1/50

Neural Networks

lecturer: Jifi Matas, matas@cmp.felk.cvut.cz

authors: O. Drbohlav , J. Matas, D. Mishkin

Czech Technical University, Faculty of Electrical Engineering
Department of Cybernetics, Center for Machine Perception
121 35 Praha 2, Karlovo ndm. 13, Czech Republic

http://cmp.felk.cvut.cz

Last update: Nov 2020

http://cmp.felk.cvut.cz

& 0
Neural Networks - Motivation (1) C

2/50
Recall the Perceptron: given the perceptron parameters w € R"™ and b € R, the
classification g to two classes {—1,1} for a vector x € R" is performed as
g:Sign(W'X—i_b)v (1)

which is an affine (often called linear) function I(x) = w - x 4 b, followed by a non-linear
function o : R — R, o(z) = sign(z). The perceptron is also often depicted as follows:

X1

o(w-x+0b)

Nad

L2

to make the linear combination of elements of the input vector explicit. Perceptron is a
linear classifier; these are well understood, have low VC dimension, etc. and thus it is a
natural next step to combine them to a more complex classifiers: By letting more of them
sharing the input, as well as using their outputs a;'s as inputs to other perceptrons:

O'(W1 - X + bl) aq
T o(wWs - X + by) ao
o(w-a+b) 4
T2 O'(W3 X + bg) as
o(Wy X+ by)—1as

http://cmp.felk.cvut.cz

@ 0
Neural Networks - Motivation (2) C
3/50
Universal Approximation Theorem. Another strong motivation for forming such
combinations of simple classifiers is the theorem which states that if c : R — R is a
nonconstant, bounded and continuous function and f is a continuous function on unit
hypercube [0, 1] then for any € > 0 there exists N € N, v;,b; € R and w; € R"” such that
N
F(x) =) vio(w;-x+b;), and (2)
i=1
[F(x) - f(x)] <e, ¥Vxel0,1]™ (3)

By comparison, we see that the approximation is exactly captured by the following network
with single hidden layer and linear output:

O’(WlX‘l‘bl) aq

O'(WQ'X—|—b2) a9

o(Wn - X+ bn)—an § = F(x)

http://cmp.felk.cvut.cz

[[
Neural Networks - Motivation (3) @
4/50

‘Biological’ motivation - a real neuron is known to combine inputs to an output which is
then passed to other neurons.

dendrites {recere signals) The neuron

terrminal buttons
(send signals)

cell nucleus

':'- :’ . cytoplasm
& axon hillock

'__"'"‘?F"H.,.r |

(somal) myelin sheath nodes of Ramaer ==

http://cmp.felk.cvut.cz

Historical Note

¢ Perceptron (Rosenblatt, 1956) with its simple learning algorithm generated a lot of

excitement

@

¢ Minsky and Papert (1969) showed that even a simple XOR cannot be learnt by a

perceptron

5/50

¢ But chaining perceptrons to a network (Multi-Layer Perceptron, MLP) can learn XOR

1.5¢

1.0

0.5¢

0.0t

-0.5}

-1.0}

-1.5

20 -15 -10 -05 00 05 1.0

XOR arrangement

15

2.0

http://cmp.felk.cvut.cz

@ 0
Layers, Concise Equivalent Representation C
6/50
The network
U(Wl X + bl) ai
I O'(WQ X + bz) a9
o(w-a+b) U
o O'(Wg X —+ bg) as
O'(W4 X + b4) a4
input layer hidden layer output layer
can be rewritten in a more concise form as follows:
WeR**2 peRr? weR? beR
2 4 A
(in) 5 | 6(Wx +b) | 255 | o(w-a+b) | 255 (out) (4)
where we introduced a convention that for 6: R — R and z € R,
o(z) = [0(z1),0(22), ...,0(2x)] ', i.e. the function is applied per component of the vector z.
A network with M hidden layers can be written as (here shown with affine output layer)
hidden layers Iy output layer
.\ a;=x€R" ajy1 yeRrE
(m) ? O'(Wq;a@‘ -+ b@) — — WM+1aM+1 -+ bM+1 —_— (out) (5)

1=1

http://cmp.felk.cvut.cz

hidden layers
(in) 22X || 6(Wa; + by) | 245

1=1

output layer

Wiriiane1+ baraa

© i

7/50

IR out) (6)

Each hidden layer of an NN is composed of an affine function, followed by a non-linearity.

Non-linear functions

o(z) = sign(z) : used for the original perceptron. Unusable for an NN because this
non-linear function is discontinuous and not differentiable at 0, and everywhere else has
zero gradient. So, once we would like to optimize the parameters of the combination of
perceptrons, gradient descent and other methods based on first and second order
approximations could not proceed. This is why the original sign function has been
replaced by functions with ‘nicer’ properties.

Lo signum

0.5¢

—0.5}

-1.0

-1.0 05

0.0

0.5 1.0

http://cmp.felk.cvut.cz

~ 0
Layer Anatomy, Non-Linear Functions @
8/50

Non-linear functions

® o(z)=1/(1+ e ?) : logistic sigmoid, o : R — [0, 1]
¢ o(z) =tanh(z) = (e —e™?)/(e* + e~ %) : tanh sigmoid, 0 : R — [—1, 1]
¢ o(z) = max(0, z) : ReLU (rectified linear unit)
¢ o0(z) = max(0, z) + min(0, sz) (0 < s < 1): Leaky RelLU
¢ Many other
1.0} 1.0l | — sigmoid
0.5 | 0.8}
E 0.6f
s 0.0 S
l 0.4}
-0.5 i 0.2t
10| i 0.0f —m e
—6 —4) 0 2 4 s 925 —4) 0 2 4 6
5[ReLU
4} :
| a
3 ol i 3
y a
ol : |
-6 - =2 0 2 4 6 6

http://cmp.felk.cvut.cz

& 0
Output Layer and Loss Functions. K-class Classification (1) C
9/50

So far, we have made a general assumption that the output of NN is a K-element vector
y € R®. Now we will discuss what form the output should take and how we will measure
how good the output is.

K-class Classification. We may formally number the classes as 1,2, ..., K. But if classes
are not ordinal, these numbers are really just labels; it doesn't mean that objects from
classes 2 and 3 are in some sense closer than objects from classes 1 and K, say. Therefore,
it would make no sense to have a one-dimensional output § trying to predict the class label.
Instead, the output layer will consist of an affine function producing a K-dimensional vector,
followed by the softmax which will convert it to class probabilities:

output layer

K - K
28, | softmax &(out) (7)

AN +1

Wiriianpe1+ by

exp 2k
7 - (8)

2521 €XP Zj

For representing the class y of the training data point (x, %), one-hot representation is used

which simply makes a K-dimensional vector which is everywhere zero except for the y-th
component which is 1:

with

softmax(z)]x =

onehot(y) = [61y, 02y, -..0k,] = [0,0,...,1,...,0] € R¥ (9)
/]\
y-th place

http://cmp.felk.cvut.cz

@ 0
Output Layer and Loss Functions. K-class Classification (2) C
10/50

For a training data point (x,y), how to measure how far the prediction y € [0, 1]* for x is
from the target vector y = onehot(y) € {0,1}#7?

¢ Squared difference:
J@.y) =y -yl (10)
This loss = 0 when the prediction matches the target and > 0 otherwise.

¢ Negative log-likelihood. To avoid confusion, let us denote the index of the target class [
for a training data point (x,[); then

K
J(§,y)=-y logy =—> y;log = —log . (11)
1=1

Example: K-class logistic regression. The class conditionals
y(x) = [p(1]x), p(2|x), ..., p(K|x)] € RE can be written as (W € R"*& b € RE):

yeRE

.\ XER" zcRE
(in) —— | Wx + b | —— | softmax | —— (out) (12)

http://cmp.felk.cvut.cz

@ 0
Output Layer and Loss Functions. 2-class Classification C
11/50

For two classes, the output ¢ of the NN can be 1-dimensional, modeling the class posterior
p(1|x) € |0,1]. The posterior p(2|x) is computed simply as 1 — 4.

Example: 2-class logistic regression. The posteriors p(1|x), p(2|x) are modeled as
(x,w € R", b € R):

1

PUX) = 1y PCIX) = 1= p(1]x) (13)

This can be written as a single-neuron NN with output § = p(1|x):

(in) 5| o(w-x+b) | L (out) (14)

where o(z) = 1/(1 + e~ ?) is the logistic sigmoid non-linearity.
Recall that negative log-likelihood loss has been used for the 2-class logistic regression:
J(G,y) = —[ylog§ + (1 — y) log(1 — §)] (15)

where class labels i have conveniently been changed as (1,2) — (1,0). The procedure for
finding the optimal parameters 8 = {w, b} was the gradient descent.

http://cmp.felk.cvut.cz

Sl o
Output Layer and Loss Functions. Regression @
12/50

The NN can of course also be used for regression, that is, finding a function which predicts a
target y € R which is not constrained to represent probability distribution.

Squared difference is an obvious choice for such a problem.

http://cmp.felk.cvut.cz

Let the training data be 7 = {(x1,¥1), (X2,¥2), ---, (Xn,Yn~)}, where without loss of
generality we assume that class labels y;'s have been converted to their one-hot
representations y;'s if needed. Let @ denote all parameters of the NN. We want to minimize

J(T:0)= Y JFx),y). (16)

(x,y)ET

Gradient-based methods are used most of the time for minimizing the loss function J(7;0)

0J(y
w.r.t. 8. We need to evaluate the gradient of loss w.r.t. the NN parameters, (ya(;()’Y),
in order to use it for updates of the gradient-descent type:
0J(y(x),y)
0 +— 0; — 17
t+1 t — M E 20 (17)

(x,y)eT'CT
where 1 is the learning rate and the summation is not necessarily over the entire dataset.

http://cmp.felk.cvut.cz

Computing gradient (1)

© i

14/50

When computing the gradient, we will make use of the chain rule. Let f: R — R and

g: R™ — R". For x € R™, let y = g(x). Let us consider the composition of these
= f(y) (fog: R™ — R). There holds

functions, f(g(x))

é%tk

This can be written in a matrix form,

af (g(

X)) _

0x

Z

of dy
(9y %

af Oy;
8yzaxk

= f'y’,

where f" = 0f/0y and y’ = Jy/0x are Jacobian matrices:

ayl 83/2
- dy1 Oy1
Ox1 Ox9y
Oya Oy
y’ — 35:16‘1 O0xo
Oyn OYn
B 8:131 8:132

oy1
Oxm
0yo
OTm

Oyn
OxTm,

(18)

(19)

(20)

(21)

http://cmp.felk.cvut.cz

Example: Gradient by Back Propagation (1)

Let us have the following network:

Wsas + bo

Z3€Rm3

a; €R" z9€R"2 ag CR2
B W1a1 + b1 o
aj=x
~ K
ag€R™3 yeER A
o W3as + bs J(¥,y)

© s

15/50

(22)

where the non-linearities have been explicitly put to the chain. The set of NN parameters is

0 = {W;, W5, W3, by, by, bs}. For the loss, let us consider J(y,y) = ||y — y||*.

1. Compute v3 =

oJ _ . Oy
2: Bbs = V33bg la
3 oJ _
" O(W3)ki

oJ

oy

at k-th element

. This is a row vector, v3 € RE V3 = 2($f — y)T

So, arranging partial derivatives of J w.r.t. elements of W3 € RX*™3 to a matrix of
the same dimensions then we can write

oJ

8(W3)1m1
0J

8(W3>2m1

oJ

oJ oJ
O(W3)11 9(W3)12
aJ oJ oJ
_ O(W3)21 9(W3)22
(9W3 : e
oJ oJ
| O(W3)k1 9(W3)ka

O(W3) Kmy

_ V3T33T

(23)

http://cmp.felk.cvut.cz

Example: Gradient by Back Propagation (2)

Let us have the following network:

4. Compute vy

Z3€Rm3

n m m
ﬂ) Wlal n b1 zo€R™2 - ascR"2 W2a2 n b2
a;=x
az€R™3 yeRE .
o W3as + bs J(¥,y)
— Vngi), asgjg ‘Z3 — V3W3diag[o’(23)] — (V3W3) © OJ(ZS);

Here o'(x) = [0/(x1),0'(x3), ..., (xy)] with x € R™ and ¢’ the derivative of o,
diag(x) for x € R™ forms an n-by-n diagonal matrix with elements of x on the
diagonal, and ® is the Hadamard (element-wise) product.

oJ

8J
6. 7w,

Ta2T

7. Compute vi = voWadiag|o'(z2)] = (vaW2) ® d'(z2)

0J
3. b,

dJ
9. 7w,

To. T

= V1 aj

16/50

(24)

http://cmp.felk.cvut.cz

i
Gradient-based Optimization, Back Propagation
17/50

¢ As it has been just shown, gradient for all parameters can be efficiently computed
(without repeating already performed computations) by computation flow from the last
layer to the first — hence the name Back Propagation (aka backprop)

¢ Recall the update rule:

0J(y(x),y)
00

0111 0 — Z
(x,y)eT'CT

(25)

e How to choose the learning rate u? The rate is often changed adaptively during
learning, based on monitoring of the learning process

e The summation is often done over a subset 7' of the training data. This provides
an estimate of the actual gradient and the technique is called Stochastic Gradient
Descent (SGD). Many alternatives (important one: SGD with momentum)

e How to initialize the parameters? Rule of thumb (core idea, many variants):
Initialize them such that variance of outputs is equal to 1 for all layers.

http://cmp.felk.cvut.cz

18/50

Deep Learning

http://cmp.felk.cvut.cz

Extremely successful branch of Machine Learning methods
Lot of progress in recent (>10) years
Includes:

e Convolutional Neural Nets (CNNs): suitable for inputs which are
translation-invariant and 'warpable’. Typical examples are visual signals (images)

e Recurrent neural networks (RNNs): allow previous outputs to be used as inputs;
recognition of time-series signals, speech recognition

e Autoencoders: The goal is to output the inputs; The hidden layers have a
bottleneck (fewer neurons than input layer) and thus the network is forced to learn
'‘compressed’ representation of the input

http://cmp.felk.cvut.cz

Consider an image (an input layer) which is 64 x 64 pixels large. Let the next layer be a
layer of the same size. If this is modeled as a fully connected network, the number of
connections is (64°)% ~ 16 M.

In contrast to that,

1. Make the connections only in a 5 X 5 neighbourhood of each neuron in the second
layer; This would lower the number of parameters to 642 - 25 ~ 102k

2. Make the parameters of all 5 x 5 connections shared; This lowers the number of
parameters to only 25.

Doing this corresponds to learning a convolutional filter of size 5 x 5. In practice, N (e.g.
N = 32) filters are learnt in the first layer, forming N-channel output. The next layer then
operates on all N channels, thus when e.g. N = 32 and the receptive field is 3 x 3, each of
the next convolutional filters has 32 - 3% parameters.

Convolutional structure reduces the number of parameters by orders of magnitude.

http://cmp.felk.cvut.cz

© Qs

21/50

WHAT IS CONVOLUTION

(4x0) .
Center element of the kernel is placed over the (0x0) ClﬁSSlcal NN
il 3 woighisd sum of Biadl ancireaits pess. ©%0) :
© (0x1 f
0x1) Or 1mage
(0x1) . .
L &na 1s convolution
with 1image

s1ze kernel

Source pixel

Convolution kernel
(emboss)

-
-”
-

New pixel value (destination pixel)

https://developer.apple.com/library/ios/documentation/Performance/Conceptual/vImage/ConvolutionOperations/ConvolutionOperations.html

http://cmp.felk.cvut.cz

© i
DEEP LEARNING IS HIERARCHICAL
REPRESENTATION LEARNING 22/80

Hierarchy of feature representations

m=namm
| tﬁ‘,&".ﬂ

Face detectors

ﬁiagza Face parts

BN (combination
‘Q-%..rﬁi] of edges)

ASNNTE
NER=L S
MINANN|
=HEN=E

Lee et al, 2009. Sparse DBNs.

Quoc.V.Le et.al.,2011. Building high-level features using large scale
unsupervised learning

http://cmp.felk.cvut.cz

50

TYPICAL CNN STRUCTURE (LENET-5) B/

C3: f. maps 16@ 1010
C1: feature maps 54 f. maps 15@5;{5

INPUT @008
S2: 1. maps r C5: layer 76 layer OuTPUT

5@14}(14
r

FU”C'DI"I[JIECUCII‘I ‘ Gausslancnnr'recmns
Convolutions Subsampling C-nr‘n.rﬂluu-nns Subﬁamplmg Full connection

e (Conv-ReLU-Pool)xN Softmax. Simple
* (Conv-ReLU)xN-Pool- (Conv-Relu)x2N-Pool....Softmax. Popular.

 Some Inception arch. Have fun :)

http://eblearn.sourceforge.net/lib/exe/lenetb.png

http://cmp.felk.cvut.cz

POOLING 21180

224x224x64

112x112x64

pool

— >

> e 112
224 downsampling

224

http://cs231n.github.10/convolutional -networks/

http://cmp.felk.cvut.cz

Single depth slice

MAX POOLING

max pool with 2x2 filters
and stride 2

>

1112 4
oNRoNl 7 | 8
3 | 2 i
112]|3 | 4

http://cs231n.github.10/convolutional -networks/

25/50

http://cmp.felk.cvut.cz

CNNS

¢ weights init
¢ dropout
¢ batch normalization

¢ data augmentation

¢ padding

: Important details/concepts

26/50

http://cmp.felk.cvut.cz

WEIGHTS INITIALIZATION

107 Rell
oo o—e 04 e+ 12
= 10 ¢
E & I:I_E g o 1.4
[=
= 10" — 0.8 —e 1.6
-3 #+ 1.0 o= 18
T gt
z
=
E ll:l"F - — . 3
@ -) - .
o T —
b lui:'\\ - e] — . s T i
s o _ o o o
w 10
- r 1
£ 10| - — T+ + o+ |
510 .______.-'-""'t_-_-'_ S R
= I -
RTI ;]
o
g 107
(=4

-3
1075 1 2 3 4 5 [T 8 k]

lteration
lU) i , ITElI'IHr]

. —as (. 4 +—a 1.7
107 — 0.6 - 1.41
]_u“. —+ 0.8 e 16|

N &4 1.0 —a 108
10t 1
1wl

Relative magnitude of expected weight updates

lteration

1
G.
in

Relative magnitude of expected weight updates
=
o

Relative magnitude of expected weight updates

VLReLU
—e (.4 4—a 1.7
s~ 06 o8 1.4/
—+ 0.8 e 1.6
o |#* 10 = 18
e
- 4 - —
- =8 —a o o o gt
L * & @ * * *
F‘_‘_,..—t—-_‘;'___* ., 4
i w
o1 2 3 4 § & 71 8 39
Iteration
Mamult .
—a (.4 +—a 1.7
— 0.6 oo 1.4
+— 0.8 e 1.6]d
e 1.0 —s 105
o
a
] =]
o g a]
R -
g ..h"x__- e e .
L A
-

] 1 i 3 4 5

|teration

@

27/50

Preserve var=1

of all layers
output.

How?

There are lots of

papers with
variants

Mishkin and Matas. All you need is a good init. ICLR, 2016

http://cmp.felk.cvut.cz

WEIGHTS INITIALIZATION 28/50

Gaussian noise with some coefficient:

Xavier: mnVarfw)] =1, Vi.
He (0.5 * Xavier for ReLLU)

Orthonormal (Saxe et.al. 2013)
Data-dependent: LSUV

Algorithm 1 Layer-sequential unit-variance orthogonal initialization. L — convolution or full-
connected layer, W - its weights, B - its output blob., Tol,,, - variance tolerance, T; — current
trial, 7,,,, — max number of trials.

Pre-initialize network with orthonormal matrices as in Saxe et al.|(2014)
for each layer L do
while |Var(BL) — 1.0| > Tol,,, and (T; < T,) do
do Forward pass with a mini-batch
calculate Var(Bpr)
W =W/l /Var(BL)
end while
end for

Mishkin and Matas. All you need is a good init. ICLR, 2016

http://cmp.felk.cvut.cz

BATCH NORMALIZATION

Input: Values of = over a mini-batch: B = {z; . };
Parameters to be learned: ~, 3
Output: {y; = BN, 5(x;)}

1 ..
g — — Z T; // mini-batch mean
m
i —
T
2 1 2 . .
o — —) (zi— pB) // mini-batch variance
m <
- T; — | _
T; ¢ ——= £s // normalize
VO + €
yi 4 vx; + B = BN, g(x;) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.

Toffe et.al 2015

29/50

http://cmp.felk.cvut.cz

BATCH NORMALIZATION 30/50

0.6 Test accuracy vs. Iters

0.5

o
I
T

Test accuracy
(]
J
T

o
M
T

I

— caffenet256_Irn
caffenetl28 Irn
0.1 caffenet128
— caffenetl28 BatchNormBeforeRelU
— caffenetl28 BatchNormAfterRelU

0.0

0 50000 100000 150000 200000 250000 300000 350000
lters

http://cmp.felk.cvut.cz

DROPOUT

Dropout

Forces the network to have a redundant representation.

(}——— hasanear —X—_

L) has a tail — N
‘i.\ J—— s furry —X— _ cat
Y __—" score
__J " hasclaws — -
/ \' - mischievous X

- look

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7- 5 27 Jan 2016

31/50

http://cmp.felk.cvut.cz

DROPOUT 2L

Play with rates. 0.5 1s rarely optimal choice (but
often good)

0.5 Test accuracy vs. lters

P e

0.4}

o
w

Test accuracy

o

N

—_—
|

caffenetl28 wd_0.0005L2 drop0O1
011 caffenet128 wd_0.0005L2_drop02 |]

caffenetl28 wd_0.0005L2 _drop03
— caffenetl28 wd_0.0005L2_drop05

0.0

0 50000 100000 150000 200000 250000 300000 350000
lters

http://cmp.felk.cvut.cz

DROPOUT L

Dropout_rate * width = constant — doesn't work!

Test accuracy vs. lters

0.5 . . I T
0.4} .
> 0.3} |
o
=
v
{8
0
< 0.2} |
— caffenetl28 fc6=1433 no_drop
caffenet1l28 fc6=2048 drop03
O-1r caffenet128 fc6=4096 drop05 |
— caffenetl28 fc6=4096_drop065
. — caffenetl28 fc6=6144 drop077
0.0 I I I I I I
0 50000 100000 150000 200000 250000 300000 350000

lters

http://cmp.felk.cvut.cz

DATA AUGMENTATION 34/50

Common (helps 99% cases):

Random crop: e.g., 227x227 from 256x256 px
(AlexNet)

Horizontal mirror

Dataset dependent:
Random rotation
Affine transform
Random scale
Color augmentation
Noise input
Thin plate deformation
Unleash your imagination

http://cmp.felk.cvut.cz

PADDING. VALID AND SAME CONVOLUTION n

N O

(7 2 1 s 15
23 5 7 14 16 i 3
Y 6 13 20 22 | %k 0 5
10 12 18 21 3 2 1
11 18 25 2 9
\. /
same valid
full \ 1
ol s N se 35\ 49 53 15
23 [158 165 45 Y 105 137 | 16
38 | 198 [120 165 205| 197 | 52
s6 | 95 [160 200 245| 184 | 35
19 | 117 |1se 255 235| 106 | 53
20 | 89 160 210 75 90 6
22 &7 90 65 78 13 18

http://www.johnloomis.org/ece563/motes/filter/conv/convolution.html

Same = padding with zeros
by % kernel size.
The most common choice

http://cmp.felk.cvut.cz

PADDING

Padding:
Preserving spatial size, not “washing out”
information

Dropout-like augmentation by zeros

Caffenet128
with conv padding: 47% top-1 acc

w/o conv padding: 41% top-1 acc.
It 1s huge difference

http://cmp.felk.cvut.cz

37/50

Notable approaches & Applications

http://cmp.felk.cvut.cz

HOW TO DO — LET S GO TO WHITEBOARD L

o Image retrieval Babenko et. al (2014)
o Person identification Chopra et. al 2006
o Ranking Wang et.al 2014

o Playing games. Atari (2013) Go (2016)
o Text generation https://github.com/karpathy/char-rnn

o Image generation Radford et.al 2016

o Action recognition Simonvan et.al 2014

o Anomaly detection
https://www.youtube.com/watch?v=ds73ULGjnpc&fea
ture=youtu.be

o Translation Cho et al 2014

o Fraud detection at PayPal ‘
http://university.h2o.ai/cds-lp/cds02.html

http://cmp.felk.cvut.cz

DEEP LEARNING APPLICATIONS 39/80
Alpha Go :)

Image recognition

Speech Recognition. Cortana, Siri
Translation

Anomaly detection

Fraud detection

Video recognition

Robotics

Recommendation systems

DNA, biology, and more..

http://cmp.felk.cvut.cz

ALPHAGO HEe

a
Rollout policy SL policy network RL policy network Value network
P P P, vy &
)
3
Policy gradient g
ragle
S
(5N

>

S
O
o
B

Human expert positions Self-play positions ‘

Mastering the game of Go with deep neural networks and tree search
Silver et.al 2016

http://cmp.felk.cvut.cz

IMAGE CLASSIFICATION

State-of-art since 2012. Krizhevsky et.al 2012

Superhuman level an ImageNet classification since 2015.

He et.al 2015, Szegedy et.al 2015

41/

50

http://cmp.felk.cvut.cz

@

OBJECT DETECTION 42/50

e Research

person : 0. 998

7 \\‘l
Sperson 0946

person 0987 ? Iy
A |

dining table : 0. é79,cak¢a9€'64—é R

j‘T"/A' =_, i 4 B A

L : e on) 9 35

! PEE" person
book : 0.830

ol

w ’}"\

knife : 0.997 2\

T~ ot

--,—,

Our results on COCO — too many objects, let’s check carefully!

“the original image is from the COCO dataset

- - . : of . sy " . -
e |ccv Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. arXiv 2015.
Shaoqing Ren, Kaiming He, Ross Girshick, & Jian Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”. NIPS 2015.

http://cmp.felk.cvut.cz

©

43/50
SPEECH RECOGNITION /
o Cortana
o Siri Figure 1. CNN architecture for speech recognition
o OK, Google
oA Y S /%\ O ‘/
: o [of
L ~‘::C) ____u O '\
time \‘@ Pooling Fully-connected Softmax
Convolutional layer layers layer
layer

Figure from Huang et.al. 2015.

http://cmp.felk.cvut.cz

© i

ANOMALY DETECTION "y
Virtual doctor: Image Recognition for Healthcare

Igor Kostiuk

http://cmp.felk.cvut.cz

VIDEO CAPTIONING 45/50

Input Video Convolutional Net Recurrent Net Output

EENH—) —[L5IM | 1STM |— 4
OESt—| —sM —sTM 1 5o

— | LSTM LSTIVI is

mn
g g S— —| LSTM LSTIVI playing

|

— ~| LSTM_—*| LSTM |— <FOsS>

S

Translating Videos to Natural Language Using Deep Recurrent Neural ‘
Networks. Venugopalan et.al. 2015

http://cmp.felk.cvut.cz

46/

50

TEXT TRANSLATION

Neural Machine Translation (NMT)

Je suis étudiant —

HHH
HHHH

[[

am a student _ Je suis eétudiant

« RNNs trained end-to-end (Sutskever et al., 2014).

From [Bahadanau et al., 2015] slides at ICLR 2015.

http://cmp.felk.cvut.cz

DEEP LEARNING FRAMEWORKS FOR
REGULATORY GENOMICS AND EPIGENOMICS

THE CHROMPUTER

Integrating multiple inputs (1D, 2D signals, sequence)
to simulatenously predict multiple outputs

H3K27me3 H3Kdmel H3Kdme3

H3K9me TF Binding
HAZ Chromatin MUI“‘uSk
H3K36me3 State }
Class

[Z"Fc:lm]

[I TFC Layer I l]
|__2ndCombined FClayer | | 2nd Combined FC Layer | |_3ndCombinedFClayer | 11111 988 GRS 008 B
[mmaul-mm Ji il mallmldicu'«] | umul-mw] =il e . ll
[31 Smoothing] | 3¢d Smoothing] | 3rd Smoothing] i ; 'l

2nd set of Convokstional [2nd setof Convolational 20d sat of Convolational moaa i e
e e e Y
L mimpetey | [oty] L e | e

[mmda-iumum || stsetof Convolutional Maps | | 1st set of Convolutional Maps | 58838 (5 5 58 Assases saaes | |

https://[www.youtube.com/watch?v=2vpKB3j-OY0

a7/

50

http://cmp.felk.cvut.cz

ROBOTICS: NAVIGATION 48/50

@ useful to quickly explore an area for wilderness search
and rescue missions

P P) 026/456

Quadcopter Navigation in the Forest using Deep Neural Networks

n AAAI Video Competition
https://[www.youtube.com/watch?v=umRdt3zGgpU

http://cmp.felk.cvut.cz

FRAUD DETECTION

Experimental Design

10 million rows/1500 features (60% training; 20% validation; 20% test)

Parameter Range

49/

50

Results

How much depth is required?

performance

GIEES

of hidden layers 2,4,6,8

of neurons 200, 300, 400, 500, 600, 700

activation function Rectifier; Tanh; Maxout; RectifierWithDropout
feature subset All, subsetl — subset7

test data set All, week4 — week8

L1/L2 regularization | 0-1

epoch 500

of hidden layers Area Under ROC Curve (AUC)
(Rectifier, 2 layer, 200 neurons,

500 epoch, L1/L2=0)

2 0.762

4 0.821

6 0.839

8 0.839

As simple classification

http://www.slideshare.net/Oxdata/

paypal-fraud-detection-with-deep-learning-in-h2o-presentationh2oworld2014

http://cmp.felk.cvut.cz

°
Neural Networks Summary
50/50

+ Flexible technique; can be employed both for classification and regression
+ Multiclass classification

+ Outputs probabilities of all classes, giving access to confidence of prediction
— Interpretability

— Objective function has multiple extrema and gradient-based learning is not guaranteed
to find the global minimum

http://cmp.felk.cvut.cz

	First page
	ccmp Neural Networks - Motivation (1)
	ccmp Neural Networks - Motivation (2)
	ccmp Neural Networks - Motivation (3)
	ccmp Historical Note
	ccmp Layers, Concise Equivalent Representation
	ccmp Layer Anatomy
	ccmp Layer Anatomy, Non-Linear Functions
	ccmp Output Layer and Loss Functions. K-class Classification (1)
	ccmp Output Layer and Loss Functions. K-class Classification (2)
	ccmp Output Layer and Loss Functions. 2-class Classification
	ccmp Output Layer and Loss Functions. Regression
	ccmp Training the NN
	ccmp Computing gradient (1)
	ccmp Example: Gradient by Back Propagation (1)
	ccmp Example: Gradient by Back Propagation (2)
	ccmp Gradient-based Optimization, Back Propagation
	ccmp
	ccmp Deep Learning
	ccmp Example: Convolutional Neural Networks
	ccmp CNNS: Important details/concepts
	ccmp
	ccmp Neural Networks Summary
	Last page

