Description Logics – Reasoning

Petr Křemen

petr.kremen@cvut.cz

Winter 2023

2 Inference problems

Inference Algorithms
 Tableau Algorithm for ALC

What can we conclude from description logics?

What can we conclude from description logics?

Which clinical findings can occur on a head?

How: Get subclasses of *Finding* $\sqcap \exists$ *FindingSite* \cdot *Head*

e.g. Heavyhead, resulting from Headache \equiv Pain $\sqcap \exists$ FindingSite \cdot Head Pain \sqsubseteq Finding HeavyHead \sqsubseteq Headache

Which properties do I have to fill in when recording an allergic head?

How: For each property *p* check *AllergicHead* $\sqsubseteq \exists p \cdot T$

```
e.g. FindingSite, resulting from

Pain \sqsubseteq \existsFindingSite \cdot T

ImmuneFunctionDisorder \sqsubseteq \existsPathologicalProcess \cdot T

AllergicHead \sqsubseteq Pain

AllergicHead \sqsubseteq ImmuneFunctionDisorder
```


Is a Headache occurring in a Leg correct?

How: Check satisfiability of the concept $Headache \sqcap \exists FindingSite \cdot Leg$

```
No, because the concept is unsatisfiable, resulting from
Headache \sqsubseteq Pain \sqcap \existsFindingSite \cdot Head
Pain \sqsubseteq \leq 1FindingSite \cdot T
Leg \sqsubseteq \negHead
```


For an arbitrary set S of axioms (resp. theory $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, where $S = \mathcal{T} \cup \mathcal{A}$) :

For an arbitrary set S of axioms (resp. theory $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, where $S = \mathcal{T} \cup \mathcal{A}$) :

For an arbitrary set S of axioms (resp. theory $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, where $S = \mathcal{T} \cup \mathcal{A}$) :

For an arbitrary set S of axioms (resp. theory $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, where $S = \mathcal{T} \cup \mathcal{A}$) :

Model
$$\mathcal{I} \models S$$
 if $\mathcal{I} \models \alpha$ for all $\alpha \in S$ (\mathcal{I} is a model of S , resp. \mathcal{K})

Logical Consequence

 $S \models \beta$ if $\mathcal{I} \models \beta$ whenever $\mathcal{I} \models S$ (β is a logical consequence of S, resp. \mathcal{K})

For an arbitrary set S of axioms (resp. theory $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, where $S = \mathcal{T} \cup \mathcal{A}$) :

Model
$$\mathcal{I} \models S$$
 if $\mathcal{I} \models \alpha$ for all $\alpha \in S$ (\mathcal{I} is a model of S , resp. \mathcal{K})

Logical Consequence

 $S \models \beta$ if $\mathcal{I} \models \beta$ whenever $\mathcal{I} \models S$ (β is a logical consequence of S, resp. \mathcal{K})

• S is consistent, if S has at least one model

What can we conclude from description logics

Inference Algorithms
 Tableau Algorithm for ALC

Inference problems

We have introduced syntax and semantics of the language \mathcal{ALC} . Now, let's look on automated reasoning. Having a \mathcal{ALC} theory $\mathcal{K} = (\mathcal{T}, \mathcal{A})$. For TBOX \mathcal{T} and concepts $C_{(i)}$, we want to decide whether (unsatisfiability) concept C is *unsatisfiable*, i.e. $\mathcal{T} \models C \sqsubseteq \bot$?

We have introduced syntax and semantics of the language \mathcal{ALC} . Now, let's look on automated reasoning. Having a \mathcal{ALC} theory $\mathcal{K} = (\mathcal{T}, \mathcal{A})$. For TBOX \mathcal{T} and concepts $C_{(i)}$, we want to decide whether (unsatisfiability) concept C is *unsatisfiable*, i.e. $\mathcal{T} \models C \sqsubseteq \bot$? (subsumption) concept C_1 subsumes concept C_2 , i.e. $\mathcal{T} \models C_2 \sqsubseteq C_1$?

We have introduced syntax and semantics of the language \mathcal{ALC} . Now, let's look on automated reasoning. Having a \mathcal{ALC} theory $\mathcal{K} = (\mathcal{T}, \mathcal{A})$. For TBOX \mathcal{T} and concepts $C_{(i)}$, we want to decide whether (unsatisfiability) concept C is unsatisfiable, i.e. $\mathcal{T} \models C \sqsubseteq \bot$? (subsumption) concept C_1 subsumes concept C_2 , i.e. $\mathcal{T} \models C_2 \sqsubseteq C_1$? (equivalence) two concepts C_1 and C_2 are equivalent, i.e. $\mathcal{T} \models C_1 \equiv C_2$?

We have introduced syntax and semantics of the language \mathcal{ALC} . Now, let's look on automated reasoning. Having a \mathcal{ALC} theory $\mathcal{K} = (\mathcal{T}, \mathcal{A})$. For TBOX \mathcal{T} and concepts $C_{(i)}$, we want to decide whether (unsatisfiability) concept C is *unsatisfiable*, i.e. $\mathcal{T} \models C \sqsubseteq \bot$? (subsumption) concept C_1 subsumes concept C_2 , i.e. $\mathcal{T} \models C_2 \sqsubseteq C_1$? (equivalence) two concepts C_1 and C_2 are *equivalent*, i.e. $\mathcal{T} \models C_1 \equiv C_2$? (disjoint) two concepts C_1 and C_2 are *disjoint*, i.e. $\mathcal{T} \models C_1 \sqcap C_2 \sqsubseteq \bot$?

We have introduced syntax and semantics of the language \mathcal{ALC} . Now, let's look on automated reasoning. Having a ALC theory $\mathcal{K} = (\mathcal{T}, \mathcal{A})$. For TBOX \mathcal{T} and concepts $C_{(i)}$, we want to decide whether (unsatisfiability) concept C is unsatisfiable, i.e. $\mathcal{T} \models C \Box \perp ?$ (subsumption) concept C_1 subsumes concept C_2 , i.e. $\mathcal{T} \models C_2 \sqsubseteq C_1$? (equivalence) two concepts C_1 and C_2 are equivalent, i.e. $\mathcal{T} \models C_1 \equiv C_2$? (disjoint) two concepts C_1 and C_2 are disjoint, i.e. $\mathcal{T} \models C_1 \sqcap C_2 \sqsubseteq \bot$? All these tasks can be reduced to unsatisfiability checking of a single concept ...

Reducting Subsumption to Unsatisfiability

Example

These reductions are straighforward – let's show, how to reduce subsumption checking to unsatisfiability checking. Reduction of other inference problems to unsatisfiability is analogous.

$$(\forall \mathcal{I})(\mathcal{I} \models \mathcal{T} \Longrightarrow \mathcal{I} \models \mathcal{C}_1 \sqsubseteq \mathcal{C}_2)$$
 iff

$$(orall \mathcal{I})(\mathcal{I} \models \mathcal{T} \Longrightarrow C_1^{\mathcal{I}} \subseteq C_2^{\mathcal{I}}) \qquad ext{iff} \ (orall \mathcal{I})(\mathcal{I} \models \mathcal{T} \Longrightarrow C_1^{\mathcal{I}} \cap (\Delta^{\mathcal{I}} \setminus C_2^{\mathcal{I}}) \subseteq \emptyset \qquad ext{iff}$$

$$(\forall \mathcal{I})(\mathcal{I} \models \mathcal{T} \Longrightarrow \quad \mathcal{I} \models \mathcal{C}_1 \sqcap \neg \mathcal{C}_2 \sqsubseteq \bot \qquad \text{iff} \\ (\mathcal{T} \models \mathcal{C}_1 \sqcap \neg \mathcal{C}_2 \sqsubseteq \bot)$$

... and for ABOX A, axiom α , concept C, role R and individuals $a_{(i)}$ we want to decide whether

... and for ABOX \mathcal{A} , axiom α , concept C, role R and individuals $a_{(i)}$ we want to decide whether (consistency checking) ABOX \mathcal{A} is consistent w.r.t. \mathcal{T} (in short if \mathcal{K} is consistent).

... and for ABOX \mathcal{A} , axiom α , concept C, role R and individuals $a_{(i)}$ we want to decide whether (consistency checking) ABOX \mathcal{A} is consistent w.r.t. \mathcal{T} (in short if \mathcal{K} is consistent).

(instance checking) $\mathcal{T} \cup \mathcal{A} \models C(a)$?

... and for ABOX \mathcal{A} , axiom α , concept C, role R and individuals $a_{(i)}$ we want to decide whether (consistency checking) ABOX \mathcal{A} is consistent w.r.t. \mathcal{T} (in short if \mathcal{K} is consistent).

(instance checking) $\mathcal{T} \cup \mathcal{A} \models C(a)$?

(role checking) $\mathcal{T} \cup \mathcal{A} \models R(a_1, a_2)$?

... and for ABOX \mathcal{A} , axiom α , concept C, role R and individuals $a_{(i)}$ we want to decide whether (consistency checking) ABOX \mathcal{A} is consistent w.r.t. \mathcal{T} (in short if \mathcal{K} is consistent). (instance checking) $\mathcal{T} \cup \mathcal{A} \models C(a)$?

(role checking) $\mathcal{T} \cup \mathcal{A} \models R(a_1, a_2)$?

(instance retrieval) find all individuals *a*, for which $\mathcal{T} \cup \mathcal{A} \models C(a)$.

... and for ABOX \mathcal{A} , axiom α , concept C, role R and individuals $a_{(i)}$ we want to decide whether (consistency checking) ABOX \mathcal{A} is consistent w.r.t. \mathcal{T} (in short if \mathcal{K} is consistent). (instance checking) $\mathcal{T} \cup \mathcal{A} \models C(a)$? (role checking) $\mathcal{T} \cup \mathcal{A} \models R(a_1, a_2)$? (instance retrieval) find all individuals *a*, for which $\mathcal{T} \cup \mathcal{A} \models C(a)$. realization find the most specific concept C from a set of concepts, such that $\mathcal{T} \cup \mathcal{A} \models C(a)$.

... and for ABOX \mathcal{A} , axiom α , concept C, role R and individuals $a_{(i)}$ we want to decide whether (consistency checking) ABOX \mathcal{A} is consistent w.r.t. \mathcal{T} (in short if \mathcal{K} is consistent). (instance checking) $\mathcal{T} \cup \mathcal{A} \models C(a)$? (role checking) $\mathcal{T} \cup \mathcal{A} \models R(a_1, a_2)$? (instance retrieval) find all individuals *a*, for which $\mathcal{T} \cup \mathcal{A} \models C(a)$. realization find the most specific concept C from a set of concepts, such that $\mathcal{T} \cup \mathcal{A} \models C(a)$. All these tasks, as well as concept unsatisfiability checking, can be reduced to consistency checking. Under which condition and how ?

Reduction of concept unsatisfiability to theory consistency

Example

Consider an \mathcal{ALC} theory $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, a concept C and a fresh individual a_f not occuring in \mathcal{K} :

$$(\mathcal{T} \models C \sqsubseteq \bot) \qquad \text{iff} \\ (\forall \mathcal{I})(\mathcal{I} \models \mathcal{T} \Longrightarrow \mathcal{I} \models C \sqsubseteq \bot) \qquad \text{iff} \\ (\forall \mathcal{I})(\mathcal{I} \models \mathcal{T} \Longrightarrow C^{\mathcal{I}} \subseteq \emptyset) \qquad \text{iff} \\ \neg \left[(\exists \mathcal{I})(\mathcal{I} \models \mathcal{T} \land C^{\mathcal{I}} \nsubseteq \emptyset) \right] \qquad \text{iff} \\ \neg \left[(\exists \mathcal{I})(\mathcal{I} \models \mathcal{T} \land a_f^{\mathcal{I}} \in C^{\mathcal{I}}) \right] \qquad \text{iff} \\ (\mathcal{T}, \{C(a_f)\}) \qquad \text{is inconsistent}$$

Note that for more expressive description logics than \mathcal{ALC} , the ABOX has to be taken into account as well due to its interaction with TBOX.

What can we conclude from description logics?

Inference Algorithms

Structural Comparison is polynomial, but complete just for some simple DLs without full negation, e.g. \mathcal{ALN} , see [dlh2003].

Structural Comparison is polynomial, but complete just for some simple DLs without full negation, e.g. ALN, see [dlh2003].
Finite polynomial rule expansion – OWL-RL, OWL-EL

Structural Comparison is polynomial, but complete just for some simple DLs without full negation, e.g. ALN, see [dlh2003].
Finite polynomial rule expansion – OWL-RL, OWL-EL
Tableaux Algorithms represent the State of Art for complex DLs – sound, complete, finite

Structural Comparison is polynomial, but complete just for some simple DLs without full negation, e.g. ALN, see [dlh2003].
Finite polynomial rule expansion – OWL-RL, OWL-EL

Tableaux Algorithms represent the State of Art for complex DLs – sound, complete, finite

other ... – e.g. resolution-based, transformation to finite automata, etc.

Structural Comparison is polynomial, but complete just for some simple DLs without full negation, e.g. \mathcal{ALN} , see [dlh2003].

Finite polynomial rule expansion - OWL-RL, OWL-EL

- Tableaux Algorithms represent the State of Art for complex DLs sound, complete, finite
 - other ... e.g. resolution-based, transformation to finite automata, etc.

We will introduce tableau algorithms.

Tableaux Algorithms

(TAs are not new in DL - they were known in predicate logics as well.)

Main idea

"ABOX A is consistent w.r.t. TBOX T if we find a model of $T \cup A$." (similarly for theory K as a whole)

Each TA can be seen as a *production system* :

state (\sim data base) containing a set of *completion graphs* (see next slides),

Tableaux Algorithms

(TAs are not new in DL - they were known in predicate logics as well.)

Main idea

"ABOX A is consistent w.r.t. TBOX T if we find a model of $T \cup A$." (similarly for theory K as a whole)

Each TA can be seen as a production system :

state (\sim data base) containing a set of *completion graphs* (see next slides),

inference rules (~ production rules) implement semantics of particular constructs of the given language, e.g. ∃, □, etc. and serve to modify the completion graphs accordingly

Tableaux Algorithms

(TAs are not new in DL - they were known in predicate logics as well.)

Main idea

"ABOX A is consistent w.r.t. TBOX T if we find a model of $T \cup A$." (similarly for theory K as a whole)

Each TA can be seen as a production system :

state (\sim data base) containing a set of *completion graphs* (see next slides),

inference rules (~ production rules) implement semantics of particular constructs of the given language, e.g. ∃, □, etc. and serve to modify the completion graphs accordingly

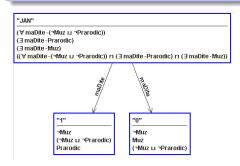
strategy for picking the most suitable rule for application

Completion Graphs

(Do not mix with complete graphs from the graph theory.)

Completion graph

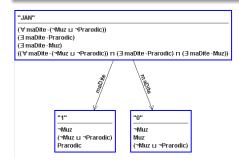
- is a labeled oriented graph $G = (V_G, E_G, L_G)$, where each
 - node $x \in V_G$ is labeled with a set $L_G(x)$ of concepts and
 - each edge ⟨x, y⟩ ∈ E_G is labeled with a set of edges L_G(⟨x, y⟩) (or shortly L_G(x, y))



Completion Graphs

Direct Clash

occurs in a completion graph $G = (V_G, E_G, L_G))$, if $\{A, \neg A\} \subseteq L_G(x)$, or $\bot \in L_G(x)$ for some atomic concept A and a node $x \in V_G$



Completion Graphs

Complete Completion Graph

is a completion graph $G = (V_G, E_G, L_G))$, to which no inference rule can be applied (any more).

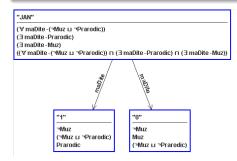


Tableau Algorithm for \mathcal{ALC}

What can we conclude from description logics?

Let's have $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, where $\mathcal{T} = \emptyset$ for now.

0 (Preprocessing) Transform all concepts appearing in \mathcal{K} to the "negational normal form" (NNF), "shifting" negation \neg to the atomic concepts (using equivalent operations known from propositional and predicate logics).

Let's have $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, where $\mathcal{T} = \emptyset$ for now.

0 (Preprocessing) Transform all concepts appearing in K to the "negational normal form" (NNF), "shifting" negation ¬ to the atomic concepts (using equivalent operations known from propositional and predicate logics).

Example

 $\neg(C_1 \sqcap C_2)$ is equivalent (de Morgan rules) to $\neg C_1 \sqcup \neg C_2$.

Let's have $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, where $\mathcal{T} = \emptyset$ for now.

0 (Preprocessing) Transform all concepts appearing in K to the "negational normal form" (NNF), "shifting" negation ¬ to the atomic concepts (using equivalent operations known from propositional and predicate logics).

Example

 $\neg(C_1 \sqcap C_2)$ is equivalent (de Morgan rules) to $\neg C_1 \sqcup \neg C_2$.

1 Initial state of the algorithm is $S_0 = \{G_0\}$, where $G_0 = (V_{G_0}, E_{G_0}, L_{G_0})$ is made up from \mathcal{A} as follows:

Let's have $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, where $\mathcal{T} = \emptyset$ for now.

0 (Preprocessing) Transform all concepts appearing in K to the "negational normal form" (NNF), "shifting" negation ¬ to the atomic concepts (using equivalent operations known from propositional and predicate logics).

Example

$$\neg(C_1 \sqcap C_2)$$
 is equivalent (de Morgan rules) to $\neg C_1 \sqcup \neg C_2$.

1 Initial state of the algorithm is $S_0 = \{G_0\}$, where $G_0 = (V_{G_0}, E_{G_0}, L_{G_0})$ is made up from \mathcal{A} as follows: • for each $C(a) \in \mathcal{A}$ put $a \in V_{G_0}$ and $C \in L_{G_0}(a)$

Let's have $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, where $\mathcal{T} = \emptyset$ for now.

0 (Preprocessing) Transform all concepts appearing in K to the "negational normal form" (NNF), "shifting" negation ¬ to the atomic concepts (using equivalent operations known from propositional and predicate logics).

Example

$$\neg(C_1 \sqcap C_2)$$
 is equivalent (de Morgan rules) to $\neg C_1 \sqcup \neg C_2$.

- 1 Initial state of the algorithm is $S_0 = \{G_0\}$, where $G_0 = (V_{G_0}, E_{G_0}, L_{G_0})$ is made up from \mathcal{A} as follows:
 - for each $C(a) \in \mathcal{A}$ put $a \in V_{G_0}$ and $C \in L_{G_0}(a)$
 - for each $R(a_1,a_2)\in \mathcal{A}$ put $\langle a_1,a_2
 angle\in E_{G_0}$ and $R\in L_{G_0}(a_1,a_2)$

Let's have $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, where $\mathcal{T} = \emptyset$ for now.

0 (Preprocessing) Transform all concepts appearing in K to the "negational normal form" (NNF), "shifting" negation ¬ to the atomic concepts (using equivalent operations known from propositional and predicate logics).

Example

$$\neg(C_1 \sqcap C_2)$$
 is equivalent (de Morgan rules) to $\neg C_1 \sqcup \neg C_2$.

- 1 Initial state of the algorithm is $S_0 = \{G_0\}$, where $G_0 = (V_{G_0}, E_{G_0}, L_{G_0})$ is made up from \mathcal{A} as follows:
 - for each $C(a) \in \mathcal{A}$ put $a \in V_{G_0}$ and $C \in L_{G_0}(a)$
 - for each $R(a_1,a_2)\in \mathcal{A}$ put $\langle a_1,a_2
 angle\in E_{G_0}$ and $R\in L_{G_0}(a_1,a_2)$
 - Sets $V_{G_0}, E_{G_0}, L_{G_0}$ are smallest possible with these properties.

Tableau algorithm for ALC without TBOX (2)

2 Current algorithm state is S. If each $G \in S$ contains a direct clash, terminate as "INCONSISTENT".

Tableau algorithm for ALC without TBOX (2)

- 2 Current algorithm state is S. If each $G \in S$ contains a direct clash, terminate as "INCONSISTENT".
- 3 Let's choose one $G \in S$ that doesn't contain a direct clash. If G is *complete* w.r.t. rules shown next, terminate as "CONSISTENT"

Tableau algorithm for ALC without TBOX (2)

- 2 Current algorithm state is S. If each $G \in S$ contains a direct clash, terminate as "INCONSISTENT".
- 3 Let's choose one $G \in S$ that doesn't contain a direct clash. If G is *complete* w.r.t. rules shown next, terminate as "CONSISTENT"
- 4 Find a rule that is applicable to G and apply it. As a result, we obtain from the state S a new state S'. Jump to step 2.

 $\rightarrow_{\sqcap} \ \mathsf{rule}$

 \rightarrow_{\Box} rule

if $(C_1 \sqcap C_2) \in L_G(a)$ and $\{C_1, C_2\} \nsubseteq L_G(a)$ for some $a \in V_G$.

 \rightarrow_{\Box} rule

if $(C_1 \sqcap C_2) \in L_G(a)$ and $\{C_1, C_2\} \nsubseteq L_G(a)$ for some $a \in V_G$.

then $S' = S \cup \{G'\} \setminus \{G\}$, where $G' = (V_G, E_G, L_{G'})$, and $L_{G'}(a) = L_G(a) \cup \{C_1, C_2\}$ and otherwise is the same as L_G .

 \rightarrow_{\Box} rule

 $\begin{array}{l} \text{if} \quad (C_1 \sqcap C_2) \in L_G(a) \text{ and } \{C_1, C_2\} \nsubseteq L_G(a) \text{ for some } a \in V_G. \\ \text{then} \quad S' = S \cup \{G'\} \setminus \{G\}, \text{ where } G' = (V_G, E_G, L_{G'}), \text{ and } L_{G'}(a) = L_G(a) \cup \{C_1, C_2\} \\ \text{ and otherwise is the same as } L_G. \end{array}$

 \rightarrow_{\sqcup} rule

 \rightarrow_{\Box} rule

 $\begin{array}{l} \text{if} \quad (C_1 \sqcap C_2) \in L_G(a) \text{ and } \{C_1, C_2\} \nsubseteq L_G(a) \text{ for some } a \in V_G. \\ \text{then} \quad S' = S \cup \{G'\} \setminus \{G\}, \text{ where } G' = (V_G, E_G, L_{G'}), \text{ and } L_{G'}(a) = L_G(a) \cup \{C_1, C_2\} \\ \text{ and otherwise is the same as } L_G. \end{array}$

 \rightarrow_{\sqcup} rule

if $(C_1 \sqcup C_2) \in L_G(a)$ and $\{C_1, C_2\} \cap L_G(a) = \emptyset$ for some $a \in V_G$.

 \rightarrow_{\Box} rule

if $(C_1 \sqcap C_2) \in L_G(a)$ and $\{C_1, C_2\} \nsubseteq L_G(a)$ for some $a \in V_G$. then $S' = S \cup \{G'\} \setminus \{G\}$, where $G' = (V_G, E_G, L_{G'})$, and $L_{G'}(a) = L_G(a) \cup \{C_1, C_2\}$ and otherwise is the same as L_G .

 \rightarrow_{\sqcup} rule

 $\begin{array}{l} \text{if } (C_1 \sqcup C_2) \in L_G(a) \text{ and } \{C_1, C_2\} \cap L_G(a) = \emptyset \text{ for some } a \in V_G. \\ \text{then } S' = S \cup \{G_1, G_2\} \setminus \{G\}, \text{ where } G_{(1|2)} = (V_G, E_G, L_{G_{(1|2)}}), \text{ and} \\ L_{G_{(1|2)}}(a) = L_G(a) \cup \{C_{(1|2)}\} \text{ and otherwise is the same as } L_G. \end{array}$

 \rightarrow_{\Box} rule

if $(C_1 \sqcap C_2) \in L_G(a)$ and $\{C_1, C_2\} \nsubseteq L_G(a)$ for some $a \in V_G$. then $S' = S \cup \{G'\} \setminus \{G\}$, where $G' = (V_G, E_G, L_{G'})$, and $L_{G'}(a) = L_G(a) \cup \{C_1, C_2\}$ and otherwise is the same as L_G .

 \rightarrow_{\sqcup} rule

if $(C_1 \sqcup C_2) \in L_G(a)$ and $\{C_1, C_2\} \cap L_G(a) = \emptyset$ for some $a \in V_G$. then $S' = S \cup \{G_1, G_2\} \setminus \{G\}$, where $G_{(1|2)} = (V_G, E_G, L_{G_{(1|2)}})$, and $L_{G_{(1|2)}}(a) = L_G(a) \cup \{C_{(1|2)}\}$ and otherwise is the same as L_G .

 \rightarrow_{\exists} rule

 \rightarrow_{\Box} rule

if $(C_1 \sqcap C_2) \in L_G(a)$ and $\{C_1, C_2\} \nsubseteq L_G(a)$ for some $a \in V_G$. then $S' = S \cup \{G'\} \setminus \{G\}$, where $G' = (V_G, E_G, L_{G'})$, and $L_{G'}(a) = L_G(a) \cup \{C_1, C_2\}$ and otherwise is the same as L_G .

 \rightarrow_{\sqcup} rule

 $\begin{array}{l} \text{if } (C_1 \sqcup C_2) \in L_G(a) \text{ and } \{C_1, C_2\} \cap L_G(a) = \emptyset \text{ for some } a \in V_G. \\ \text{then } S' = S \cup \{G_1, G_2\} \setminus \{G\}, \text{ where } G_{(1|2)} = (V_G, E_G, L_{G_{(1|2)}}), \text{ and} \\ L_{G_{(1|2)}}(a) = L_G(a) \cup \{C_{(1|2)}\} \text{ and otherwise is the same as } L_G. \end{array}$

 \rightarrow_\exists rule

if $(\exists R \cdot C) \in L_G(a_1)$ and there exists no $a_2 \in V_G$ such that $R \in L_G(a_1, a_2)$ and at the same time $C \in L_G(a_2)$.

19/36

 \rightarrow_{\Box} rule

if $(C_1 \sqcap C_2) \in L_G(a)$ and $\{C_1, C_2\} \nsubseteq L_G(a)$ for some $a \in V_G$. then $S' = S \cup \{G'\} \setminus \{G\}$, where $G' = (V_G, E_G, L_{G'})$, and $L_{G'}(a) = L_G(a) \cup \{C_1, C_2\}$ and otherwise is the same as L_G .

 \rightarrow_{\sqcup} rule

if
$$(C_1 \sqcup C_2) \in L_G(a)$$
 and $\{C_1, C_2\} \cap L_G(a) = \emptyset$ for some $a \in V_G$.
then $S' = S \cup \{G_1, G_2\} \setminus \{G\}$, where $G_{(1|2)} = (V_G, E_G, L_{G_{(1|2)}})$, and $L_{G_{(1|2)}}(a) = L_G(a) \cup \{C_{(1|2)}\}$ and otherwise is the same as L_G .

 \rightarrow_{\exists} rule

if $(\exists R \cdot C) \in L_G(a_1)$ and there exists no $a_2 \in V_G$ such that $R \in L_G(a_1, a_2)$ and at the same time $C \in L_G(a_2)$.

then
$$S' = S \cup \{G'\} \setminus \{G\}$$
, where $G' = (V_G \cup \{a_2\}, E_G \cup \{\langle a_1, a_2 \rangle\}, L_{G'})$, a $L_{G'}(a_2) = \{C\}, L_{G'}(a_1, a_2) = \{R\}$ and otherwise is the same as L_G .

 \rightarrow_{\Box} rule

if $(C_1 \sqcap C_2) \in L_G(a)$ and $\{C_1, C_2\} \nsubseteq L_G(a)$ for some $a \in V_G$. then $S' = S \cup \{G'\} \setminus \{G\}$, where $G' = (V_G, E_G, L_{G'})$, and $L_{G'}(a) = L_G(a) \cup \{C_1, C_2\}$ and otherwise is the same as L_G .

 \rightarrow_{\sqcup} rule

if
$$(C_1 \sqcup C_2) \in L_G(a)$$
 and $\{C_1, C_2\} \cap L_G(a) = \emptyset$ for some $a \in V_G$.
then $S' = S \cup \{G_1, G_2\} \setminus \{G\}$, where $G_{(1|2)} = (V_G, E_G, L_{G_{(1|2)}})$, and $L_{G_{(1|2)}}(a) = L_G(a) \cup \{C_{(1|2)}\}$ and otherwise is the same as L_G .

 \rightarrow_\exists rule

- if $(\exists R \cdot C) \in L_G(a_1)$ and there exists no $a_2 \in V_G$ such that $R \in L_G(a_1, a_2)$ and at the same time $C \in L_G(a_2)$.
- then $S' = S \cup \{G'\} \setminus \{G\}$, where $G' = (V_G \cup \{a_2\}, E_G \cup \{\langle a_1, a_2 \rangle\}, L_{G'})$, a $L_{G'}(a_2) = \{C\}, L_{G'}(a_1, a_2) = \{R\}$ and otherwise is the same as L_G .

 \rightarrow_{\forall} rule

 \rightarrow_{\Box} rule

if $(C_1 \sqcap C_2) \in L_G(a)$ and $\{C_1, C_2\} \nsubseteq L_G(a)$ for some $a \in V_G$. then $S' = S \cup \{G'\} \setminus \{G\}$, where $G' = (V_G, E_G, L_{G'})$, and $L_{G'}(a) = L_G(a) \cup \{C_1, C_2\}$ and otherwise is the same as L_G .

 \rightarrow_{\sqcup} rule

if
$$(C_1 \sqcup C_2) \in L_G(a)$$
 and $\{C_1, C_2\} \cap L_G(a) = \emptyset$ for some $a \in V_G$.
then $S' = S \cup \{G_1, G_2\} \setminus \{G\}$, where $G_{(1|2)} = (V_G, E_G, L_{G_{(1|2)}})$, and $L_{G_{(1|2)}}(a) = L_G(a) \cup \{C_{(1|2)}\}$ and otherwise is the same as L_G .

 \rightarrow_\exists rule

- if $(\exists R \cdot C) \in L_G(a_1)$ and there exists no $a_2 \in V_G$ such that $R \in L_G(a_1, a_2)$ and at the same time $C \in L_G(a_2)$.
- then $S' = S \cup \{G'\} \setminus \{G\}$, where $G' = (V_G \cup \{a_2\}, E_G \cup \{\langle a_1, a_2 \rangle\}, L_{G'})$, a $L_{G'}(a_2) = \{C\}, L_{G'}(a_1, a_2) = \{R\}$ and otherwise is the same as L_G .

 \rightarrow_{\forall} rule

if $(\forall R \cdot C) \in L_G(a_1)$ and there exists $a_2 \in V_G$ such that $R \in L_G(a, a_1)$ and at the same time $C \notin L_G(a_2)$.

 \rightarrow_{\Box} rule

if $(C_1 \sqcap C_2) \in L_G(a)$ and $\{C_1, C_2\} \nsubseteq L_G(a)$ for some $a \in V_G$. then $S' = S \cup \{G'\} \setminus \{G\}$, where $G' = (V_G, E_G, L_{G'})$, and $L_{G'}(a) = L_G(a) \cup \{C_1, C_2\}$ and otherwise is the same as L_G .

 \rightarrow_{\sqcup} rule

if
$$(C_1 \sqcup C_2) \in L_G(a)$$
 and $\{C_1, C_2\} \cap L_G(a) = \emptyset$ for some $a \in V_G$.
then $S' = S \cup \{G_1, G_2\} \setminus \{G\}$, where $G_{(1|2)} = (V_G, E_G, L_{G_{(1|2)}})$, and $L_{G_{(1|2)}}(a) = L_G(a) \cup \{C_{(1|2)}\}$ and otherwise is the same as L_G .

 \rightarrow_{\exists} rule

- if $(\exists R \cdot C) \in L_G(a_1)$ and there exists no $a_2 \in V_G$ such that $R \in L_G(a_1, a_2)$ and at the same time $C \in L_G(a_2)$.
- then $S' = S \cup \{G'\} \setminus \{G\}$, where $G' = (V_G \cup \{a_2\}, E_G \cup \{\langle a_1, a_2 \rangle\}, L_{G'})$, a $L_{G'}(a_2) = \{C\}, L_{G'}(a_1, a_2) = \{R\}$ and otherwise is the same as L_G .

 \rightarrow_{\forall} rule

- if $(\forall R \cdot C) \in L_G(a_1)$ and there exists $a_2 \in V_G$ such that $R \in L_G(a, a_1)$ and at the same time $C \notin L_G(a_2)$.
- then $S' = S \cup \{G'\} \setminus \{G\}$, where $G' = (V_G, E_G, L_{G'})$, and $L_{G'}(a_2) = L_G(a_2) \cup \{C\}$ and otherwise is the same as L_G .

Petr Křemen (petr.kremen@cvut.cz)

TA Run Example

Example – Consistency Checking

 $\mathcal{K}_2 = (\emptyset, \mathcal{A}_2)$, where $\mathcal{A}_2 = \{(\exists maDite \cdot Muz \sqcap \exists maDite \cdot Prarodic \sqcap \neg \exists maDite \cdot (Muz \sqcap Prarodic))(JAN)\}).$

Let's transform the concept into NNF:
 ∃maDite · Muz □ ∃maDite · Prarodic □ ∀maDite · (¬Muz □ ¬Prarodic)

TA Run Example

Example – Consistency Checking

 $\mathcal{K}_2 = (\emptyset, \mathcal{A}_2)$, where $\mathcal{A}_2 = \{(\exists maDite \cdot Muz \sqcap \exists maDite \cdot Prarodic \sqcap \neg \exists maDite \cdot (Muz \sqcap Prarodic))(JAN)\}).$

- Let's transform the concept into NNF: ∃maDite · Muz □ ∃maDite · Prarodic □ ∀maDite · (¬Muz □ ¬Prarodic)
- Initial state G₀ of the TA is

"JAN"

((∀ maDite - (¬Muz ⊔ ¬Prarodic)) ⊓ (∃ maDite - Prarodic) ⊓ (∃ maDite - Muz))

Example

. . .

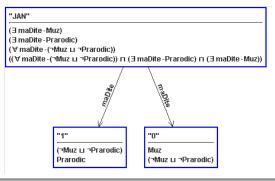
• Now, four sequences of steps 2,3,4 of the TA are performed. TA state in step 4, evolves as follows:

Example

. . .

• Now, four sequences of steps 2,3,4 of the TA are performed. TA state in step 4, evolves as follows:

•
$$\{G_0\} \xrightarrow{\sqcap-\mathsf{rule}} \{G_1\} \xrightarrow{\exists-\mathsf{rule}} \{G_2\} \xrightarrow{\exists-\mathsf{rule}} \{G_3\} \xrightarrow{\forall-\mathsf{rule}} \{G_4\}, \text{ where } G_4 \text{ is}$$



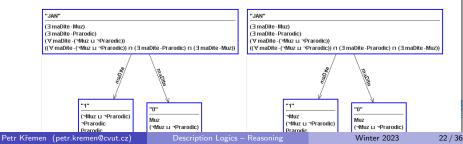
Example

. . .

• By now, we applied just deterministic rules (we still have just a single completion graph). At this point no other deterministic rule is applicable.

Example

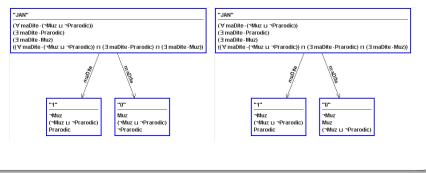
- By now, we applied just deterministic rules (we still have just a single completion graph). At this point no other deterministic rule is applicable.
- Now, we have to apply the \sqcup -rule to the concept $\neg Muz \sqcup \neg Rodic$ either in the label of node "0", or in the label of node "1". Its application e.g. to node "1" we obtain the state $\{G_5, G_6\}$ (G_5 left, G_6 right)



Example

. . .

• We see that G_5 contains a direct clash in node "1". The only other option is to go through the graph G_6 . By application of \sqcup -rule we obtain the state $\{G_5, G_7, G_8\}$, where G_7 (left), G_8 (right) are derived from G_6 :



Example

. . .

• We see that G_5 contains a direct clash in node "1". The only other option is to go through the graph G_6 . By application of \sqcup -rule we obtain the state $\{G_5, G_7, G_8\}$, where G_7 (left), G_8 (right) are derived from G_6 :

• G₇ is complete and without direct clash.

Example

•
$$\Delta^{\mathcal{I}_2} = \{Jan, i_1, i_2\},\$$

Example

- $\Delta^{\mathcal{I}_2} = \{Jan, i_1, i_2\},$
- $maDite^{\mathcal{I}_2} = \{ \langle Jan, i_1 \rangle, \langle Jan, i_2 \rangle \},\$

Example

- $\Delta^{\mathcal{I}_2} = \{Jan, i_1, i_2\},$
- $maDite^{\mathcal{I}_2} = \{ \langle Jan, i_1 \rangle, \langle Jan, i_2 \rangle \},\$
- Prarodic^{\mathcal{I}_2} = { i_1 },

Example

- $\Delta^{\mathcal{I}_2} = \{Jan, i_1, i_2\},$
- $maDite^{\mathcal{I}_2} = \{ \langle Jan, i_1 \rangle, \langle Jan, i_2 \rangle \},\$
- Prarodic^{\mathcal{I}_2} = { i_1 },
- $Muz^{I_2} = \{i_2\},$

TA Run Example (5)

Example

... A canonical model \mathcal{I}_2 can be created from ${\it G}_7.$ Is it the only model of \mathcal{K}_2 ?

- $\Delta^{\mathcal{I}_2} = \{Jan, i_1, i_2\},$ • $maDite^{\mathcal{I}_2} = \{\langle Jan, i_1 \rangle, \langle Jan, i_2 \rangle\},$
- *Prarodic*^{I_2} = {*i*₁},
- $Muz^{I_2} = \{i_2\},$
- " $JAN''^{\mathcal{I}_2} = Jan$, " $0''^{\mathcal{I}_2} = i_2$, " $1''^{\mathcal{I}_2} = i_1$,

Finiteness of the TA is an easy consequence of the following:

 $\bullet \ \mathcal{K}$ is finite

Finiteness of the TA is an easy consequence of the following:

- \mathcal{K} is finite
- in each step, TA state can be enriched at most by one completion graph (only by application of →_□ rule). Number of disjunctions (□) in K is finite, i.e. the □ can be applied just finite number of times.

Finiteness of the TA is an easy consequence of the following:

- \mathcal{K} is finite
- in each step, TA state can be enriched at most by one completion graph (only by application of →_□ rule). Number of disjunctions (□) in K is finite, i.e. the □ can be applied just finite number of times.
- for each completion graph $G = (V_G, E_G, L_G)$ it holds that number of nodes in V_G is less or equal to the number of individuals in \mathcal{A} plus number of existential quantifiers in \mathcal{A} .

Finiteness of the TA is an easy consequence of the following:

- \mathcal{K} is finite
- in each step, TA state can be enriched at most by one completion graph (only by application of →_□ rule). Number of disjunctions (□) in K is finite, i.e. the □ can be applied just finite number of times.
- for each completion graph $G = (V_G, E_G, L_G)$ it holds that number of nodes in V_G is less or equal to the number of individuals in \mathcal{A} plus number of existential quantifiers in \mathcal{A} .
- after application of any of the following rules →_□, →_∃, →_∀ graph G is either enriched with a new node, new edge, or labeling of an existing node/edge is enriched. All these operations are finite.

Relation between ABOXes and Completion Graphs

We define also $\mathcal{I} \models G$ iff $\mathcal{I} \models \mathcal{A}_G$, where \mathcal{A}_G is an ABOX constructed from G, as follows

• C(a) for each node $a \in V_G$ and each concept $C \in L_G(a)$ and

Relation between ABOXes and Completion Graphs

We define also $\mathcal{I} \models G$ iff $\mathcal{I} \models \mathcal{A}_G$, where \mathcal{A}_G is an ABOX constructed from G, as follows

- C(a) for each node $a \in V_G$ and each concept $C \in L_G(a)$ and
- $R(a_1, a_2)$ for each edge $\langle a_1, a_2 \rangle \in E_G$ and each role $R \in L_G(a_1, a_2)$

• Soundness of the TA can be verified as follows. For any $\mathcal{I} \models \mathcal{A}_{G_i}$, it must hold that $\mathcal{I} \models \mathcal{A}_{G_{i+1}}$. We have to show that application of each rule preserves consistency. As an example, let's take the \rightarrow_{\exists} rule:

- Soundness of the TA can be verified as follows. For any $\mathcal{I} \models \mathcal{A}_{G_i}$, it must hold that $\mathcal{I} \models \mathcal{A}_{G_{i+1}}$. We have to show that application of each rule preserves consistency. As an example, let's take the \rightarrow_{\exists} rule:
 - Before application of \rightarrow_\exists rule, $(\exists R \cdot C) \in L_{G_i}(a_1)$ held for $a_1 \in V_{G_i}$.

- Soundness of the TA can be verified as follows. For any $\mathcal{I} \models \mathcal{A}_{G_i}$, it must hold that $\mathcal{I} \models \mathcal{A}_{G_{i+1}}$. We have to show that application of each rule preserves consistency. As an example, let's take the \rightarrow_{\exists} rule:
 - Before application of \rightarrow_{\exists} rule, $(\exists R \cdot C) \in L_{G_i}(a_1)$ held for $a_1 \in V_{G_i}$.
 - As a result $a_1^{\mathcal{I}} \in (\exists R \cdot C)^{\mathcal{I}}$.

- Soundness of the TA can be verified as follows. For any $\mathcal{I} \models \mathcal{A}_{G_i}$, it must hold that $\mathcal{I} \models \mathcal{A}_{G_{i+1}}$. We have to show that application of each rule preserves consistency. As an example, let's take the \rightarrow_{\exists} rule:
 - Before application of \rightarrow_{\exists} rule, $(\exists R \cdot C) \in L_{G_i}(a_1)$ held for $a_1 \in V_{G_i}$.
 - As a result $a_1^{\mathcal{I}} \in (\exists R \cdot C)^{\mathcal{I}}$.
 - Next, $i \in \Delta^{\mathcal{I}}$ must exist such that $\langle a_1^{\mathcal{I}}, i \rangle \in R^{\mathcal{I}}$ and at the same time $i \in C^{\mathcal{I}}$.

- Soundness of the TA can be verified as follows. For any $\mathcal{I} \models \mathcal{A}_{G_i}$, it must hold that $\mathcal{I} \models \mathcal{A}_{G_{i+1}}$. We have to show that application of each rule preserves consistency. As an example, let's take the \rightarrow_{\exists} rule:
 - Before application of \rightarrow_\exists rule, $(\exists R \cdot C) \in L_{G_i}(a_1)$ held for $a_1 \in V_{G_i}$.
 - As a result $a_1^{\mathcal{I}} \in (\exists R \cdot C)^{\mathcal{I}}$.
 - Next, $i \in \Delta^{\mathcal{I}}$ must exist such that $\langle a_1^{\mathcal{I}}, i \rangle \in R^{\mathcal{I}}$ and at the same time $i \in C^{\mathcal{I}}$.
 - By application of →∃ a new node a₂ was created in G_{i+1} and the label of edge (a₁, a₂) and node a₂ has been adjusted.

27 / 36

- Soundness of the TA can be verified as follows. For any $\mathcal{I} \models \mathcal{A}_{G_i}$, it must hold that $\mathcal{I} \models \mathcal{A}_{G_{i+1}}$. We have to show that application of each rule preserves consistency. As an example, let's take the \rightarrow_{\exists} rule:
 - Before application of \rightarrow_{\exists} rule, $(\exists R \cdot C) \in L_{G_i}(a_1)$ held for $a_1 \in V_{G_i}$.
 - As a result $a_1^{\mathcal{I}} \in (\exists R \cdot C)^{\mathcal{I}}$.
 - Next, $i \in \Delta^{\mathcal{I}}$ must exist such that $\langle a_1^{\mathcal{I}}, i \rangle \in R^{\mathcal{I}}$ and at the same time $i \in C^{\mathcal{I}}$.
 - By application of →∃ a new node a₂ was created in G_{i+1} and the label of edge (a₁, a₂) and node a₂ has been adjusted.
 - It is enough to place i = a^T₂ to see that after rule application the domain element (necessary present in any interpretation because of ∃ construct semantics) has been "materialized". As a result, the rule is correct.

- Soundness of the TA can be verified as follows. For any $\mathcal{I} \models \mathcal{A}_{G_i}$, it must hold that $\mathcal{I} \models \mathcal{A}_{G_{i+1}}$. We have to show that application of each rule preserves consistency. As an example, let's take the \rightarrow_{\exists} rule:
 - Before application of \rightarrow_{\exists} rule, $(\exists R \cdot C) \in L_{G_i}(a_1)$ held for $a_1 \in V_{G_i}$.
 - As a result $a_1^{\mathcal{I}} \in (\exists R \cdot C)^{\mathcal{I}}$.
 - Next, $i \in \Delta^{\mathcal{I}}$ must exist such that $\langle a_1^{\mathcal{I}}, i \rangle \in R^{\mathcal{I}}$ and at the same time $i \in C^{\mathcal{I}}$.
 - By application of →∃ a new node a₂ was created in G_{i+1} and the label of edge (a₁, a₂) and node a₂ has been adjusted.
 - It is enough to place i = a^T₂ to see that after rule application the domain element (necessary present in any interpretation because of ∃ construct semantics) has been "materialized". As a result, the rule is correct.
- For other rules, the soundness is shown in a similar way.

Completeness

- To prove completeness of the TA, it is necessary to construct a model for each complete completion graph G that doesn't contain a direct clash. Canonical model \mathcal{I} can be constructed as follows:
 - the domain $\Delta^{\mathcal{I}}$ will consist of all nodes of *G*.

• Observe that \mathcal{I} is a model of \mathcal{A}_G . A backward induction can be used to show that \mathcal{I} must be also a model of each previous step and thus also \mathcal{A} .

Completeness

- To prove completeness of the TA, it is necessary to construct a model for each complete completion graph G that doesn't contain a direct clash. Canonical model \mathcal{I} can be constructed as follows:
 - the domain $\Delta^{\mathcal{I}}$ will consist of all nodes of G.
 - for each atomic concept A let's define $A^{\mathcal{I}} = \{a \mid A \in L_G(a)\}$
- Observe that \mathcal{I} is a model of \mathcal{A}_G . A backward induction can be used to show that \mathcal{I} must be also a model of each previous step and thus also \mathcal{A} .

Completeness

- To prove completeness of the TA, it is necessary to construct a model for each complete completion graph G that doesn't contain a direct clash. Canonical model \mathcal{I} can be constructed as follows:
 - the domain $\Delta^{\mathcal{I}}$ will consist of all nodes of *G*.
 - for each atomic concept A let's define $A^{\mathcal{I}} = \{a \mid A \in L_G(a)\}$
 - for each atomic role R let's define $R^{\mathcal{I}} = \{ \langle a_1, a_2 \rangle \mid R \in L_G(a_1, a_2) \}$
- Observe that \mathcal{I} is a model of \mathcal{A}_G . A backward induction can be used to show that \mathcal{I} must be also a model of each previous step and thus also \mathcal{A} .

• Why we need completion graphs ? Aren't ABOXes enough to maintain the state for TA ?

- Why we need completion graphs ? Aren't ABOXes enough to maintain the state for TA ?
 - indeed, for \mathcal{ALC} they would be enough. However, for complex DLs a TA state cannot be stored in an ABOX.

- Why we need completion graphs ? Aren't ABOXes enough to maintain the state for TA ?
 - indeed, for \mathcal{ALC} they would be enough. However, for complex DLs a TA state cannot be stored in an ABOX.
- What about complexity of the algorithm ?

- Why we need completion graphs ? Aren't ABOXes enough to maintain the state for TA ?
 - indeed, for \mathcal{ALC} they would be enough. However, for complex DLs a TA state cannot be stored in an ABOX.
- What about complexity of the algorithm ?
 - P-SPACE (between NP and EXP-TIME).

What if \mathcal{T} is not empty?

 consider *T* containing axioms of the form C_i ⊆ D_i for 1 ≤ i ≤ n. Such *T* can be transformed into a single axiom

$\top \sqsubseteq \top_{C}$

What if \mathcal{T} is not empty?

consider *T* containing axioms of the form C_i ⊑ D_i for 1 ≤ i ≤ n.
 Such *T* can be transformed into a single axiom

$\top \sqsubseteq \top_{c}$

where \top_C denotes a concept $(\neg C_1 \sqcup D_1) \sqcap \ldots \sqcap (\neg C_n \sqcup D_n)$

What if \mathcal{T} is not empty?

 consider *T* containing axioms of the form C_i ⊑ D_i for 1 ≤ i ≤ n. Such *T* can be transformed into a single axiom

$\top \sqsubseteq \top_{C}$

where \top_C denotes a concept $(\neg C_1 \sqcup D_1) \sqcap \ldots \sqcap (\neg C_n \sqcup D_n)$

 for each model *I* of the theory *K*, each element of Δ^{*I*} must belong to ⊤^{*I*}_C. How to achieve this ?

What about this ? \rightarrow_{\square} rule


```
What about this ?

\rightarrow_{\sqsubseteq} rule

if \top_C \notin L_G(a) for some a \in V_G.
```



```
What about this ?

\rightarrow_{\Box} \text{ rule}
if \top_C \notin L_G(a) \text{ for some } a \in V_G.
then S' = S \cup \{G'\} \setminus \{G\}, where G' = (V_G, E_G, L_{G'}), a L_{G'}(a) = L_G(a) \cup \{\top_C\} and otherwise is the same as L_G.
```



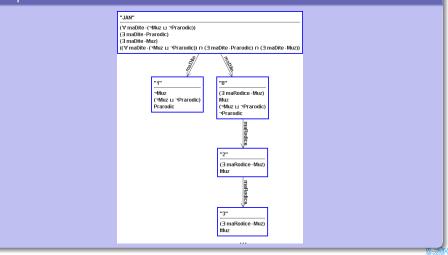
```
What about this ?

\rightarrow_{\sqsubseteq} \text{ rule}
if \top_C \notin L_G(a) \text{ for some } a \in V_G.
then S' = S \cup \{G'\} \setminus \{G\}, where G' = (V_G, E_G, L_{G'}), a L_{G'}(a) = L_G(a) \cup \{\top_C\} and otherwise is the same as L_G.
```

Example

Consider $\mathcal{K}_3 = (\{Muz \sqsubseteq \exists maRodice \cdot Muz\}, \mathcal{A}_2)$. Then \top_C is $\neg Muz \sqcup \exists maRodice \cdot Muz$. Let's use the introduced TA enriched by $\rightarrow_{\sqsubseteq}$ rule. Repeating several times the application of rules $\rightarrow_{\sqsubseteq}, \rightarrow_{\sqcup}, \rightarrow_{\exists}$ to G_7 (that is not complete w.r.t. to $\rightarrow_{\sqsubseteq}$ rule) from the previous example we can get into an infinite loop

Example



 \ldots this algorithm doesn't necessarily terminate \odot .

Petr Křemen (petr.kremen@cvut.cz)

Description Logics – Reasoning

32 / 36

• *Blocking* ensures that inference rules will be applicable until their changes will not repeat "sufficiently frequently".

- *Blocking* ensures that inference rules will be applicable until their changes will not repeat "sufficiently frequently".
- For \mathcal{ALC} it can be shown that so called *subset blocking* is enough:

- *Blocking* ensures that inference rules will be applicable until their changes will not repeat "sufficiently frequently".
- For \mathcal{ALC} it can be shown that so called *subset blocking* is enough:
 - In completion graph *G* a node *x* (not present in ABOX *A*) is blocked by node *y*, if there is an oriented path from *y* to *x* and $L_G(x) \subseteq L_G(y)$.

- *Blocking* ensures that inference rules will be applicable until their changes will not repeat "sufficiently frequently".
- For \mathcal{ALC} it can be shown that so called *subset blocking* is enough:
 - In completion graph *G* a node *x* (not present in ABOX *A*) is blocked by node *y*, if there is an oriented path from *y* to *x* and $L_G(x) \subseteq L_G(y)$.
- ∃− rule is only applicable if the node a₁ in its definition is not blocked by another node.

Blocking in TA (2)

• In the previous example, the blocking ensures that node "2" is blocked by node "0" and no other expansion occurs. Which model corresponds to such graph ?

Blocking in TA (2)

- In the previous example, the blocking ensures that node "2" is blocked by node "0" and no other expansion occurs. Which model corresponds to such graph ?
- Introduced TA with subset blocking is sound, complete and finite decision procedure for \mathcal{ALC} .

Let's play ...

• http://kbss.felk.cvut.cz/tools/dl

References I

- * Vladimír Mařík, Olga Štěpánková, and Jiří Lažanský. Umělá inteligence 6 [in czech], Chapters 2-4. Academia, 2013.
- * Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter Patel-Schneider, editors. The Description Logic Handbook, Theory, Implementation and Applications, Chapters 2-4.
 Cambridge, 2003.
- * Enrico Franconi.
 Course on Description Logics.
 http://www.inf.unibz.it/ franconi/dl/course/, cit. 22.9.2013.

