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Principal Component Analysis (PCA), Introduction

Alternative name: Karhunen—Loeve transform

Used for: data approximation, identifying sources of variance in the data
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Maximum variance formulation (1/3) @

Let the data be {x; € R |i=1,2,..., N}. Let their mean be X = %Zfil X;.

Let us find the unit vector u € R to project to such that the variance J(u) of the
projected data is maximized. The projection x; of an x; to one-dimensional linear
subspace generated by u is given by

X, =ua;, a=uwx, (Wu=1). (1)

. . . 1 N —\2
The variance is an average squared deviation of values from mean, > ." ;(a; — @)=,

T T T

— 1 N . . o .1 N o _
a =+ ) ;1 @i Substituting a; = u"x;, themeanisa =) ;" u x; =u X, and

the variance J(u) is thus

N
1
Z u'x; —u'x)" = Zu ~%)'u=u"Su, (2
z:1
where S is the normalized scatter matrix:
| N
_ _\T
S == (xi —®)(x; — %) 3)
1=1

(== I I =) B I ~ N I\
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Maximum variance formulation (2/3) @

The Lagrangian of this optimization problem is

L(u,\) = J(u) + A (1 — uTuz —u'Su+ A(1—-u'u), (4)
constraint

where X is the Lagrange multiplier. Taking the derivative w.r.t. the vector u and
setting it to zero gives
OL(u, \)

50 = Su — A\u; =0, (5)

and thus
Su = \u. (6)

This is the characteristic equation for the covariance matrix S. Any eigenvalue A and
its corresponding eigenvector u solves this equation, with variance J(u) equal to:

J(u) =u'Su=u'du=\. (7)

The maximum is attained if A\ is the largest eigenvalue of the matrix S and u is its
corresponding eigenvector.
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Example 1 - Iris dataset

@

Iris dataset: feature vectors are 4-dimensional, here dimensions 2 and 3 used (petal
length and sepal width). Data shown as crosses x.

5-0 | | | | | | |

4.5+ " (x—%)'S1(x—%)= -
— X (X—i)TUdiag[Ai,Al]UT(x—i):1
E 40} x ! i
O X X
el §XX X X X
- X X %
T 397 K . .
; XX§ XX X XX § X§
r_U 3.0 B X XXX§ X X §XXXX§X§X & XX X X —
o X XX XXX X X
()} X X X
U)‘ 2.5 B X % X§ AX X X % X % —
1 X X X
8 X X X X

X X X
2.0 X g _
mean x = (3.76, 3.05)
15 = | L | | | I | _
1 2 3 4 5 5) 7

x1, petal length [cm]
[ 309 —032] A -
5= [ ~0.32  0.19 ] = [us, o) [ Ao ] U1, Uz

—-0.99 —0.11
0.11 —-0.99

Variance is maximized when data are projected to direction u;.

Eigenvectors: [up,us| = [ ] eigenvalues: A\; = 3.13, Ay = 0.15
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Maximum variance formulation (3/3) @

We have seen that the variance of a 1-D projection is maximized when data are
projected to the direction of the eigenvector of S corresponding to the largest
eigenvalue.

It can be shown that the M-dimensional subspace maximizing the variance of the data
is the one formed by M eigenvectors of S corresponding to M largest eigenvalues.

It can also be shown that maximizing variance is equivalent to minimizing projection
approximation error.
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Multivariate Normal Model and PCA @ 0

Recall that the ML estimate of the Multivariate Normal Distribution is defined by 1|2
sample mean X € R” and covariance matrix S € RPXP. The pdf is then 3|4
1 1
p(x | X,S) = exp {——(x ~%)'S (x — i)} . (8) 5| 6
vis i
Denote the eigenvectors and eigenvalues of S by u; and \;, respectively 9110
(1 =1,2,...,D) and let A\; > Xy > ... > Ap. Let U stacks the eigenvectors: 1112
U= [u17u27"'7uD] (9) 13(14
There holds (characteristic equation) 15/16
) ) 17|18
A1
Ao 19(20
SU=UA=U _ : (10)
- 21(22
- AD —
23|24
and
S — UAUT. (11) [25|%0
27
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Multivariate Normal Model and PCA @

The pdf can then be equivalently expressed as

p(x | %,8) = p(y) = ﬁexp {-gym—ly} C y=UTx-%)  (12)

The exponent in Eq. (12) is

—%Zy— (13)

Imagine we approximate the data by PCA using first M eigenvectors (because we can
store only M or so numbers per data point, or the allowed number of computations is
limited.) How should we approximate the exponent? One option would be to truncate
the exponent to M factors only. However, then e. g. a point y = kups. 1, with
arbitrarily high k, would produce a zero exponent.

~
I
—
<

In that case, it is better to store M + 1 numbers per point: its coordinates in the

basis of the first M eigenvectors (that is, y1, y2, ..., yar) and the approximation error

A=y +...+vyh=|yll” —yi —y5 — ... — y3;. The exponent is approximated as
leny? 1A (14)
2 & i 27

with A = Aps41 being a common choice.
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High-dimensional data (1/2) @ D

Dimensionality of data can be high, and even higher than number of samples.

Consider dimensionality D = 1M (one million) and number of samples N = 100. All
analysis still applies, but it would be wasteful to compute eigenvectors for the 1IMx1M
matrix, as its rank will anyway be at most N (thus 100). Let us define X to be a
matrix formed by stacking all the data vectors (after having subtracted the mean from

them): X =[x — X, X2 — X, ..., XNy — X|.

N | | w =
ol

Thus,
] — T
S =— i —X)(x; —X) = =XX". 15
N ;(X Weamx =y 1) 1314
The characteristic equation is then 15(16
1 17|18
L% Ty —
NXX u=A\u. (16) 10)20
Left-multiplying both sides by X! gives 21|22
23|24
) W W
NXTX (XTa) =X (X"u) . (17) |25/26
27
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High-dimensional data (2/2) @

Thus, XX, which is only 100 x 100, has exactly the same set of eigenvalues:
L xTx A (18)
— W = \wW.
N
Left-multiplying now by X, we get
1 T

Conclusion: If D > N, form the matrix T = %XTX and compute its eigenvalues
A's and eigenvectors w. Compute the eigenvectors of S = %XXT as

B Xw
[ Xwl|

A%

(20)

O I N | | W] =
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Example 2 - Yale database (1/5)

images of 38 subjects, each under 64 different illumination conditions:

Subject 1, 64 illumination conditions
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Example 2 - Yale database (2/5)

images of 38 subjects, each under 64 different illumination conditions:

38 subjects

(== I I =) B I ~ N I\
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Example 2 - Yale database (3/5) @ m p

images of 38 subjects, each under 64 different illumination conditions. Thus, there is
38 x 64 = 2432 images in total. Each of them is a feature vector with
192 x 168 = 32256 dimensions (pixels). PCA gives the following eigenvalues:

17|18
19(20
21|22

23|24

0 20 40 60 80 100 25026
eigenvalue index
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Example 2 - Yale database (4/5)

| e

mean

1st ev 2nd ev 3rd ev

_/‘ \’
”"'

first 72 eigenvectors

(= =T =) B I~ N\
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Example 2 - Yale database (5/5) @ 0

Reconstruction of original vector using eigenvectors 1|2
3|4

- ar

718

9110

original mean and 3 evs mean and 10 evs 112

19(20

mean and 50 evs mean and 100 evs mean and 300 evs

21|22

23|24

25|26

27
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Linear Discriminant Analysis (LDA) @

Setting: Classification, training set: N7 points (class 1) and N> points (class 2)
Goal: Project data to a 1D subspace such that a low-error classifier can be
constructed.

Approach: Find a direction to project the data to such that the two classes are well
separated in this projection.

Example:

(== I I =) B I ~ N I\
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4

1

5

7

9110
11|12

13|14

15(16

Linear Discriminant Analysis (LDA)

uollesedss poos

19(20
21|22

23|24

25|26
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-
LDA: What makes a good separation? @

Training set: xj,..x} (class 1), x{,...x%;, (class 2).
Separation is higher when:
the means of projected data are farther apart, and/or
the scatters of the projected data are smaller.
These two observations combined suggest the following criterion to optimize:
2
b = 1) o (21)
S1 + 82
0.6 {41, 2: mean of projected data
0.5
04 [y = Nkzvx =v'x, (k=1,2) (22
£ 0.3
0.2 S1, So: scatter of projected data
0.1 N,
Tk T— 2
0o - \/J M2 S = Z(V X; — V' Xg) (k=1,2) (23)
-6 -4 -2 O 2 4 6 8 i=1

i
i

(== I I =) B I ~ N I\
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LDA: Criterion @ D

1|2
(1 — p2)’ o
_ o T= _ Tk 2 (1. _

51 + 59 — max, pr =V Xg, Sk —;(V x; — pe)” (k=1,2) (24) (3|4
Let us rewrite the criterion in terms of unprojected entities. The nominator: 56
2 T 2 T T rs

(1 —p2) =[v (X1 —X)]"=v (X1 —X2)(X1 —X2) Vv (25)
e 9110

b
11|12
The scatters:
13|14
N1
S1 = Z(VTXZ —v'ix;)? Zv — %) (x; —X1) v (26) 15/16
=1 17|18
Ny
—v?! Z(x —x)(x %) | v (27) @
QT - ) 21(22
S1

T . 23|24

So =V SoVv S1, S, : scatter matrices for classes 1, 2 (28)
25(26

27
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LDA: Criterion @

N,
(1 — p2)? T Tk 2
— max, =V X, Sp= vV X, — k=12 29
S1 + So Hk ky Ok ;( pie)” ) (29)
Therefore, the criterion can be rewritten as
(1 — po)? B vIiS,v B vIiS,v (30)
S1 + So B VT<Sl + SQ)V B VTSwV7
where everything except the to-be-found vector v is computed from the training data:
S, : between-class scatter matrix, Sy = (X; — X2) (X1 — Xa2) (31)
S., : within-class scatter matrix, S,, = S; + So (32)
N, .
Sp=> (% —X)(x —%x) , (k=12 (33)
i=1

| et us now solve the maximization task:

vIiS,v

(34)

V1 = argmax
v VIS, v

Note that there is no need to contrain v to e.g. unit length, as the scaling in
denominator and nominator cancels out.

(== I I =) B I ~ N I\
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LDA: Criterion maximization @ D

vIS,v 12

V1 = argmax VIS, v (35) (3|4

Note that Sy is symmetric, positive semi-definite (rank 1) matrix. 506
Matrix S,, is symmetric, positive semi-definite.

Assume that S,, has full rank, thus S;Ul exists. Let S%U be the symmetric, 78

positive-definite matrix such that S,, = S%USQ%U. Let its inverse be denoted S;% 9110

Define a substitution

1 Symmetric, positive definite S: | [11|12
z =Sy, (36) S = Udiag[\1, ..., Ap| U? 13114

U orthogonal, unit columns

_ N Nl UT
Using the variable z, the criterion becomes 22 UUdljag[ 1 1y ]] IIJJT 15|16
iag -
o 1 VA \/ . |78
vIS,v B 21S.,2S:S.,27 (37) S Udlag[)\—l, cees ,\D] U

vIS, v 71z 1920
Let us fix the length of z to 1 (z'z = 1). The denomimator is then a constant, and @
the criterion is maximized when the nominator is ma%dmizecii. The latter achieves 23(24

maximum for the largest eigenvalue \; of matrix S.,2S;,S+? and the corresponding
eigenvector z: 25(26

S B |
Sw?SpSw’z1 = \1Z1 (38) |97
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LDA: Criterion maximization @

(copied from previous slide:)

1

_1 1
Sw2Swa2Z1 = )\1Z1 (39)

_1
Taking this z1, and substituting back, gives the solution vi = S,,?z1. Left-multiplying
1

the previous equation by S,,2, we see that

1

_1 _1
S 1S,(Sw?z1) = M(Sw?2z1), = S,'Syvi=A\vy. (40)

Thus vy can be computed directly as the elgenvector of S 1S, corresponding to the
highest eigenvalue, \; (note that S, 1Sb and Sy, 2Swa2 share the eigenvalues).
Moreover, Sy has rank 1. There holds S, = (X1 — X2)(X1 — X2) , and

)TVLv (41)

a scalar

S:Ulevl = Sw_l(il — §2)£i1 — ig

thus the dominant eigenvector (the only one with non-zero eigenvalue) must be

S, (X1 —Xa)

|Sw (%1 —%2)l|

V1 = (42)

(== I I =) B I ~ N I\
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LDA: Examples (1)

T2
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LDA: Examples (2)
—e " ' ' ' | ' 1 2
41 |
L--- /I 3 4
2t ]
56
] 0 | | N 0>
2! )
9110
—4| |
—6} ‘ - ‘ ‘ ‘ 11 12
I ;1 R 4 -2 0 gi 4 13(14
\ 15(16
| | 17|18
2* 19(20
0,
| 0 21|22
2|
| e
—4/|
_47 25126
—6! \\
_ ‘ i
2 0 2 4 6 8 -4 =2 2 27

T
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LDA: Invariance to linear transformations

Consider the case that the data points x's are transformed by a non-singular linear
transformation A. The entities appearing in formulation and solution of LDA are then

transformed as follows:

points | scatter matrix | inv. scatter m.
original X S S—!
transformed Ax ASA" A-TS-TA-T

Thus, vi = S;}(X; — X2) transforms to
vi=ATTS TATIA(X - %) = ATIS (X — %)

The original projected coordinates are

vix = (X1 — %) S, 'x,

and do not change under A, as

/Ty

vix' = (X1 —X2) S'ATTAx = (X1 — %) 'S 'x = vix.

(43)

(44)

(45)

O I N | | W] =
(== I I =) B I ~ N I\
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Multiple Discriminant Analysis (MDA) @

Generalization of LDA to multiple classes K
Define:
K
Sy = Z Si  (sum of class scatters) (46)
k=1
K
Sy =) Nu(Xp —X)(Xp — %) (47)
k=1
L
Xy = i ;xi‘“ (mean of class k data) (48)
| N
X = N in (mean of all data) (49)
i=1

Optimization objective: Several options possible, e.g. find a projector V such that

tr{(VS,VH VS, VH} — max (50)

(== I I =) B I ~ N I\
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Multiple Discriminant Analysis (MDA) @

Solution: L most significant eigenvectors for the generalized eigenvalue problem:

S, v = \S,,V (51)

Note: S; can have rank at most K — 1, thus at most K — 1 projection directions will
be produced.

Employing MDA:

Useful e.g. when the number of classes K and/or number of data is very high and
thus the only information about data which can be used is stored in means and
scatters of classes. These are computed in incremental fashion.
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