
1 Description Logics

1.1 Formal Ontologies

Formalizing Ontologies

• We heard about ontologies as “some shared knowledge structures often visualized
through UML-like diagrams” ...

• How to express more complicated constructs like cardinalities, inverses, disjoint-
ness, etc.?

• How to check they are designed correctly? How to reason about the knowledge
inside?

• We need a formal language.

Logics for Ontologies

• propositional logic

Example

“John is clever.′′ ⇒ ¬“John fails at exam.′′

• first order predicate logic

Example

(∀x)(Clever(x) ⇒ ¬((∃y)(Exam(y) ∧ Fails(x, y)))).

• modal logic

Example

□((∀x)(Clever(x) ⇒ 3¬((∃y)(Exam(y) ∧ Fails(x, y))))).

• ... what is the meaning of these formulas ?

1

1 Description Logics

Logics for Ontologies (2)
Logics are defined by their

• Syntax – to represent concepts (defining symbols)

• Semantics – to capture meaning of the syntactic constructs (defining concepts)

• Proof Theory – to enforce the semantics

Logics trade-off
A logical calculus is always a trade-off between expressiveness and tractability of reason-
ing.

Propositional Logic

Example
How to check satisfiability of the formula A ∨ (¬(B ∧ A) ∨ B ∧ C) ?

syntax – atomic formulas and ¬, ∧, ∨, ⇒

semantics (|=) – an interpretation assigns true/false to each formula.

proof theory (⊢) – resolution, tableau

complexity – NP-Complete (Cook theorem)

First Order Predicate Logic

Example
What is the meaning of this sentence ?

(∀x1)((Student(x1) ∧ (∃x2)(GraduateCourse(x2) ∧ isEnrolledTo(x1, x2)))
⇒ (∀x3)(isEnrolledTo(x1, x3) ⇒ GraduateCourse(x3)))

Student ⊓ ∃isEnrolledTo.GraduateCourse ⊑ ∀isEnrolledTo.GraduateCourse

First Order Predicate Logic – quick informal review

syntax – constructs involve
term (variable x, constant symbol JOHN , function symbol applied to terms

fatherOf(JOHN))
axiom/formula (predicate symbols applied to terms hasFather(x, JOHN), pos-

sibly glued together with ¬, ∧, ∨, ⇒, ∀,∃)
universally closed formula formula without free variable ((∀x)(∃y)hasFather(x, y)∧

Person(y))

2

1.2 Towards Description Logics

semantics – an interpretation (with valuation) assigns:
domain element to each term
true/false to each closed formula

proof theory – resolution; Deduction Theorem, Soundness Theorem, Completeness The-
orem

complexity – undecidable (Goedel)

Open World Assumption

OWA
FOPL accepts Open World Assumption, i.e. whatever is not known is not necessarily
false.

As a result, FOPL is monotonic, i.e.

monotonicity
No conclusion can be invalidated by adding extra knowledge.

This is in contrary to relational databases, or Prolog that accept Closed World As-
sumption.

1.2 Towards Description Logics
Languages sketched so far aren’t enough ?

• Why not First Order Predicate Logic ?
/ FOPL is undecidable – many logical consequences cannot be verified in finite

time.
– We often do not need full expressiveness of FOL.

• Well, we have Prolog – wide-spread and optimized implementation of FOPL, right
?
/ Prolog is not an implementation of FOPL – OWA vs. CWA, negation as

failure, problems in expressing disjunctive knowledge, etc.

What are Description Logics ?

Description logics (DLs) are (almost exclusively) decidable subsets of FOPL aimed
at modeling terminological incomplete knowledge.

• first languages emerged as an experiment of giving formal semantics to semantic
networks and frames. First implementations in 80’s – KL-ONE, KAON, Classic.

3

1 Description Logics

• 90’s ALC

• 2004 SHOIN (D) – OWL

• 2009 SROIQ(D) – OWL 2

1.3 ALC Language

Concepts and Roles

• Basic building blocks of DLs are :

4

1.3 ALC Language

(atomic) concepts - representing (named) unary predicates / classes, e.g. Parent,
or Person ⊓ ∃hasChild · Person.

(atomic) roles - represent (named) binary predicates / relations, e.g. hasChild

individuals - represent ground terms / individuals, e.g. JOHN

• Theory K = (T , A) (in OWL refered as Ontology) consists of a
TBOX T - representing axioms generally valid in the domain, e.g. T = {Man ⊑

Person}
ABOX A - representing a particular relational structure (data), e.g. A = {Man(JOHN), loves(JOHN, MARY)}

• DLs differ in their expressive power (concept/role constructors, axiom types).

Semantics, Interpretation

• as ALC is a subset of FOPL, let’s define semantics analogously (and restrict inter-
pretation function where applicable):

• Interpretation is a pair I = (∆I , ·I), where ∆I is an interpretation domain and
·I is an interpretation function.

• Having atomic concept A, atomic role R and individual a, then

AI ⊆ ∆I

RI ⊆ ∆I × ∆I

aI ∈ ∆I

ALC (= attributive language with complements)

Having concepts C, D, atomic concept A and atomic role R, then for interpretation I :
concept conceptI description
⊤ ∆I (universal concept)
⊥ ∅ (unsatisfiable concept)
¬C ∆I \ CI (negation)
C1 ⊓ C2 CI

1 ∩ CI
2 (intersection)

C1 ⊔ C2 CI
1 ∪ CI

2 (union)
∀R · C {a | ∀b((a, b) ∈ RI =⇒ b ∈ CI)} (universal restriction)
∃R · C {a | ∃b((a, b) ∈ RI ∧ b ∈ CI)} (existential restriction)

TBOX
axiom I |= axiom iff description
C1 ⊑ C2 CI

1 ⊆ CI
2 (inclusion)

C1 ≡ C2 CI
1 = CI

2 (equivalence)

ABOX (UNA = unique name assumption1)
axiom I |= axiom iff description
C(a) aI ∈ CI (concept assertion)
R(a1, a2) (aI

1 , aI
2) ∈ RI (role assertion)

1two different individuals denote two different domain elements

5

1 Description Logics

ALC – Example

Example
Consider an information system for genealogical data integrating multiple geneological
databases. Let’s have atomic concepts Person, Man, GrandParent and atomic role
hasChild.

• Set of persons that have just men as their descendants (if any)
– Person ⊓ ∀hasChild · Man

• How to define concept GrandParent ? (specify an axiom)
– GrandParent ≡ Person ⊓ ∃hasChild · ∃hasChild · ⊤

• How does the previous axiom look like in FOPL ?

∀x (GrandParent(x) ≡ (Person(x) ∧ ∃y (hasChild(x, y)
∧∃z (hasChild(y, z)))))

ALC Example – T

Example

Woman ≡ Person ⊓ Female

Man ≡ Person ⊓ ¬Woman

Mother ≡ Woman ⊓ ∃hasChild · Person

Father ≡ Man ⊓ ∃hasChild · Person

Parent ≡ Father ⊔ Mother

Grandmother ≡ Mother ⊓ ∃hasChild · Parent

MotherWithoutDaughter ≡ Mother ⊓ ∀hasChild · ¬Woman

Wife ≡ Woman ⊓ ∃hasHusband · Man

Interpretation – Example

Example

• Consider a theory K1 = ({GrandParent ≡ Person⊓∃hasChild·∃hasChild · ⊤}, {GrandParent(JOHN)}).
Find some model.

• a model of K1 can be interpretation I1 :
– ∆I1 = ManI1 = PersonI1 = {John, Phillipe, Martin}
– hasChildI1 = {(John, Phillipe), (Phillipe, Martin)}

6

1.3 ALC Language

– GrandParentI1 = {John}
– JOHNI1 = {John}

• this model is finite and has the form of a tree with the root in the node John :

Shape of DL Models

The last example revealed several important properties of DL models:

Tree model property (TMP)
Every consistent K = ({}, {C(I)}) has a model in the shape of a rooted tree.

Finite model property (FMP)
Every consistent K = (T , A) has a finite model.

Both properties represent important characteristics of ALC that significantly speed-
up reasoning.

In particular (generalized) TMP is a characteristics that is shared by most DLs
and significantly reduces their computational complexity.

Example – CWA × OWA
Example
ABOX

hasChild(JOCAST A, OEDIP US) hasChild(JOCAST A, P OLY NEIKES)
hasChild(OEDIP US, P OLY NEIKES) hasChild(P OLY NEIKES, T HERSANDROS)
P atricide(OEDIP US) ¬P atricide(T HERSANDROS)

Edges represent role assertions of hasChild; red/green colors distinguish concepts instances – P atricide
a ¬P atricide

JOCAST A //
**

P OLY NEIKES // T HERSANDROS

OEDIP US

33

Q1 (∃hasChild · (P atricide ⊓ ∃hasChild · ¬P atricide))(JOCAST A),

JOCAST A // • // •

Q2 Find individuals x such that K |= C(x), where C is

¬P atricide ⊓ ∃hasChild− · (P atricide ⊓ ∃hasChild− · {JOCAST A})

What is the difference, when considering CWA ?

JOCAST A // • // x

References

7

Bibliography

[1] * Vladimı́r Mař́ık, Olga Štěpánková, and Jǐŕı Lažanský. Umělá inteligence 6 [in
czech], Chapters 2-4. Academia, 2013.

[2] * Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and
Peter Patel-Schneider, editors. The Description Logic Handbook, Theory, Imple-
mentation and Applications, Chapters 2-4. Cambridge, 2003.

[3] * Enrico Franconi. Course on Description Logics. http://www.inf.unibz.it/ fran-
coni/dl/course/, cit. 22.9.2013.

9

	Description Logics
	Formal Ontologies
	Towards Description Logics
	ALC Language

