ is satisfied in \mathcal{K} :

- If y is an individual, then $Q^{\prime}()$ is satisfied, whenever $\mathcal{K} \models C(y)$ (i.e. $\mathcal{K} \cup\{(\neg C)(y)\}$ is inconsistent)
- If y is a variable, then $Q^{\prime}()$ is satisfied, whenever $\mathcal{K} \cup\{C \sqsubseteq \perp\}$ is inconsistent. Why ?

Example

Consider a query $Q_{4}() \leftarrow R_{1}\left(? x_{1}, ? x_{2}\right), R_{2}\left(? x_{1}, ? x_{3}\right), C_{2}\left(? x_{3}\right)$. This query can be rolled-up into the query $Q_{4}^{\prime} \leftarrow\left(\exists R_{1} \cdot T \sqcap \exists R_{2} \cdot C_{2}\right)\left(? x_{1}\right)$. This query is satisfiable in \mathcal{K}_{4}, as $\mathcal{K}_{4} \cup\left\{\left(\exists R_{1} \cdot \top \sqcap \exists R_{2} \cdot C_{2}\right) \sqsubseteq \perp\right\}$ is inconsistent.

Satisfiability of Boolean Queries in $\mathcal{A L C}$ (3)

... and what to do with queries with distinguished variables ?

- Let's consider just queries that form "connected component" and contain for some variable y_{k} at least two query atoms of the form $R_{1}\left(y_{1}, y_{k}\right)$ and $R_{2}\left(y_{2}, y_{k}\right)$.

Satisfiability of Boolean Queries in $\mathcal{A L C}$ (3)

... and what to do with queries with distinguished variables ?

- Let's consider just queries that form "connected component" and contain for some variable y_{k} at least two query atoms of the form $R_{1}\left(y_{1}, y_{k}\right)$ and $R_{2}\left(y_{2}, y_{k}\right)$.
- Question: Why is it enough to take just one connected component?

Satisfiability of Boolean Queries in $\mathcal{A L C}$ (3)

... and what to do with queries with distinguished variables ?

- Let's consider just queries that form "connected component" and contain for some variable y_{k} at least two query atoms of the form $R_{1}\left(y_{1}, y_{k}\right)$ and $R_{2}\left(y_{2}, y_{k}\right)$.
- Question: Why is it enough to take just one connected component?
- Let's make use of the tree model property of $\mathcal{A L C}$. Each pair of atoms $R_{1}\left(y_{1}, y_{k}\right)$ and $R_{2}\left(y_{2}, y_{k}\right)$ can be satisfied only if y_{k} is interpreted as a domain element, that is an interpretation of an individual $-y_{k}$ can be treated as distinguished. Why (see next slide) ?

Satisfiability of Boolean Queries in $\mathcal{A L C}$ (3)

... and what to do with queries with distinguished variables ?

- Let's consider just queries that form "connected component" and contain for some variable y_{k} at least two query atoms of the form $R_{1}\left(y_{1}, y_{k}\right)$ and $R_{2}\left(y_{2}, y_{k}\right)$.
- Question: Why is it enough to take just one connected component?
- Let's make use of the tree model property of $\mathcal{A L C}$. Each pair of atoms $R_{1}\left(y_{1}, y_{k}\right)$ and $R_{2}\left(y_{2}, y_{k}\right)$ can be satisfied only if y_{k} is interpreted as a domain element, that is an interpretation of an individual $-y_{k}$ can be treated as distinguished. Why (see next slide) ?
- For $\mathcal{S H O I N}$ and $\mathcal{S R O I Q}$ there is no sound and complete decision procedure for general boolean queries.

ALC Model Example

Queries with Distinguished Variables - naive pruning

 Consider arbitrary query $Q\left(? x_{1}, \ldots, ? x_{D}\right)$. How to evaluate it ?- naive way: Replace each distinguished variable x_{i} with each individual occuring in \mathcal{K}. Solutions are those D-tuples $\left\langle i_{1}, \ldots, i_{D}\right\rangle$, for which a boolean query created from Q by replacing each x_{k} with i_{k} is satisfiable.

Queries with Distinguished Variables - naive pruning Consider arbitrary query $Q\left(? x_{1}, \ldots, ? x_{D}\right)$. How to evaluate it ?

- naive way: Replace each distinguished variable x_{i} with each individual occuring in \mathcal{K}. Solutions are those D-tuples $\left\langle i_{1}, \ldots, i_{D}\right\rangle$, for which a boolean query created from Q by replacing each x_{k} with i_{k} is satisfiable.

Remind that $\mathcal{K}_{4}=\left(\emptyset,\left\{\left(\exists R_{1} \cdot C_{1}\right)\left(i_{1}\right), R_{2}\left(i_{1}, i_{2}\right), C_{2}\left(i_{2}\right)\right\}\right)$. The query

$$
Q_{5}\left(? x_{1}\right) \leftarrow R_{1}\left(? x_{1}, ? x_{2}\right), R_{2}\left(? x_{1}, ? x_{3}\right), C_{2}\left(? x_{3}\right)
$$

has solution $\left\langle i_{1}\right\rangle$ as

$$
Q_{5}^{\prime}() \leftarrow R_{1}\left(i_{1}, ? x_{2}\right), R_{2}\left(i_{1}, ? x_{3}\right), C_{2}\left(? x_{3}\right)
$$

can be rolled into $Q_{5}^{\prime \prime}()$ for which $\mathcal{K}_{4} \models Q_{5}^{\prime \prime}$:

$$
Q_{5}^{\prime \prime}() \leftarrow\left(\exists R_{1} \cdot \top \sqcap \exists R_{2} \cdot C_{2}\right)\left(i_{1}\right)
$$

Queries with Distinguished Variables - naive pruning

... another example
The query

$$
Q_{6}\left(? x_{1}, ? x_{3}\right) \leftarrow R_{1}\left(? x_{1}, ? x_{2}\right), R_{2}\left(? x_{1}, ? x_{3}\right), C_{2}\left(? x_{3}\right)
$$

has solution $\left\langle i_{1}, i_{2}\right\rangle$ as

$$
Q_{6}^{\prime}() \leftarrow R_{1}\left(i_{1}, ? x_{2}\right), R_{2}\left(i_{1}, i_{2}\right), C_{2}\left(i_{2}\right)
$$

can be rolled into $Q_{6}^{\prime \prime}$ for which $\mathcal{K}_{4} \cup\left\{\mathbf{I}_{\mathbf{2}}\left(\mathbf{i}_{2}\right)\right\} \models Q_{6}^{\prime \prime}$.

$$
Q_{6}^{\prime \prime}() \leftarrow\left(\exists R_{1} \cdot \top \sqcap \exists R_{2} \cdot\left(C_{2} \sqcap I_{2}\right)\right)\left(i_{1}\right)
$$

Similarly $Q_{7}\left(? x_{1}, ? x_{2}\right) \leftarrow R_{1}\left(? x_{1}, ? x_{2}\right), R_{2}\left(? x_{1}, ? x_{3}\right), C_{2}\left(? x_{3}\right)$ has no solution.

Queries with Distinguished Variables - iterative pruning

- ... a bit more clever strategy than replacing all variables: First, let's replace just the first variable ? x_{1} with each individual from \mathcal{K}, resulting in Q_{2}. If the subquery of Q_{2} containing all query atoms from Q_{2} without distinguished variables is not a logical consequence of \mathcal{K}, then we do not need to test potential bindings for other variables.

Queries with Distinguished Variables - iterative pruning

- ... a bit more clever strategy than replacing all variables: First, let's replace just the first variable ? x_{1} with each individual from \mathcal{K}, resulting in Q_{2}. If the subquery of Q_{2} containing all query atoms from Q_{2} without distinguished variables is not a logical consequence of \mathcal{K}, then we do not need to test potential bindings for other variables.
- Many other optimizations are available.

Queries with Distinguished Variables - iterative pruning

For the query $Q_{6}\left(? x_{1}, ? x_{3}\right)$, the naive strategy needs to check four different bindings (resulting in four tableau algorithm runs)

$$
\begin{aligned}
& \left\langle i_{1}, i_{1}\right\rangle, \\
& \left\langle\mathbf{i}_{1}, i_{2}\right\rangle, \\
& \left\langle i_{2}, i_{1}\right\rangle, \\
& \left\langle i_{2}, i_{2}\right\rangle .
\end{aligned}
$$

Out of them only $\left\langle i_{1}, i_{2}\right\rangle$ is a solution for Q_{6}. Consider only partial binding $\left\langle i_{2}\right\rangle$ for ? x_{1}. Applying this binding to Q_{6} we get $Q_{7}\left(? x_{3}\right)=R_{1}\left(i_{2}, ? x_{2}\right), R_{2}\left(i_{2}, ? x_{3}\right), C_{2}\left(? x_{3}\right)$. Its distinguished-variable-free subquery is $Q_{7}^{\prime}()=R_{1}\left(i_{2}, ? x_{2}\right)$ and $\mathcal{K}_{4} \not \models Q_{7}^{\prime}$. Because of monotonicity of $\mathcal{A L C}$, we do not need to check the two bindings for ? x_{3} in this case which saves us one tableau algorithm run.
(2) Complex Queries

- Evaluation of Conjunctive Queries in ALC

Modeling Error Explanation

- Black-box methods
- Algorithms based on CS-trees
- Algorithm based on Reiter's Algorithm
- Algorithm based on Reiter's Algorithm

Modeling Error Explanation

Motivation

- When an inference engine claims inconsistency of an ($\mathcal{A L C}$) theory/unsatisfiability of an $(\mathcal{A L C})$ concept, what can we do with it ?

Motivation

- When an inference engine claims inconsistency of an ($\mathcal{A L C}$) theory/unsatisfiability of an $(\mathcal{A L C})$ concept, what can we do with it ?
- We can start iterating through all axioms in the theory and look, "what went wrong".

Motivation

- When an inference engine claims inconsistency of an ($\mathcal{A L C}$) theory/unsatisfiability of an $(\mathcal{A L C})$ concept, what can we do with it ?
- We can start iterating through all axioms in the theory and look, "what went wrong".
- ... but hardly in case we have hundred thousand axioms

Motivation

- When an inference engine claims inconsistency of an ($\mathcal{A L C}$) theory/unsatisfiability of an $(\mathcal{A L C})$ concept, what can we do with it ?
- We can start iterating through all axioms in the theory and look, "what went wrong".
- ... but hardly in case we have hundred thousand axioms
- A solution might be to ask the computer to localize the axioms causing the problem for us.

DNA

MUPS - example

Minimal unsatisfiability preserving subterminology (MUPS) is a minimal set of axioms responsible for concept unsatisfiability.

MUPS - example

Minimal unsatisfiability preserving subterminology (MUPS) is a minimal set of axioms responsible for concept unsatisfiability.

MUPS - example

Minimal unsatisfiability preserving subterminology (MUPS) is a minimal set of axioms responsible for concept unsatisfiability.

Example

Consider theory $\mathcal{K}_{5}=\left(\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}, \emptyset\right)$
$\alpha_{1}:$ Person $\sqsubseteq \exists h a s P a r e n t \cdot($ Man \sqcap Woman $) \sqcap \forall$ hasParent $\cdot \neg$ Person,
$\alpha_{2}: M a n \sqsubseteq \neg$ Woman,
$\alpha_{3}: ~ M a n \sqcup$ Woman \sqsubseteq Person.
Unsatisfiability of Person comes independently from two axiom sets (MUPSes), namely $\left\{\alpha_{1}, \alpha_{2}\right\}$ and $\left\{\alpha_{1}, \alpha_{3}\right\}$. Check it yourself !

MUPS

Currently two approaches exist for searching all MUPSes for given concept:
black-box methods perform many satisfiability tests using existing inference engine.
(-) flexible and easily reusable for another (description) logic
(:) time consuming
glass-box methods all integrated into an existing reasoning (typically tableau) algorithm.
() efficient
(2) hardly reusable for another (description) logic.

Glass-box methods

- For $\mathcal{A L C}$ there exists a complete algorithm with the following idea:
- tableau algorithm for $\mathcal{A L C}$ is extended in such way that it "remembers which axioms were used during completion graph construction".
- for each completion graph containing a clash, the axioms that were used during its construction can be transformed into a MUPS.
- Unfortunately, complete glass-box methods do not exist for OWL-DL and OWL2-DL. The same idea (tracking axioms used during completion graph construction) can be used also for these logics, but only as a preprocessing reducing the set of axioms used by a black-box algorithm.

Black-box methods

(1) What if OWL is not enough?
(2) Complex Queries

- Evaluation of Conjunctive Queries in $A \mathcal{C C}$

Modeling Error Explanation

- Black-box methods
- Algorithms based on CS-trees
- Algorithm based on Reiter's Algorithm
- Algorithm based on Reiter's Algorithm

Task formulation

- Let's have a set of axioms X of given DL and reasoner R for given DL. We want to find MUPSes for :
(1) concept unsatisfiability, '
(2) theory (ontology) inconsistency,
(3) arbitrary entailment.
- It can be shown (see [k2006droo]) that w.l.o.g. we can deal only with concept unsatisfiability.
- MUPS: Let's denote $\operatorname{MUPS}(C, Y)$ a minimal subset $\operatorname{MUPS}(C, Y) \subseteq Y \subseteq X$ causing unsatisfiability of C.
- Diagnose: Let's denote $\operatorname{DIAG}(C, Y)$ a minimal subset $\operatorname{DIAG}(C, Y) \subseteq Y \subseteq X$, such that if $\operatorname{DIAG}(C, Y)$ is removed from Y, the concept C becomes satisfiable.

Task formulation (2)

- Let's focus on concept C unsatisfiability. Denote

$$
R(C, Y)=\left\{\begin{array}{ll}
\text { true } & \text { iff } Y \not \models(C \sqsubseteq \perp) \\
\text { false } & \text { iff } Y \models(C \sqsubseteq \perp))
\end{array}\right\} .
$$

- There are many methods (see [bsw2003famus]). We introduce just two of them:
- Algorithms based on CS-trees.
- Algorithm for computing a single MUPS[k2006droo] + Reiter algorithm [r1987tdfp].

Algorithms based on CS-trees

What if OWL is not enough?
(2) Complex Queries

- Evaluation of Conjunctive Queries in ALC

Modeling Error Explanation
Black-box methods

- Algorithms based on CS-trees
- Algorithm based on Reiter's Algorithm
- Algorithm based on Reiter's Algorithm

CS-trees

- A naive solution: test for each set of axioms from $\mathcal{T} \cup \mathcal{A}$ for $\mathcal{K}=(\mathcal{T}, \mathcal{A})$, whether the set causes unsatisfiability - minimal sets of this form are MUPSes.
- Conflict-set trees (CS-trees) systematize exploration of all these subsets of $\mathcal{T} \cup \mathcal{A}$. The main gist :

If we found a set of axioms X that do not cause unsatisfiability of C (i.e. $X \not \models C \sqsubseteq \perp$), then we know (and thus can avoid asking reasoner) that $Y \not \models C \sqsubseteq \perp$ for each $Y \subseteq X$.

- CS-tree is a representation of the state space, where each state s has the form (D, P), where
- D is a set of axioms that necessarily has to be part of all MUPSes found while exploring the subtree of s.
- P is a set of axioms that might be part of some MUPSes found while exploring the subtree of s.

CS-tree Exploration - Example

Example

A CS-tree for unsatisfiability of Person (abbr. Pe, not to be mixed with the set $P)$ in $\mathcal{K}_{5}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$:

In gray states, the concept
Person is satisfiable $(R(P e, D \cup P)=$ true $)$. States with a dotted border are pruned by the algorithm.

CS-tree Exploration

The following algorithm is exponential in the number of tableau algorithm runs.

1 (Init) The root of the tree is an initial state $s_{0}=(\emptyset, \mathcal{K})$ - apriori, we don't know any axiom being necessarily in a MUPS ($D_{s_{0}}=\emptyset$), but potentially all axioms can be there $\left(P_{s_{0}}=\mathcal{T} \cup \mathcal{A}\right)$. Next, we define $Z=\left(s_{0}\right)$ and $R=\emptyset$

CS-tree Exploration

The following algorithm is exponential in the number of tableau algorithm runs.

1 (Init) The root of the tree is an initial state $s_{0}=(\emptyset, \mathcal{K})$ - apriori, we don't know any axiom being necessarily in a MUPS $\left(D_{s_{0}}=\emptyset\right)$, but potentially all axioms can be there $\left(P_{s_{0}}=\mathcal{T} \cup \mathcal{A}\right)$. Next, we define $Z=\left(s_{0}\right)$ and $R=\emptyset$
2 (Depth First Search) If Z is empty, stop the exploration. Otherwise pop the first element s from Z.

CS-tree Exploration

The following algorithm is exponential in the number of tableau algorithm runs.

1 (Init) The root of the tree is an initial state $s_{0}=(\emptyset, \mathcal{K})$ - apriori, we don't know any axiom being necessarily in a MUPS $\left(D_{s_{0}}=\emptyset\right)$, but potentially all axioms can be there $\left(P_{s_{0}}=\mathcal{T} \cup \mathcal{A}\right)$. Next, we define $Z=\left(s_{0}\right)$ and $R=\emptyset$
2 (Depth First Search) If Z is empty, stop the exploration. Otherwise pop the first element s from Z.
3 (Test) If $R\left(C, D_{s} \cup P_{s}\right)=$ true then no subset of $D_{s} \cup P_{s}$ can cause unsatisfiability - we continue with step 2.

CS-tree Exploration

The following algorithm is exponential in the number of tableau algorithm runs.

1 (Init) The root of the tree is an initial state $s_{0}=(\emptyset, \mathcal{K})$ - apriori, we don't know any axiom being necessarily in a MUPS $\left(D_{s_{0}}=\emptyset\right)$, but potentially all axioms can be there $\left(P_{s_{0}}=\mathcal{T} \cup \mathcal{A}\right)$. Next, we define $Z=\left(s_{0}\right)$ and $R=\emptyset$
2 (Depth First Search) If Z is empty, stop the exploration. Otherwise pop the first element s from Z.
3 (Test) If $R\left(C, D_{s} \cup P_{s}\right)=$ true then no subset of $D_{s} \cup P_{s}$ can cause unsatisfiability - we continue with step 2.
4 (Finding an unsatisfiable set) We add $D_{s} \cup P_{s}$ into R and remove from R all $s^{\prime} \in R$ such that $D_{s} \cup P_{s} \subseteq s^{\prime}$. For $P_{s}=\alpha_{1}, \ldots, \alpha_{N}$ we push to Z a new state $\left(D_{s} \cup\left\{\alpha_{1}, \ldots, \alpha_{i-1}\right\}, P_{s} \backslash\left\{\alpha_{1}, \ldots, \alpha_{i}\right\}\right)$ - we continue with step 2.

CS-tree Exploration (2)

- Soundness : Step 4 is important - here, we cover all possibilities. It always holds that $D_{s} \cup P_{s}$ differs to $D_{s}^{\prime} \cup P_{s}^{\prime}$ by just one element, where s^{\prime} is a successor of s.

CS-tree Exploration (2)

- Soundness : Step 4 is important - here, we cover all possibilities. It always holds that $D_{s} \cup P_{s}$ differs to $D_{s}^{\prime} \cup P_{s}^{\prime}$ by just one element, where s^{\prime} is a successor of s.
- Finiteness: Set $D_{s} \cup P_{s}$ is finite at the beginning and gets smaller with the tree depth. Furthermore, in step 4 we generate only finite number of states.

Algorithm based on Reiter's Algorithm

Complex Queries

- Evaluation of Conjunctive Queries in $A \mathcal{L C}$

Modeling Error Explanation

- Black-box methods
- Algorithms based on CS-trees
- Algorithm based on Reiter's Algorithm
- Algorithm based on Reiter's Algorithm

Another Approach - Reiter's Algorithm

There is an alternative to CS-trees:
(1) Find a single (arbitrary) MUPS (singleMUPS in the next slides).
(2) "remove the source of unsatisfiability provided by MUPS" (Reiter's algorithm in the next slides) from the set of axioms go explore the remaining axioms in the same manner.

Algorithm based on Reiter's Algorithm

Complex Queries

- Evaluation of Conjunctive Queries in $A \mathcal{L C}$

Modeling Error Explanation

- Black-box methods
- Algorithms based on CS-trees
- Algorithm based on Reiter's Algorithm
- Algorithm based on Reiter's Algorithm

Finding a single $\operatorname{MUPS}(C, Y)$ - example

Example

The run of singleMUPS $\left(\right.$ Person, $\left.\mathcal{K}_{5}\right)$ introduced next.

Finding a single $\operatorname{MUPS}(C, Y)$ - example

Example

The run of singleMUPS (Person, \mathcal{K}_{5}) introduced next.
1.PHASE

$$
\begin{aligned}
& \left.\mathcal{K}_{5}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\} \quad \text { R(Person, }\left\{\alpha_{1}\right\}\right)=\text { true } \\
& S=\left\{\alpha_{1}\right\}
\end{aligned}
$$

Finding a single $\operatorname{MUPS}(C, Y)$ - example

Example

The run of singleMUPS (Person, \mathcal{K}_{5}) introduced next.
1.PHASE

$$
\begin{aligned}
& \mathcal{K}_{5}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\} \quad R\left(\text { Person, }\left\{\alpha_{1}, \alpha_{2}\right\}\right)=\text { false } \\
& S=\left\{\alpha_{1}, \alpha_{2}\right\}
\end{aligned}
$$

Finding a single $\operatorname{MUPS}(C, Y)$ - example

Example

The run of singleMUPS (Person, \mathcal{K}_{5}) introduced next.
1.PHASE

$$
\begin{aligned}
& \mathcal{K}_{5}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\} \quad R\left(\text { Person, }\left\{\alpha_{1}, \alpha_{2}\right\}\right)=\text { false } \\
& S=\left\{\alpha_{1}, \alpha_{2}\right\}
\end{aligned}
$$

2.PHASE :

$$
\begin{aligned}
& \left.S=\left\{\alpha_{1}, \alpha_{2}\right\} \quad \text { R(Person, }\left\{\alpha_{1}, \alpha_{2}\right\}-\left\{\alpha_{1}\right\}\right)=\text { true } \\
& K=\left\{\alpha_{1}\right\}
\end{aligned}
$$

Finding a single $\operatorname{MUPS}(C, Y)$ - example

Example

The run of singleMUPS (Person, \mathcal{K}_{5}) introduced next.
1.PHASE

$$
\begin{aligned}
& \mathcal{K}_{5}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\} \quad R\left(\text { Person, }\left\{\alpha_{1}, \alpha_{2}\right\}\right)=\text { false } \\
& S=\left\{\alpha_{1}, \alpha_{2}\right\}
\end{aligned}
$$

2.PHASE :

$$
\begin{aligned}
& S=\left\{\alpha_{1}, \alpha_{2}\right\} \quad R\left(\text { Person, }\left\{\alpha_{1}, \alpha_{2}\right\}-\left\{\alpha_{2}\right\}\right)=\text { true } \\
& K=\left\{\alpha_{1}, \alpha_{2}\right\}
\end{aligned}
$$

singleMUPS($C, Y)$ - finding a single MUPS

The following algorithm is polynomial in the number of tableau algorithm applications - the computational complexity stems from the complexity of tableau algorithm itself.

1 (Initialization) Denote $S=\emptyset, K=\emptyset$

singleMUPS($C, Y)$ - finding a single MUPS

The following algorithm is polynomial in the number of tableau algorithm applications - the computational complexity stems from the complexity of tableau algorithm itself.

1 (Initialization) Denote $S=\emptyset, K=\emptyset$
2 (Finding superset of MUPS) While $R(C, S)=$ false, then $S=S \cup\{\alpha\}$ for some $\alpha \in Y \backslash S$.

singleMUPS($C, Y)$ - finding a single MUPS

The following algorithm is polynomial in the number of tableau algorithm applications - the computational complexity stems from the complexity of tableau algorithm itself.

1 (Initialization) Denote $S=\emptyset, K=\emptyset$
2 (Finding superset of MUPS) While $R(C, S)=$ false, then $S=S \cup\{\alpha\}$ for some $\alpha \in Y \backslash S$.
3 (Pruning found set) For each $\alpha \in S \backslash K$ evaluate $R(C, S \backslash\{\alpha\})$. If the result is false, then $K=K \cup\{\alpha\}$. The resulting K is itself a MUPS.

Finding all MUPSes - Reiter Algorithm, example

Example (continued)

Finding all MUPSes - Reiter Algorithm, example

Example (continued)

The algorithm ends up with two MUPSes $\left\{\alpha_{1}, \alpha_{2}\right\}$ a $\left\{\alpha_{1}, \alpha_{3}\right\}$. "For free" we got diagnoses $\left\{\alpha_{1}\right\}$ a $\left\{\alpha_{2}, \alpha_{3}\right\}$.

Finding all MUPSes - Reiter Algorithm

- Reiter algorithm runs singleMUPS (C, Y) multiple times to construct so called "Hitting Set Tree", nodes of which are pairs $\left(\mathcal{K}_{i}, M_{i}\right)$, where \mathcal{K}_{i} lacks some axioms comparing to \mathcal{K} and $M_{i}=\operatorname{singleMUPS}\left(C, \mathcal{K}_{i}\right)$, or $M_{i}=$ " $S A T^{\prime \prime}$, if C is satisfiable w.r.t. \mathcal{K}_{i}.

Finding all MUPSes - Reiter Algorithm

- Reiter algorithm runs singleMUPS (C, Y) multiple times to construct so called "Hitting Set Tree", nodes of which are pairs $\left(\mathcal{K}_{i}, M_{i}\right)$, where \mathcal{K}_{i} lacks some axioms comparing to \mathcal{K} and $M_{i}=\operatorname{singleMUPS}\left(C, \mathcal{K}_{i}\right)$, or $M_{i}=$ " $S A T^{\prime}$, if C is satisfiable w.r.t. \mathcal{K}_{i}.
- Paths from the root to leaves build up diagnoses (i.e. minimal sets of axioms, each of which removed from \mathcal{K} causes satisfiability of C).

Finding all MUPSes - Reiter Algorithm

- Reiter algorithm runs singleMUPS (C, Y) multiple times to construct so called "Hitting Set Tree", nodes of which are pairs $\left(\mathcal{K}_{i}, M_{i}\right)$, where \mathcal{K}_{i} lacks some axioms comparing to \mathcal{K} and $M_{i}=\operatorname{singleMUPS}\left(C, \mathcal{K}_{i}\right)$, or $M_{i}=$ " $S A T^{\prime \prime}$, if C is satisfiable w.r.t. \mathcal{K}_{i}.
- Paths from the root to leaves build up diagnoses (i.e. minimal sets of axioms, each of which removed from \mathcal{K} causes satisfiability of C).
- Number of singleMUPS (C, Y) calls is at most exponential w.r.t. the initial axioms count. Why ?

Finding all MUPSes - Reiter Algorithm (2)

1 (Initialization) Find a single MUPS for C in \mathcal{K}, and construct the root $s_{0}=(\mathcal{K}$, singleMUPS $(C, \mathcal{K}))$ of the hitting set tree. Next, set $Z=\left(s_{0}\right)$.

Finding all MUPSes - Reiter Algorithm (2)

1 (Initialization) Find a single MUPS for C in \mathcal{K}, and construct the root $s_{0}=(\mathcal{K}$, singleMUPS $(C, \mathcal{K}))$ of the hitting set tree. Next, set $Z=\left(s_{0}\right)$.
2 (Depth First Search) If Z is empty, STOP.

Finding all MUPSes - Reiter Algorithm (2)

1 (Initialization) Find a single MUPS for C in \mathcal{K}, and construct the root $s_{0}=(\mathcal{K}$, singleMUPS $(C, \mathcal{K}))$ of the hitting set tree. Next, set $Z=\left(s_{0}\right)$.
2 (Depth First Search) If Z is empty, STOP.
3 (Test) Otherwise pop an element from Z and denote it as $s_{i}=\left(\mathcal{K}_{i}, M_{i}\right)$. If $M_{i}=$ " $S A T^{\prime \prime}$, then go to step 2.

Finding all MUPSes - Reiter Algorithm (2)

1 (Initialization) Find a single MUPS for C in \mathcal{K}, and construct the root $s_{0}=(\mathcal{K}$, singleMUPS $(C, \mathcal{K}))$ of the hitting set tree. Next, set $Z=\left(s_{0}\right)$.
2 (Depth First Search) If Z is empty, STOP.
3 (Test) Otherwise pop an element from Z and denote it as $s_{i}=\left(\mathcal{K}_{i}, M_{i}\right)$. If $M_{i}=$ " $S A T^{\prime}$, then go to step 2.
4 (Decomposition) For each $\alpha \in M_{i}$ insert into Z a new node $\left(\mathcal{K}_{i} \backslash\{\alpha\}\right.$, singleMUPS $\left.\left(\mathcal{K}_{i} \backslash\{\alpha\}, C\right)\right)$. Go to step 2.

Modeling Error Explanation - Summary

- finding MUPSes is the most common way for explaining modeling errors.
- black-box vs. glass box methods. Other methods involve e.g. incremental methods [bsw2003famus].
- the goal is to find MUPSes (and diagnoses) - what to do in order to solve a modeling problem (unsatisfiability, inconsistency).
- above mentioned methods are quite universal - they can be used for many other problems that are not related with description logics.

