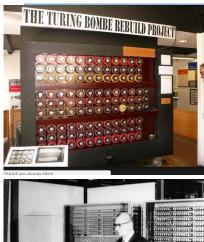
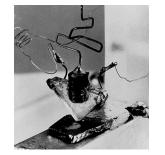

Advanced Computer Architectures

History and Future

Czech Technical University in Prague, Faculty of Electrical Engineering Slides authors: Pavel Píša, Michal Štepanovský


Minute for Computer Archaeology

- Analytical tools and engines (astronomy, calendars and clocks), sequential FSMs initially for amusement (music boxes)
- Antikythera mechanism (Greek island, Hipparchus 190 – 120 b.c.), over 30 bronze gears, very precise nonlinear moon movement
- Prague Orloj (Mikuláš of Kadan and Jan Šindel – later Charles University professor of math and astronomy 1410), 1552 repair by Jan Táborský



ISA development history

1939 Bombe: designed to crack Enigma 1941 Konrad Zuse: **Z3** – the world first functional Turing complete computer, program controlled 1944 Harvard Mark I 1944 Colossus **1946 ENIAC 1947** Transistor 1948 Manchester Baby – the first storedprogram computer 1949 EDSAC single accumulator 1953 EDSAC, Manchester Mark I, IBM 700 series: single accumulator

+ index register

1936 Alan Turing: On computable numbers, with an application to the Entscheidungsproblem 1937: Howard Aiken: Concept of **Automatic Sequence Controlled Calculator – ASCC.**

1945 **John von Neumann**: First Draft of a Report on the EDVAC. New idea: **Stored-program computer.** Previous computers required to physically modified to for given task. Remark: storedprogram idea appeared even earlier in 1943 year – ENIAC development: J. P. Eckert a J. Mauchly

Computers of that era are equipped by accumulator (one register) for arithmetic and logic operations which is fixed destination and one of source operands.

ISA development history

There is a significant separation of the programming model from implementation !!!

1961 B5000: Computer designed and optimized for ALGOL 60 processing => orientation to higher level languages

1964 IBM System/360 – under Gene Amdahl lead: strict separation of architecture from implementation – oriented to instructions/assembler

1964 CDC 6600 – the most powerful computer of its era

1954 John Backus: FORTRAN (FOrmula TRANslator) language

1958: JohnMcCarthy: LSP (LISt Processing) language

1960 ALGOL (ALGOrithmic Language)

1962 Ole-Johan Dahl, Kristen Nygaard: SIMULA language (ALGOL extension)

Begin of era of computers with general purpose registers and ISA

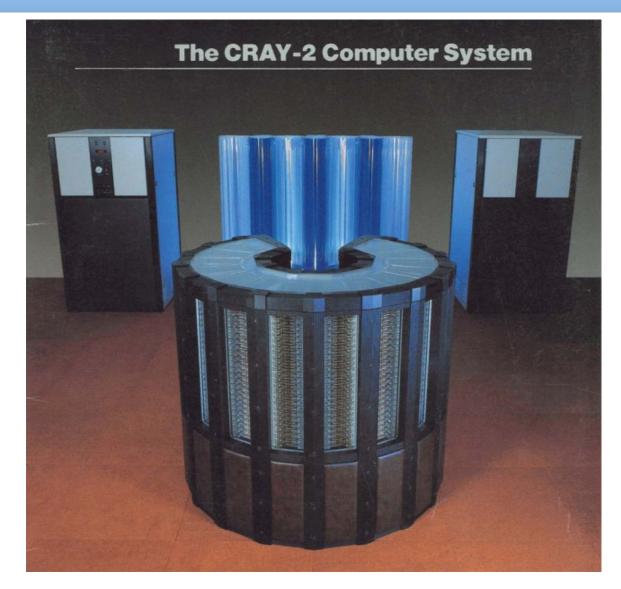
1970 Niklaus Wirth: PASCAL language

1973 Dennis Ritchie: C language

Control Data Corporation (CDC) 6600

1964 - Control Data Corporation (CDC) 6600

- Designed by Seymour Cray and Jim Thornton
- One CPU 10 parallel functional units, each specialized (FP operations, Bool operations), 40MHz
- 60 registers, 60 bit each
- price \$8 millions (today equivalent of \$60 millions)
- peak performance of
 3 MFLOPS it is 10× more
 than IBM 7030 Stretch,
 which required 900m² area
- CDC required area of 4 cabinets
- Freon cooled
- 10 peripheral processors


1976 - the Cray 1 (Cray Research)

1976 - the Cray 1

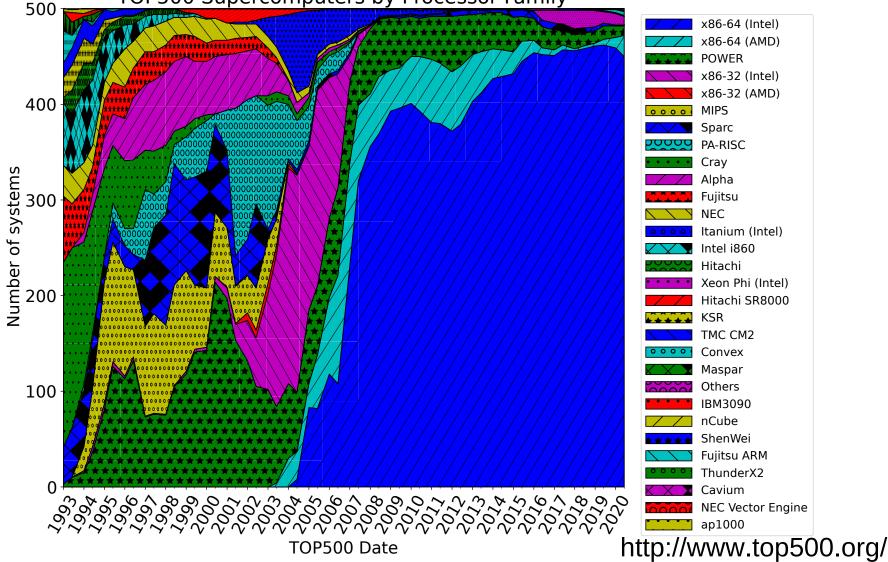
- Designed by Seymour Cray
- Los Alamos National Laboratory
- The most successful supercomputer
- Price between \$5 and \$8 millions (today equivalent \$25 millions)
- It uses integrated circuits
- Word size 64 bits
- 136 MFLOPS
- Freon cooled
- Vector machine but multiple operations on block a(1..1000000) = addv b(1..1000000), c(1..1000000)

1985 - Cray 2

B4M35PAP Advanced Computer Architectures

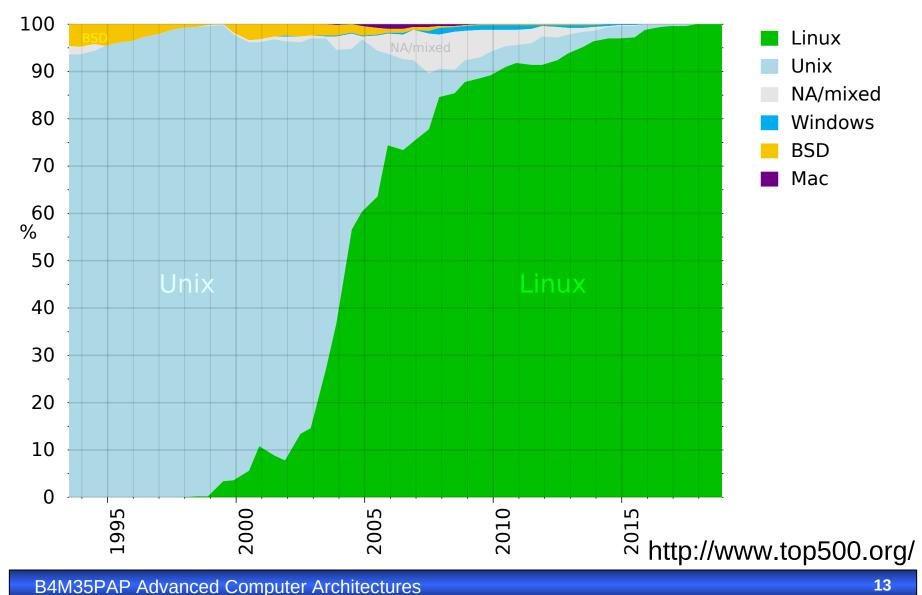
1985 - Cray 2

- Vector supercomputer
- 8 processors
- 1,9 GFLOPS (the fastest till 1990 year)
- UniCOS and Unix System V

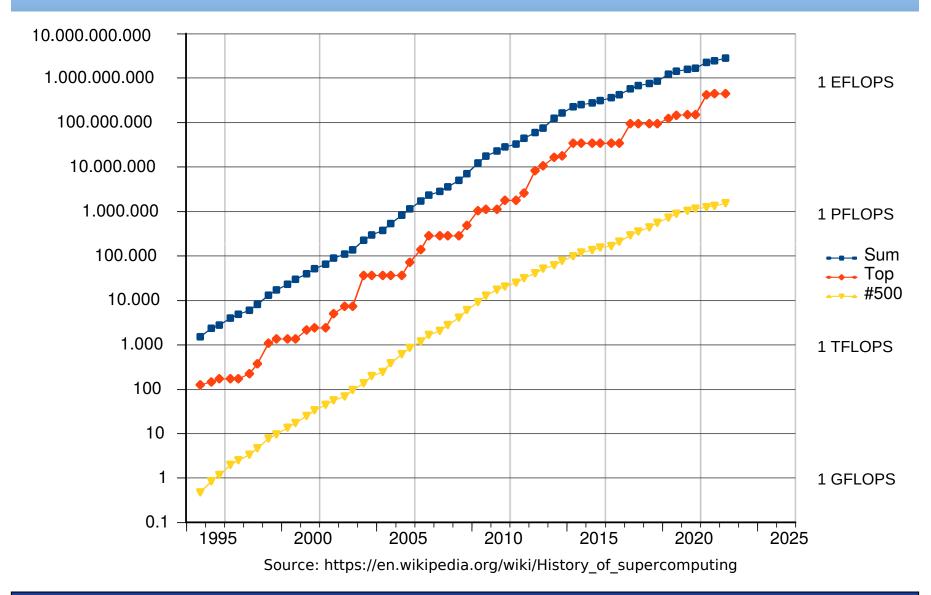

Ginting	and the second second	· · · · ·			m. main	A) contract i	
THE REAL PROPERTY.		in ter	and the second	Annual Manual	at lane	aditerrati	NA MARKAN
COLUMN THE REAL	Ballman Marine	mall et	indiate and	mat Itom	allitane	A HILANDON .	A M Lowest
	AND AND A STORE OF A	miller	THE REAL	militian	the Holden	Sa Hand	In All Low or
		TO HELOT	THE REAL PROPERTY AND	mellabour	SullAnd	MILLIAN	SISH Ave
	Martin Martin	Dilla	Tellillare	on H lour	million	AND HE MAR	A Stations
	In In State In	miller		and William	in la mi	The Care	514 DOC
	I INTERNET		AN ANTE	000 0 9000	STREET OF	In a source	Site on

From 1990 year

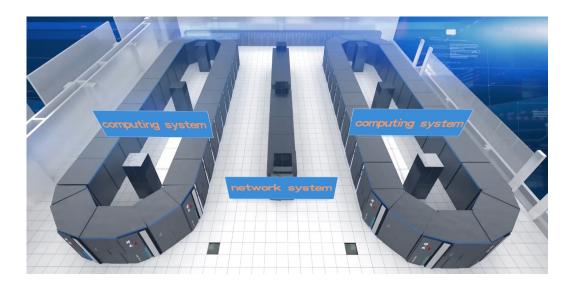
- 1993 Intel Paragon, max 4000× Intel i860 143 GFLOPS
- 1994 Fujitsu's Numerical Wind Tunnel, 166 vector processors, 1.7 GFLOPS/CPU 170 GFLOPS
- 1996 Hitachi CP-PACS/2048 368 GFLOPS
- 1999 Intel ASCI Red/9632 2.3796 TFLOPS Pentium II Xeon, 333 MHz.
- 2000 IBM ASCI White 7.226 TFLOPS IBM POWER
- 2002 NEC Earth Simulator 35.86 TFLOPS 5120× SX-6 (Cray license)
- 2004 2007 IBM Blue Gene/L last version up-to 478 TFLOPS QCDOC, 2× PowerPC 440
- 2008 IBM Roadrunner 1.105 PFLOPS 12,960 IBM PowerXCell 8i CPUs, 6,480 AMD Opteron dual-core processors, Infiniband
- 2009 Cray Jaguar 1.759 PFLOPS 224,256 AMD Opteron processors
- 2010 Tianhe-IA 2.566 PFLOPS 14,336 Xeon X5670 processors and 7,168 Nvidia Tesla
- 2011 Fujitsu K computer 10.51 PFLOPS 88,128 SPARC64 VIIIfx processors, Tofu interconnect (6D torus)
- 2012 IBM Sequoia 16.32 PFLOPS 98,304 compute nodes
- 2012 Cray Titan 17.59 PFLOPS 8,688 AMD Opteron 6274 16-core CPUs 18,688 Nvidia Tesla K20X
- 2013 NUDT Tianhe-2 33.86 PFLOPS 32,000 Intel Xeon E5-2692 12C with 2.200 GHz 48,000 Xeon Phi 31S1P
- 2016 Sunway TaihuLight 93 PFLOPS 40,960 SW26010 (Chinese) total 10,649,600 cores


Development in top500 – used CPU architectures

TOP500 Supercomputers by Processor Family


B4M35PAP Advanced Computer Architectures

Development in top500 – used operating system


B4M35PAP Advanced Computer Architectures

Processing power development GFLOPS

Sunway TaihuLight, the Top500 #1 2016 – 2018

- 93 PFLOPS (LINPACK benchmark), peak 125 PFLOPS
- Interconnection 14 GB/s, Bisection 70 GB/s
- Memory 1.31 PB, Storage 20 PB
- 40,960 SW26010 (Chinese) total 10,649,600 cores
- SW26010 256 processing cores + 4 management
- 64 KB of scratchpad memory for data (and 16 KB for instructions)
- Sunway RaiseOS 2.0.5 (Linux based)
- OpenACC (for open accelerators) programming standard
- Power Consumption 15 MW (LINPACK)

Summit supercomputer – IBM AC922

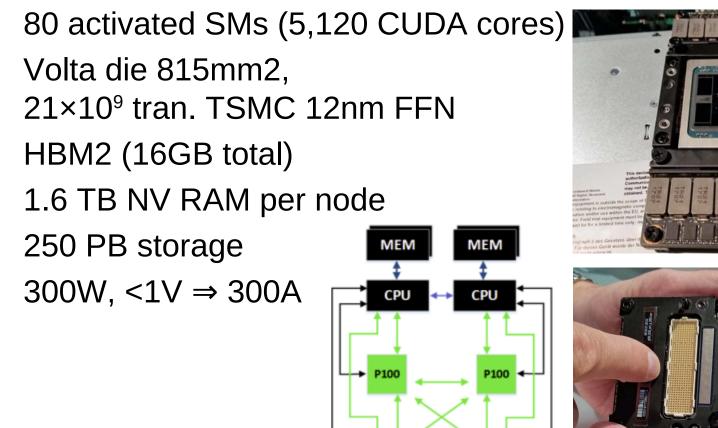
Plan 2018, US Oak Ridge National Laboratory (ORNL), 200 PetaFLOPS, 4600 "nodes", 2× IBM Power9 CPU +

6× Nvidia Volta GV100

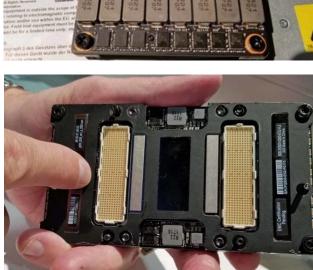
96 lanes of PCIe 4.0, 400Gb/s

NVLink 2.0, 100GB/s CPU-to-GPU, GPU-to-GPU

2TB DDR4-2666 per node


1.6 TB NV RAM per node

250 PB storage


POWER9-SO, Global Foundrie 14nm FinFET, 8×10⁹ tran., 17-layer, 24 cores, 96 threads (SMT4) 120MB L3 eDRAM (2 CPU 10MB), 256GB/s

Summit supercomputer – IBM AC922 – Volta

P100

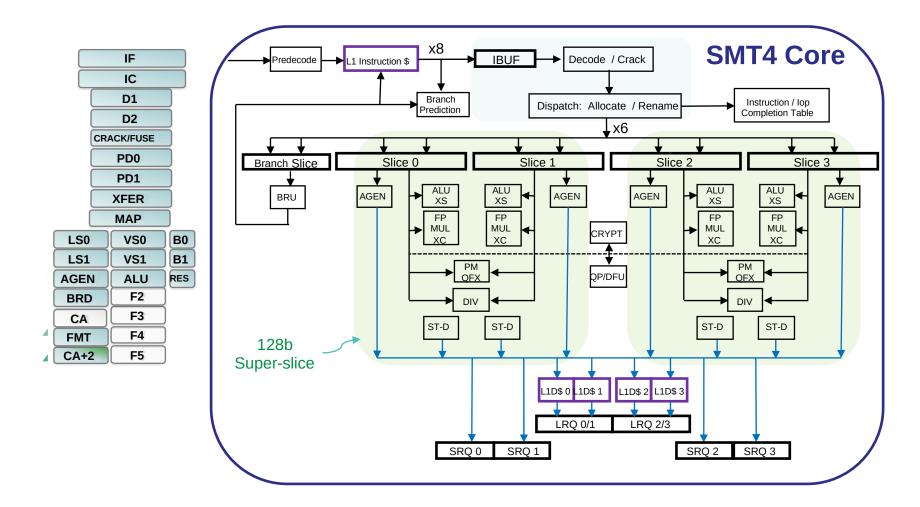
P100

Source: http://www.tomshardware.com/

Power9 architecture

L1I Cache, 32 KiB, 8-way, per SMT4 Core, line 128 (4× 32) CritSF L1D Cache, 32 KiB, 8-way, per SMT4 Core, line 128 (2× 64) CritSF L2 Cache, 512 KiB per pair of SMT4 cores, inclus L1I/D L3 Cache, 120 MiB eDRAM, 12×10 MiB 20-way 7 TB/s Fetch/Branch – 8 fetch, 6 decode 1× branch execution Slices issue VSU & AGEN – 4× scalar-64b / 2× vector-128b 4× load/store AGEN

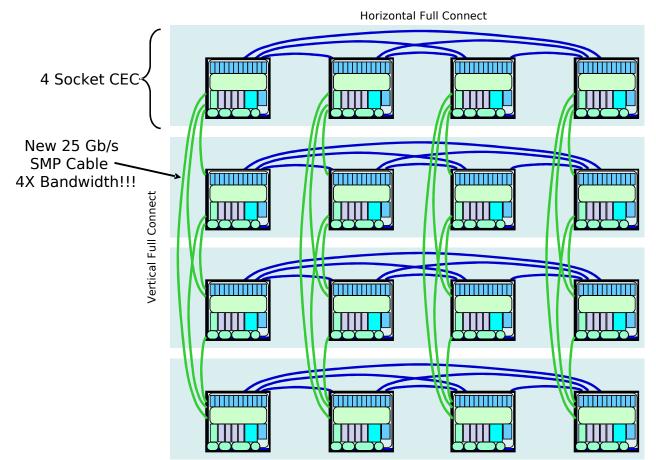
VSU Pipe – 4× ALU, 4× FP + FX-MUL + Complex (64b),


2× Permute (128b), 2× Quad Fixed (128b),

2× Fixed Divide (64b), 1× Quad FP & Decimal FP, 1× Cryptography

LSU Slices – 32 KiB L1D\$, Up to 4 DW Load or Store

Source: https://en.wikichip.org/wiki/ibm/microarchitectures/power9


Power9 architecture – pipeline

Source: POWER8/9 Deep Dive, Jeff Stuecheli, POWER Systems, IBM Systems

Power9 architecture – Interconnect

16 Socket 2-Hop POWER9 Enterprise System Topology

Source: POWER9, Jeff Stuecheli, POWER Systems, IBM Systems

Next supercomputer in preparation – FRONTIER

AMD Exascale Computing Technologies

Peak performance: 1.5 EFLOPS

Node: 4× AMD Radeon Instinct GPUs, 1× AMD EPYC CPU

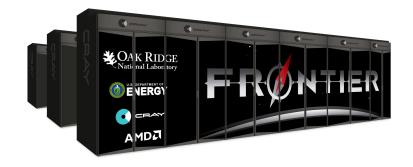
AMD technologies

CPU-GPU Interconnect: AMD Infinity Fabric

Coherent memory across the node

System interconnect: Multiple Slingshot NICs providing 100 GB/s network bandwidth (4× Summit)

Storage: like Summit.


AMD open-source software

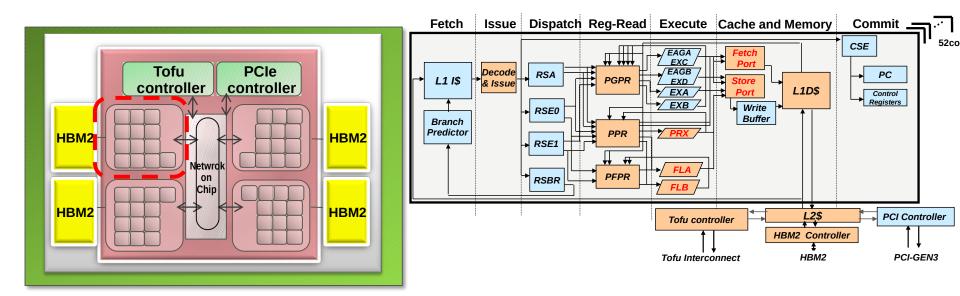
Cray PE, AMD ROCm, GCC

HIP C/C++, OpenMP (offload)

Delivery 2021 to the Oak Ridge Source: https://www.amd.com/en/products/frontier

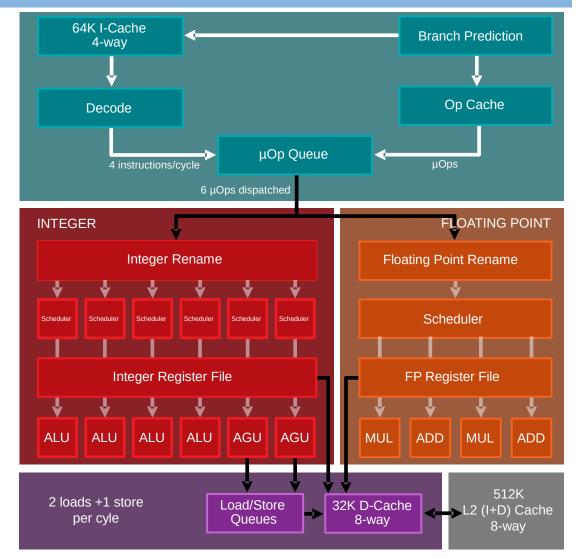
B4M35PAP Advanced Computer Architectures

Big single systems image


Examples of the today biggest systems which memory is under control of single operating system kernel (single system image)

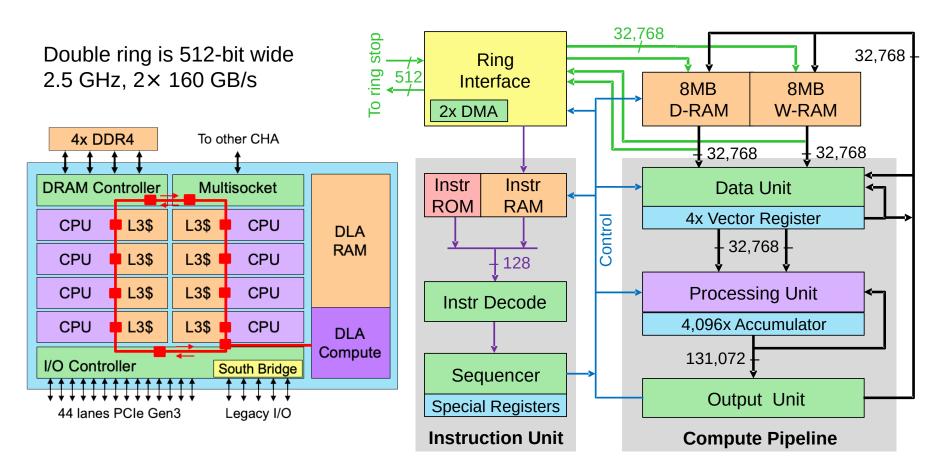
	SGI UV 2000	SGI UV 20
CPU Speed (Cores)	Intel® Xeon® processor E5- 4600 product family 2.4GHz-3.3GHz	Intel® Xeon® processor E5-4600 product family 2.4GHz-3.3GHz
Min/Max Sockets	4/256	2/4
Min/Max Cores (Threads)	32/2048 (4096)	8/48
Max Memory	64TB	1.5TB
Interconnect	NUMAlink® 6	Intel® Quickpath
Enclosure	10U rackmount	2U rackmount
Rack Size	Standard 19" Rack	Standard 19" Rack

Intel and AMD					
	Intel Core i7-8700K	Intel Core i7-8700	Ryzen 7 1700X	Ryzen 7 1700	
Socket	LGA 1151	LGA 1151	PGA 1311	PGA 1311	
Cores/Threads	6 / 12	6 / 12	8 / 16	8 / 16	
Base Frequency	3.7 GHz	3.2 GHz	3.4 GHz	3.0 GHz	
Boost Frequency	4.7 GHz	4.6 GHz	3.8 GHz	3.7 GHz	
Memory Speed	DDR4-2666	DDR4-2666	DDR4-1866 to DDR4- 2667	DDR4-1866 to DDR4-2667	
Memory Controller	Dual-Channel	Dual-Channel	Dual-Channel	Dual-Channel	
Unlocked Multiplier	Yes	No	Yes	Yes	
PCIe Lanes	x16 Gen3	x16 Gen3	x16 Gen3	x16 Gen3	
Integrated Graphics	Intel UHD Graphics 630 (up to 1,200MHz)	Intel UHD Graphics 630 (up to 1,200MHz)	No	No	
Cache (L2+L3)	13.5MB	13.5MB	20MB	20MB	
Architecture	Coffee Lake	Coffee Lake	Zen	Zen	
Process	14nm++	14nm++	14nm GloFo	14nm GloFo	
TDP	95W	65W	95W	65W	
Price (@1k)	\$359	\$303	\$399	\$329	
B4M35PAP Advanced Computer Architectures 2					

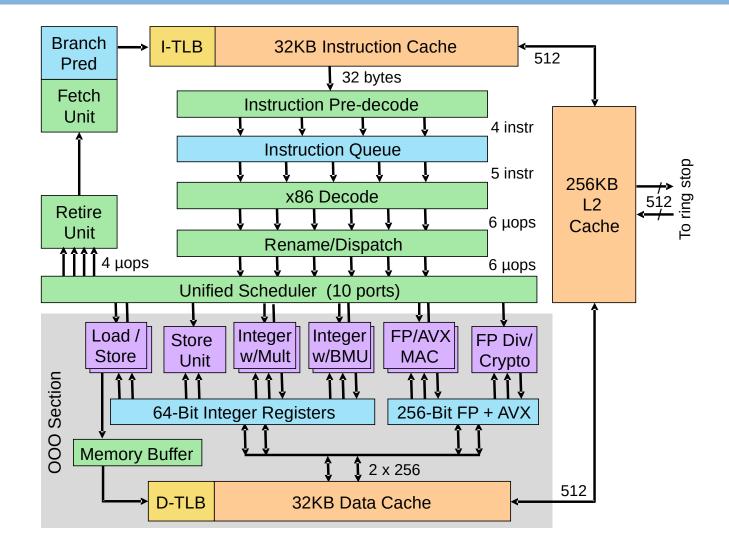

Fujitsu – Supercomputer Fugaku – A64FX, 2020 TOP500 #1

- Combine Armv8.2-A (AArch64 only) with Fujistu supercomputer technology, SPARC64 V till now
- 48 computing cores + 4 assistant cores, SVE 512-bit wide SIMD
- HBM2 32GiB, 7nm FinFET, 8,786M transistors
- Tofu 6D Mesh/Torus, 28Gbps x 2 lanes x 10 ports, PCIe

AMD ZEN/Ryzen


- Ryzen 3 Mobile APUs: January 9th
- Ryzen Desktop APUs: February 12th
- Second Generation Ryzen Desktop Processors: April.
- Ryzen Pro Mobile
 APUs: Q2 2018
- Second Generation Threadripper Processors: 2H 2018
- Second Generation Ryzen Pro Desktop Processors: 2H 2018

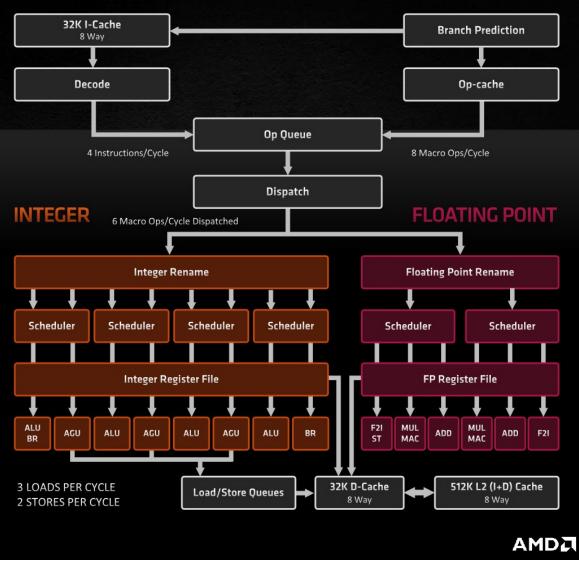
Centaur Technology, CHA, x86 for Al


16-nanometer x86 SoC

NCORE datapath 4,096-byte wide Result accumulator 16 KiB

source: https://www.centtech.com/wp-content/uploads/2020/10/MPR_Centaur_CHA_2020_10_12.pdf

Centaur CNS Microarchitecture

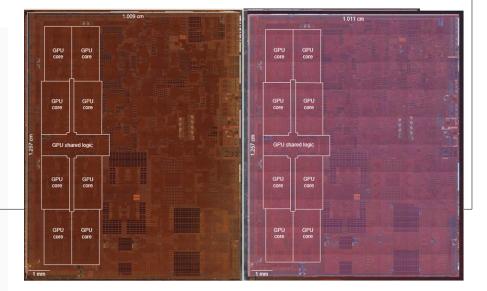

2019/20 x86 Comparison CenTauru CHA Included

Company	Centaur CNS	AMD Zen	AMD Zen 2	Intel Cofee Lake	Intel Sunny Cove
L1I Capacity	32 KiB	64 KiB	32 KiB	32 KiB	32 KiB
L1I Org	8-w, 64 s	4-w, 256 s	8-w, 64 s	8-w, 64 s	8-w, 64 s
Renaming	4/cycle	6/cycle	6/cycle		5/cycle
Max in flight	192	192	224		352

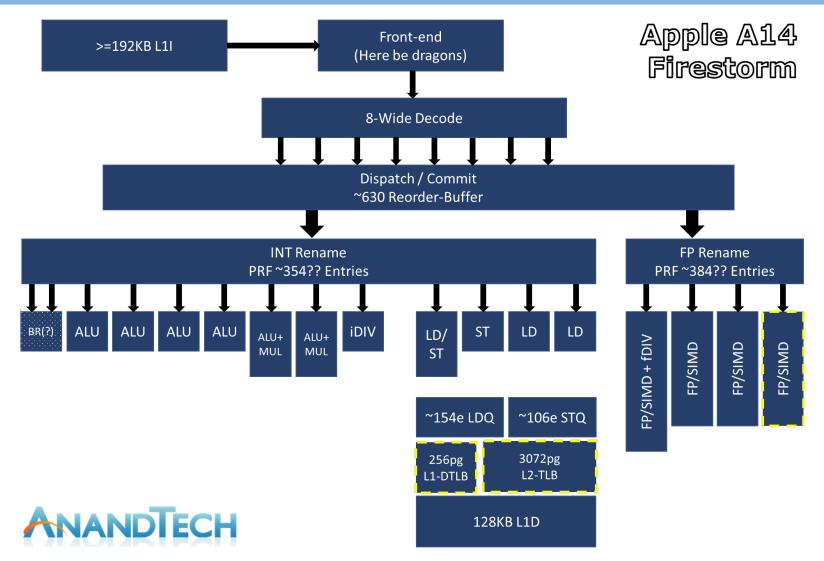
AMD Zen 3 Micoarchitecture, November 2020

- 8-core chiplet, shared 32 MiB L3, latency 46 cycles
- Integer register file 192 entries, 96 entry integer scheduler
- 256 entry reorder-buffer
- 6 µOP dispatch width
- Issue widthh 10, 1 dedicated branch, 2 separated store data pathways
- 4 cycles for fused-multiply-add-ops
- div/mod 8 bit \rightarrow 10 cycles, 16 \rightarrow 12, 32 \rightarrow 14, 64 \rightarrow 20
- BTB 1024 entries
- TLB L1 64 I&D all page sizes, TLB L2 512 I, 2K D no 1G
- +19% IPC compared to Zen 2

Zen 3 Core Diagram

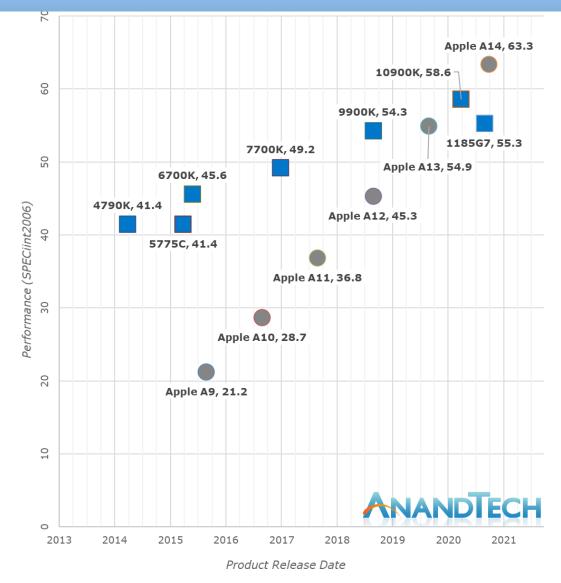


Source: https://www.anandtech.com/print/16214/amd-zen-3-ryzen-deep-dive-review-5950x-5900x-5800x-and-5700x-tested


Apple A12Z Bionic – 64-bit ARM-based

- People who are really serious about software should make their own hardware. *Alan Kay*
- Apple A12Z, 8 cores (ARM big.LITTLE: 4 "big" Vortex + 4 "little" Tempest), Max. 2.49 GHz, ARMv8.3-A
- Cache L1 128 KB instruction, 128 KB datam L2 8 MB
- GPU Apple designed 8-Core

Apple M1, A14, 4 Firestorm, 4 Icestorm



Source: https://www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive

B4M35PAP Advanced Computer Architectures

Intel versus Apple Top Single Thread Performance

Last 5 years Intel +28% Apple +198% 2.98×

Xilinx Versal and FPGA

- Programmable Network on Chip (NoC, AXI-4)
- Aggregate INT8 TOPs (up to 206)
- System Logic Cells (up to 7.5 M)
- Hierarchical Memory (up to 994 Mb)
- DSP Engines (up to 14,352)
- Al Engines (up to 400 for Al variants, 512 bits)
- Processing System (PMC, APU 2×A72, RPU 2×R5F)
- Serial Transceivers (up to 168)
- Max. Serial Bandwidth (up to 17.6 Tb/s, duplex)
- I/O (up to 780)
- Memory Controllers (up to 4)
- HBM (only HMB series, up to 32 GB)
- 2×Gb ETH, SPI, I2C, CAN-FD, UART, USB-2.0

Data storage, future directions

It is possible that current classical file systems, based on the concept of block devices and the transfer of part of data to the pagecache, will be completely inappropriate for future computer systems

New memory technologies that allow access by byte granularity, can be mapped directly into the physical address space of the CPU and are almost as fast as conventional SDRAM chips. Therefore, it is not necessary to copy data to access them from applications. However, use as a classical PFN is problematic because there is too much memory required for service structures in SDRAM and new media is used for service structures, it will also experience physical wear and tear. An interesting view of the issue is described, for example, in the article

XFS: There and back ... and there again? https://lwn.net/Articles/638546/

But we also need to be thinking a little further ahead. Looking at the progression of capacities and access times for "spinning rust" shows 8GB, 7ms drives in the mid-1990s and 8TB, 15ms drives in the mid-2010s. That suggests that the mid-2030s will have 8PB (petabyte, 1000 terabytes) drives with 30ms access times.

The progression in solid-state drives (SSDs) shows slow, unreliable, and "damn expensive" 30GB drives in 2005. Those drives were roughly \$10/GB, but today's rack-mounted (3U) 512TB SSDs are less than \$1/GB and can achieve 7GB/second performance. That suggests to him that by 2025 we will have 3U SSDs with 8EB (exabyte, 1000 petabytes) capacity at \$0.1/GB.

persistent memory NVDIMM battery-backed DIMMs 8 GB 400GB Memristors

New data storage concepts, 3D XPoint

- NVM Intel and Micron Technology 2015/2017
- based on a change of bulk resistance
- Intel Optane Memory 16 / 32 GB
- M.2 2280 PCIe 3.0 x2 NVMe
- Read latency 6 μs, Write Latency 16 μs Read seq/rand 1200 MB/s, Write seq/rand 280 MB/s (4 kB)
- Endurance
 100 GB/day
- The future format same as NV DIMM

Source: https://www.anandtech.com/

Quantum computers

- IBM, 50-qubit quantum chip
- Intel, 49-qubit Tangle Lake, superconducting quantum chip
- 1,000-qubit in 5 to 7 years perspective
- real commercial usability probably when million qubit scale is reached
- superconducting qubit × qubits in silicon.