Description Logics

Petr Křemen

petr.kremen@cvut.cz

Winter 2023

Outline

1 Formal Ontologies

Towards Description Logics

3 ALC La

Formal Ontologies

• We heard about ontologies as "some shared knowledge structures often visualized through UML-like diagrams" ...

- We heard about ontologies as "some shared knowledge structures often visualized through UML-like diagrams" ...
- How to express more complicated constructs like cardinalities, inverses, disjointness, etc.?

- We heard about ontologies as "some shared knowledge structures often visualized through UML-like diagrams" ...
- How to express more complicated constructs like cardinalities, inverses, disjointness, etc.?
- How to check they are designed correctly? How to reason about the knowledge inside?

- We heard about ontologies as "some shared knowledge structures often visualized through UML-like diagrams" ...
- How to express more complicated constructs like cardinalities, inverses, disjointness, etc.?
- How to check they are designed correctly? How to reason about the knowledge inside?
- We need a formal language.

- Logics for Ontologies
 - propositional logic

propositional logic

Example

"John is clever." $\Rightarrow \neg$ "John fails at exam."

propositional logic

Example

"John is clever." $\Rightarrow \neg$ "John fails at exam."

• first order predicate logic

propositional logic

Example

"John is clever." $\Rightarrow \neg$ "John fails at exam."

• first order predicate logic

Example

$$(\forall x)(Clever(x) \Rightarrow \neg((\exists y)(Exam(y) \land Fails(x, y)))).$$

propositional logic

Example

"John is clever." $\Rightarrow \neg$ "John fails at exam."

• first order predicate logic

Example

$$(\forall x)(Clever(x) \Rightarrow \neg((\exists y)(Exam(y) \land Fails(x, y)))).$$

modal logic

propositional logic

Example

"John is clever." $\Rightarrow \neg$ "John fails at exam."

• first order predicate logic

Example

$$(\forall x)(Clever(x) \Rightarrow \neg((\exists y)(Exam(y) \land Fails(x, y)))).$$

modal logic

Example

 $\Box((\forall x)(Clever(x) \Rightarrow \Diamond \neg((\exists y)(Exam(y) \land Fails(x,y))))).$

propositional logic

Example

"John is clever." $\Rightarrow \neg$ "John fails at exam."

• first order predicate logic

Example

$$(\forall x)(Clever(x) \Rightarrow \neg((\exists y)(Exam(y) \land Fails(x, y)))).$$

modal logic

Example

 $\Box((\forall x)(Clever(x) \Rightarrow \Diamond \neg((\exists y)(Exam(y) \land Fails(x, y))))).$

• ... what is the meaning of these formulas ?


```
Logics for Ontologies (2)
```

Logics are defined by their

• Syntax - to represent concepts (defining symbols)

Logics trade-off

A logical calculus is always a trade-off between *expressiveness* and *tractability of reasoning*.

Logics are defined by their

- Syntax to represent concepts (defining symbols)
- Semantics to capture meaning of the syntactic constructs (*defining* concepts)

Logics trade-off

A logical calculus is always a trade-off between *expressiveness* and *tractability of reasoning*.

Logics are defined by their

- Syntax to represent concepts (defining symbols)
- Semantics to capture meaning of the syntactic constructs (*defining* concepts)
- Proof Theory to enforce the semantics

Logics trade-off

A logical calculus is always a trade-off between *expressiveness* and *tractability of reasoning*.

Example

How to check satisfiability of the formula $A \lor (\neg (B \land A) \lor B \land C)$?

syntax – atomic formulas and \neg , \land , \lor , \Rightarrow

Example

How to check satisfiability of the formula $A \lor (\neg (B \land A) \lor B \land C)$?

syntax – atomic formulas and \neg , $\wedge,$ $\vee,$ \Rightarrow

semantics (\models) – an interpretation assigns true/false to each formula.

Example

How to check satisfiability of the formula $A \lor (\neg (B \land A) \lor B \land C)$?

syntax – atomic formulas and \neg , \land , \lor , \Rightarrow semantics (\models) – an interpretation assigns true/false to each formula. proof theory (\vdash) – resolution, tableau

Example

How to check satisfiability of the formula $A \lor (\neg (B \land A) \lor B \land C)$?

syntax – atomic formulas and \neg , \land , \lor , \Rightarrow semantics (\models) – an interpretation assigns true/false to each formula. proof theory (\vdash) – resolution, tableau complexity – NP-Complete (Cook theorem)

First Order Predicate Logic

Example

What is the meaning of this sentence ?

 $(\forall x_1)((Student(x_1) \land (\exists x_2)(GraduateCourse(x_2) \land isEnrolledTo(x_1, x_2)))$ $\Rightarrow (\forall x_3)(isEnrolledTo(x_1, x_3) \Rightarrow GraduateCourse(x_3)))$

 $Student \sqcap \exists isEnrolledTo.GraduateCourse \sqsubseteq \forall isEnrolledTo.GraduateCourse$

syntax - constructs involve

syntax - constructs involve

term (variable x, constant symbol JOHN, function symbol applied to terms fatherOf(JOHN))

syntax - constructs involve

term (variable x, constant symbol JOHN, function symbol applied to terms *fatherOf(JOHN)*) axiom/formula (predicate symbols applied to terms *hasFather*(x, JOHN), possibly glued together with \neg , \land , \lor , \Rightarrow , \forall , \exists)

syntax - constructs involve

term (variable x, constant symbol JOHN, function symbol applied to terms fatherOf(JOHN)) axiom/formula (predicate symbols applied to terms hasFather(x, JOHN), possibly glued together with \neg , \land , \lor , \Rightarrow , \forall , \exists) universally closed formula formula without free variable

 $((\forall x)(\exists y)$ hasFather $(x, y) \land Person(y))$

8 / 20

syntax - constructs involve

term (variable x, constant symbol JOHN, function symbol applied to terms fatherOf(JOHN)) axiom/formula (predicate symbols applied to terms hasFather(x, JOHN), possibly glued together with \neg , \land , \lor , \Rightarrow , \forall , \exists) universally closed formula formula without free variable

 $((\forall x)(\exists y)$ hasFather $(x, y) \land Person(y))$

semantics – an interpretation (with valuation) assigns:

8 / 20

syntax - constructs involve

term (variable x, constant symbol JOHN, function symbol applied to terms fatherOf(JOHN)) axiom/formula (predicate symbols applied to terms hasFather(x, JOHN), possibly glued together with \neg , \land , \lor , \Rightarrow , \forall , \exists) universally closed formula formula without free variable $((\forall x)(\exists y)hasFather(x, y) \land Person(y))$

semantics – an interpretation (with valuation) assigns:

domain element to each term

syntax - constructs involve

term (variable x, constant symbol JOHN, function symbol applied to terms *fatherOf*(JOHN)) axiom/formula (predicate symbols applied to terms *hasFather*(x, JOHN), possibly glued together with \neg , \land , \lor , \Rightarrow , \forall , \exists) universally closed formula formula without free variable

 $((\forall x)(\exists y)$ hasFather $(x, y) \land Person(y))$

semantics – an interpretation (with valuation) assigns:

domain element to each term true/false to each closed formula

syntax - constructs involve

term (variable x, constant symbol JOHN, function symbol applied to terms fatherOf(JOHN)) axiom/formula (predicate symbols applied to terms hasFather(x, JOHN), possibly glued together with \neg , \land , \lor , \Rightarrow , \forall , \exists)

universally closed formula formula without free variable $((\forall x)(\exists y)hasFather(x, y) \land Person(y))$

semantics – an interpretation (with valuation) assigns:

domain element to each term true/false to each closed formula

proof theory – resolution; Deduction Theorem, Soundness Theorem, Completeness Theorem

syntax - constructs involve

term (variable x, constant symbol JOHN, function symbol applied to terms fatherOf(JOHN)) axiom/formula (predicate symbols applied to terms hasFather(x, JOHN), possibly glued together with \neg , \land , \lor , \Rightarrow , \forall , \exists)

universally closed formula formula without free variable $((\forall x)(\exists y)hasFather(x, y) \land Person(y))$

semantics – an interpretation (with valuation) assigns:

domain element to each term true/false to each closed formula

proof theory – resolution; Deduction Theorem, Soundness Theorem, Completeness Theorem

complexity – undecidable (Goedel)

Open World Assumption

OWA

FOPL accepts Open World Assumption, i.e. whatever is not known is not necessarily false.

As a result, FOPL is monotonic, i.e.

monotonicity

No conclusion can be invalidated by adding extra knowledge.

This is in contrary to relational databases, or Prolog that accept Closed World Assumption.

Towards Description Logics

Towards Description Logics

Languages sketched so far aren't enough ?

• Why not First Order Predicate Logic ?

Languages sketched so far aren't enough ?

- Why not First Order Predicate Logic ?
 - S FOPL is undecidable many logical consequences cannot be verified in finite time.

Languages sketched so far aren't enough ?

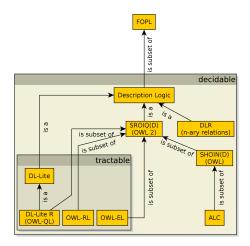
- Why not First Order Predicate Logic ?
 - FOPL is undecidable many logical consequences cannot be verified in finite time.
 - We often do not need full expressiveness of FOL.

Languages sketched so far aren't enough ?

- Why not First Order Predicate Logic ?
 - FOPL is undecidable many logical consequences cannot be verified in finite time.
 - We often do not need full expressiveness of FOL.
- Well, we have Prolog wide-spread and optimized implementation of FOPL, right ?

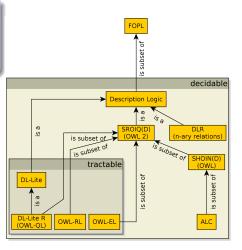
Languages sketched so far aren't enough ?

- Why not First Order Predicate Logic ?
 - FOPL is undecidable many logical consequences cannot be verified in finite time.
 - We often do not need full expressiveness of FOL.
- Well, we have Prolog wide-spread and optimized implementation of FOPL, right ?
 - Prolog is not an implementation of FOPL OWA vs. CWA, negation as failure, problems in expressing disjunctive knowledge, etc.



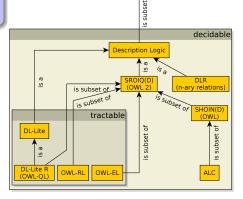
11 / 20

Description logics (DLs) are (almost exclusively) decidable subsets of FOPL aimed at modeling *terminological incomplete knowledge*.



Description logics (DLs) are (almost exclusively) decidable subsets of FOPL aimed at modeling *terminological incomplete knowledge*.

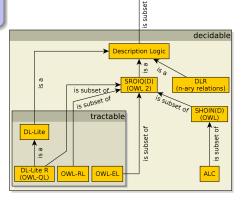
 first languages emerged as an experiment of giving formal semantics to semantic networks and frames. First implementations in 80's – KL-ONE, KAON, Classic.



FOPL

Description logics (DLs) are (almost exclusively) decidable subsets of FOPL aimed at modeling *terminological incomplete knowledge*.

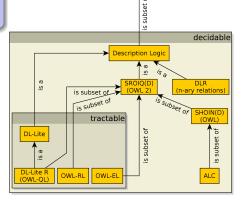
- first languages emerged as an experiment of giving formal semantics to semantic networks and frames. First implementations in 80's – KL-ONE, KAON, Classic.
- 90's *ALC*



FOPL

Description logics (DLs) are (almost exclusively) decidable subsets of FOPL aimed at modeling *terminological incomplete knowledge*.

- first languages emerged as an experiment of giving formal semantics to semantic networks and frames. First implementations in 80's – KL-ONE, KAON, Classic.
- 90's *ALC*
- 2004 $\mathcal{SHOIN}(\mathcal{D})$ OWL

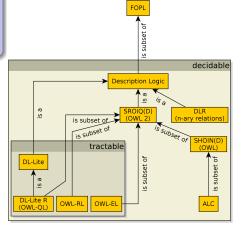


FOPL

11 / 20

Description logics (DLs) are (almost exclusively) decidable subsets of FOPL aimed at modeling *terminological incomplete knowledge*.

- first languages emerged as an experiment of giving formal semantics to semantic networks and frames. First implementations in 80's – KL-ONE, KAON, Classic.
- 90's *ALC*
- 2004 $\mathcal{SHOIN}(\mathcal{D})$ OWL
- 2009 SROIQ(D) OWL 2



11/20

Towards Description Logics

${\cal ALC}$ Language

• Basic building blocks of DLs are :

• Basic building blocks of DLs are :

(atomic) concepts - representing (named) *unary predicates* / classes, e.g. *Parent*, or *Person* □ ∃*hasChild* · *Person*.

• Basic building blocks of DLs are :

(atomic) concepts - representing (named) unary predicates / classes, e.g. Parent, or Person □ ∃hasChild · Person. (atomic) roles - represent (named) binary predicates / relations, e.g. hasChild

• Basic building blocks of DLs are :

(atomic) concepts - representing (named) unary predicates / classes, e.g. Parent, or Person □ ∃hasChild · Person. (atomic) roles - represent (named) binary predicates / relations, e.g. hasChild individuals - represent ground terms / individuals, e.g. JOHN

• Basic building blocks of DLs are :

(atomic) concepts - representing (named) unary predicates / classes, e.g. Parent, or Person □ ∃hasChild · Person. (atomic) roles - represent (named) binary predicates / relations, e.g. hasChild

individuals - represent ground terms / individuals, e.g. JOHN

• Theory $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ (in OWL refered as Ontology) consists of a

• Basic building blocks of DLs are :

(atomic) concepts - representing (named) unary predicates / classes, e.g. Parent, or Person □ ∃hasChild · Person. (atomic) roles - represent (named) binary predicates / relations, e.g. hasChild

individuals - represent ground terms / individuals, e.g. JOHN

• Basic building blocks of DLs are :

(atomic) concepts - representing (named) *unary predicates* / classes, e.g. *Parent*, or *Person* □ ∃*hasChild* · *Person*.

(atomic) roles - represent (named) *binary predicates* / relations, e.g. *hasChild*

individuals - represent ground terms / individuals, e.g. JOHN

e.g.
$$A = \{Man(JOHN), Ioves(JOHN, MARY)\}$$

Basic building blocks of DLs are :

(atomic) concepts - representing (named) *unary predicates* / classes, e.g. *Parent*, or *Person* □ ∃*hasChild* · *Person*.

(atomic) roles - represent (named) *binary predicates* / relations, e.g. *hasChild*

individuals - represent ground terms / individuals, e.g. JOHN

e.g. $A = \{Man(JOHN), loves(JOHN, MARY)\}$

DLs differ in their expressive power (concept/role constructors, axiom types).

Semantics, Interpretation

• as \mathcal{ALC} is a subset of FOPL, let's define semantics analogously (and restrict interpretation function where applicable):

Semantics, Interpretation

- as ALC is a subset of FOPL, let's define semantics analogously (and restrict interpretation function where applicable):
- Interpretation is a pair $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$, where $\Delta^{\mathcal{I}}$ is an interpretation domain and $\cdot^{\mathcal{I}}$ is an interpretation function.

Semantics, Interpretation

- as ALC is a subset of FOPL, let's define semantics analogously (and restrict interpretation function where applicable):
- Interpretation is a pair $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$, where $\Delta^{\mathcal{I}}$ is an interpretation domain and $\cdot^{\mathcal{I}}$ is an interpretation function.
- Having atomic concept A, atomic role R and individual a, then

$$A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$$
$$\mathsf{R}^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$$
$$a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$$

ALC (= attributive language with complements)

Having concepts C, D, atomic concept A and atomic role R, then for interpretation ${\mathcal I}$:

concept	$concept^{\mathcal{I}}$	description
Т	$\Delta^{\mathcal{I}}$	(universal concept)
\perp	Ø	(unsatisfiable concept)
$\neg C$	$\Delta^\mathcal{I} \setminus C^\mathcal{I}$	(negation)
$C_1 \sqcap C_2$	$\mathcal{C}_1^\mathcal{I}\cap\mathcal{C}_2^\mathcal{I}$	(intersection)
$C_1 \sqcup C_2$	$C_1^\mathcal{I} \cup C_2^\mathcal{I}$	(union)
$\forall R \cdot C$	$\{a \mid \forall b((a, b) \in R^{\mathcal{I}} \implies b \in C^{\mathcal{I}})\}$	(universal restriction)
$\exists R \cdot C$	$\{ a \mid \exists b((a,b) \in R^\mathcal{I} \land b \in C^\mathcal{I}) \}$	(existential restriction)

¹two different individuals denote two different domain elements

ALC (= attributive language with complements)

Having concepts C, D, atomic concept A and atomic role R, then for interpretation ${\mathcal I}$:

	concept	$concept^{\mathcal{I}}$	description
	Т	$\Delta^{\mathcal{I}}$	(universal concept)
	\perp	Ø	(unsatisfiable concept)
	$\neg C$	$\Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$	(negation)
	$C_1 \sqcap C_2$	$C_1^\mathcal{I} \cap C_2^\mathcal{I}$	(intersection)
	$C_1 \sqcup C_2$	$C_1^{\overline{\mathcal{I}}} \cup C_2^{\overline{\mathcal{I}}}$	(union)
	$\forall R \cdot C$	$\{a \mid \forall b((a, b) \in R^{\mathcal{I}} \implies b \in C^{\mathcal{I}})\}$	(universal restriction)
	$\exists R \cdot C$	$\{a \mid \exists b((a,b) \in R^\mathcal{I} \land b \in C^\mathcal{I})\}$	(existential restriction)
	axiom	$\mathcal{I} \models axiom \text{ iff } description}$	
TBOX	$C_1 \sqsubseteq C_2$	$C_1^{\mathcal{I}} \subseteq C_2^{\mathcal{I}}$ (inclusion)	
	$C_1 \equiv C_2$	$C_1^{\overline{I}} = C_2^{\overline{I}}$ (equivalence)	

¹two different individuals denote two different domain elements

ALC (= attributive language with complements)

Having concepts C, D, atomic concept A and atomic role R, then for interpretation ${\mathcal I}$:

	concept	$concept^{\mathcal{I}}$		description		
	Т	$\Delta^{\mathcal{I}}$		(universal concept)		
	\perp	Ø		(unsatisfiable concept)		
	$\neg C$	$\Delta^\mathcal{I} \setminus C^\mathcal{I}$		(negation)		
	$C_1 \sqcap C_2$	$C_1^{\mathcal{I}} \cap C_2^{\mathcal{I}}$		(intersection)		
	$C_1 \sqcup C_2$	$C_1^{\mathcal{I}} \cup C_2^{\mathcal{I}}$		(union)		
	$\forall R \cdot C$	$\{ {\sf a} ~ ~ \forall {\sf b}(({\sf a},{\sf b}) \in$	$R^{\mathcal{I}} \implies b \in C^{\mathcal{I}})\}$	(universal restriction)		
	$\exists R \cdot C$	$\{a \mid \exists b((a,b) \in$	$R^{\mathcal{I}} \wedge b \in C^{\mathcal{I}})\}$	(existential restriction)		
	axiom	$\mathcal{I} \models axiom iff$	description			
TBOX	$C_1 \sqsubseteq C_2$		(inclusion)			
	$C_1 \equiv C_2$	$C_1^{\mathcal{I}} = C_2^{\mathcal{I}}$	(equivalence)			
ABOX (UNA = unique name assumption ¹)						
	axiom	$\mathcal{I} \models axiom iff$	description	_		
	C(a)	$a^{\mathcal{I}} \in \mathcal{C}^{\mathcal{I}}$	(concept assertion)	_		
	$R(a_1,a_2)$	$(\textit{a}_{1}^{\mathcal{I}},\textit{a}_{2}^{\mathcal{I}}) \in \textit{R}^{\mathcal{I}}$	(role assertion)			

¹two different individuals denote two different domain elements

Example

Consider an information system for genealogical data integrating multiple geneological databases. Let's have atomic concepts *Person, Man, GrandParent* and atomic role *hasChild*.

• Set of persons that have just men as their descendants (if any)

Example

Consider an information system for genealogical data integrating multiple geneological databases. Let's have atomic concepts *Person, Man, GrandParent* and atomic role *hasChild*.

- Set of persons that have just men as their descendants (if any)
 - Person $\sqcap \forall hasChild \cdot Man$

Example

Consider an information system for genealogical data integrating multiple geneological databases. Let's have atomic concepts *Person, Man, GrandParent* and atomic role *hasChild*.

- Set of persons that have just men as their descendants (if any)
 - Person $\sqcap \forall hasChild \cdot Man$
- How to define concept GrandParent ? (specify an axiom)

Example

Consider an information system for genealogical data integrating multiple geneological databases. Let's have atomic concepts *Person, Man, GrandParent* and atomic role *hasChild*.

- Set of persons that have just men as their descendants (if any)
 - Person $\sqcap \forall hasChild \cdot Man$
- How to define concept GrandParent ? (specify an axiom)
 - GrandParent \equiv Person $\sqcap \exists$ hasChild $\cdot \exists$ hasChild $\cdot \top$

Example

Consider an information system for genealogical data integrating multiple geneological databases. Let's have atomic concepts *Person, Man, GrandParent* and atomic role *hasChild*.

- Set of persons that have just men as their descendants (if any)
 - Person $\sqcap \forall hasChild \cdot Man$
- How to define concept GrandParent ? (specify an axiom)
 - GrandParent \equiv Person $\sqcap \exists hasChild \cdot \exists hasChild \cdot \top$
- How does the previous axiom look like in FOPL ?

 $\forall x (GrandParent(x) \equiv (Person(x) \land \exists y (hasChild(x, y) \land \exists z (hasChild(y, z)))))$

$$\mathcal{ALC} \text{ Example} - \mathcal{T}$$

Woman	≡	Person □ Female
Man	≡	Person □ ¬Woman
Mother	≡	<i>Woman</i> $\sqcap \exists hasChild \cdot Person$
Father	≡	<i>Man</i> ⊓ ∃ <i>hasChild</i> · <i>Person</i>
Parent	≡	<i>Father</i> ⊔ <i>Mother</i>
Grandmother	≡	<i>Mother</i> ⊓∃ <i>hasChild</i> · <i>Parent</i>
MotherWithoutDaughter	≡	<i>Mother</i> $\sqcap \forall hasChild \cdot \neg Woman$
Wife	≡	<i>Woman</i> □ ∃ <i>hasHusband</i> · <i>Man</i>

Example

 Consider a theory K₁ = ({GrandParent ≡ Person □ ∃hasChild · ∃hasChild · ⊤}, {GrandParent(JOHN)}). Find some model.

- Consider a theory K₁ = ({GrandParent ≡ Person □ ∃hasChild · ∃hasChild · ⊤}, {GrandParent(JOHN)}). Find some model.
- a model of \mathcal{K}_1 can be interpretation \mathcal{I}_1 :

- Consider a theory K₁ = ({GrandParent ≡ Person □ ∃hasChild · ∃hasChild · ⊤}, {GrandParent(JOHN)}). Find some model.
- \bullet a model of \mathcal{K}_1 can be interpretation \mathcal{I}_1 :
 - $\Delta^{\mathcal{I}_1} = Man^{\mathcal{I}_1} = Person^{\mathcal{I}_1} = \{John, Phillipe, Martin\}$

- Consider a theory K₁ = ({GrandParent ≡ Person □ ∃hasChild · ∃hasChild · ⊤}, {GrandParent(JOHN)}). Find some model.
- a model of \mathcal{K}_1 can be interpretation \mathcal{I}_1 :
 - $\Delta^{\mathcal{I}_1} = Man^{\mathcal{I}_1} = Person^{\mathcal{I}_1} = \{John, Phillipe, Martin\}$
 - $hasChild^{\mathcal{I}_1} = \{(John, Phillipe), (Phillipe, Martin)\}$

- Consider a theory K₁ = ({GrandParent ≡ Person □ ∃hasChild · ∃hasChild · ⊤}, {GrandParent(JOHN)}). Find some model.
- a model of \mathcal{K}_1 can be interpretation \mathcal{I}_1 :
 - $\Delta^{\mathcal{I}_1} = Man^{\mathcal{I}_1} = Person^{\mathcal{I}_1} = \{John, Phillipe, Martin\}$
 - $hasChild^{\mathcal{I}_1} = \{(John, Phillipe), (Phillipe, Martin)\}$
 - $GrandParent^{\mathcal{I}_1} = {John}$

- Consider a theory K₁ = ({GrandParent ≡ Person □ ∃hasChild · ∃hasChild · ⊤}, {GrandParent(JOHN)}). Find some model.
- a model of \mathcal{K}_1 can be interpretation \mathcal{I}_1 :
 - $\Delta^{\mathcal{I}_1} = Man^{\mathcal{I}_1} = Person^{\mathcal{I}_1} = \{John, Phillipe, Martin\}$
 - $hasChild^{\mathcal{I}_1} = \{(John, Phillipe), (Phillipe, Martin)\}$
 - GrandParent $^{\mathcal{I}_1} = \{\mathsf{John}\}$
 - $JOHN^{\mathcal{I}_1} = \{John\}$

- Consider a theory K₁ = ({GrandParent ≡ Person □ ∃hasChild · ∃hasChild · ⊤}, {GrandParent(JOHN)}). Find some model.
- a model of \mathcal{K}_1 can be interpretation \mathcal{I}_1 :
 - $\Delta^{\mathcal{I}_1} = Man^{\mathcal{I}_1} = Person^{\mathcal{I}_1} = \{John, Phillipe, Martin\}$
 - $hasChild^{\mathcal{I}_1} = \{(John, Phillipe), (Phillipe, Martin)\}$
 - GrandParent^{I_1} = {John}
 - $JOHN^{\mathcal{I}_1} = \{John\}$
- this model is finite and has the form of a tree with the root in the node John :

The last example revealed several important properties of DL models:

The last example revealed several important properties of DL models:

The last example revealed several important properties of DL models:

Tree model property (TMP)

Every consistent $\mathcal{K} = (\{\}, \{C(I)\})$ has a model in the shape of a *rooted tree*.

The last example revealed several important properties of DL models:

Tree model property (TMP)

Every consistent $\mathcal{K} = (\{\}, \{C(I)\})$ has a model in the shape of a *rooted tree*.

The last example revealed several important properties of DL models:

Tree model property (TMP)

Every consistent $\mathcal{K} = (\{\}, \{C(I)\})$ has a model in the shape of a *rooted tree*.

Finite model property (FMP)

Every consistent $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ has a *finite model*.

The last example revealed several important properties of DL models:

Tree model property (TMP)

Every consistent $\mathcal{K} = (\{\}, \{C(I)\})$ has a model in the shape of a *rooted tree*.

Finite model property (FMP)

Every consistent $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ has a *finite model*.

Both properties represent important characteristics of \mathcal{ALC} that significantly speed-up reasoning.

The last example revealed several important properties of DL models:

Tree model property (TMP)

Every consistent $\mathcal{K} = (\{\}, \{C(I)\})$ has a model in the shape of a *rooted tree*.

Finite model property (FMP)

Every consistent $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ has a *finite model*.

Both properties represent important characteristics of \mathcal{ALC} that significantly speed-up reasoning.

In particular (generalized) TMP is a characteristics that is shared by most DLs and significantly reduces their computational complexity.

Example – CWA \times OWA

Example

ABOX

hasChild(JOCASTA, OEDIPUS) hasChild(OEDIPUS, POLYNEIKES) Patricide(OEDIPUS) hasChild(JOCASTA, POLYNEIKES) hasChild(POLYNEIKES, THERSANDROS) ¬Patricide(THERSANDROS)

Example – CWA \times OWA

Example

ABOX

hasChild(JOCASTA, OEDIPUS) hasChild(OEDIPUS, POLYNEIKES) Patricide(OEDIPUS) hasChild(JOCASTA, POLYNEIKES) hasChild(POLYNEIKES, THERSANDROS) ¬Patricide(THERSANDROS)

Edges represent role assertions of *hasChild*; red/green colors distinguish concepts instances – *Patricide* a \neg *Patricide*

JOCASTA > POLYNEIKES —> THERSANDROS

$\mathsf{Example} - \mathsf{CWA} \, \times \, \mathsf{OWA}$

Example

ABOX hasChild(JOCASTA, OEDIPUS) hasChild(OEDIPUS, POLYNEIKES) Patricide(OEDIPUS) hasChild(JOCASTA, POLYNEIKES) hasChild(POLYNEIKES, THERSANDROS) ¬Patricide(THERSANDROS)

Edges represent role assertions of *hasChild*; red/green colors distinguish concepts instances – *Patricide* a ¬*Patricide*

Q1 $(\exists hasChild \cdot (Patricide \sqcap \exists hasChild \cdot \neg Patricide))(JOCASTA),$

 $JOCASTA \longrightarrow \bullet \longrightarrow \bullet$

$\mathsf{Example} - \mathsf{CWA} \, \times \, \mathsf{OWA}$

Example

ABOX hasChild(JOCASTA, OEDIPUS) hasChild(OEDIPUS, POLYNEIKES) Patricide(OEDIPUS) hasChild(JOCASTA, POLYNEIKES) hasChild(POLYNEIKES, THERSANDROS) ¬Patricide(THERSANDROS)

Edges represent role assertions of *hasChild*; red/green colors distinguish concepts instances – *Patricide* a \neg *Patricide*

$$JOCASTA \longrightarrow POLYNEIKES \longrightarrow THERSANDROS$$

Q1 $(\exists hasChild \cdot (Patricide \sqcap \exists hasChild \cdot \neg Patricide))(JOCASTA),$

 $JOCASTA \longrightarrow \bullet \longrightarrow \bullet$

Q2 Find individuals x such that $\mathcal{K} \models C(x)$, where C is

 \neg *Patricide* $\sqcap \exists$ *hasChild*^{$- \cdot$} (*Patricide* $\sqcap \exists$ *hasChild*^{$- \cdot$} {*JOCASTA*})

What is the difference, when considering CWA ?

 $JOCASTA \longrightarrow \bullet \longrightarrow x$

Petr Křemen (petr.kremen@cvut.cz)

Description Logics

References I

- * Vladimír Mařík, Olga Štěpánková, and Jiří Lažanský. Umělá inteligence 6 [in czech], Chapters 2-4. Academia, 2013.
- * Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter Patel-Schneider, editors. The Description Logic Handbook, Theory, Implementation and Applications, Chapters 2-4.
 Cambridge, 2003.
- * Enrico Franconi.
 Course on Description Logics.
 http://www.inf.unibz.it/ franconi/dl/course/, cit. 22.9.2013.

