
1/50Neural Networks
lecturer: Jiří Matas, matas@cmp.felk.cvut.cz

authors: O. Drbohlav , J. Matas, D. Mishkin

Czech Technical University, Faculty of Electrical Engineering
Department of Cybernetics, Center for Machine Perception

121 35 Praha 2, Karlovo nám. 13, Czech Republic
http://cmp.felk.cvut.cz

Last update: Nov 2020

http://cmp.felk.cvut.cz

2/50
Neural Networks - Motivation (1)

Recall the Perceptron: given the perceptron parameters w ∈ Rn and b ∈ R, the
classification ŷ to two classes {−1, 1} for a vector x ∈ Rn is performed as

ŷ = sign(w · x+ b) , (1)

which is an affine (often called linear) function l(x) = w · x+ b, followed by a non-linear
function σ : R→ R, σ(z) = sign(z). The perceptron is also often depicted as follows:

x1

x2
σ(w · x+ b) ŷ

to make the linear combination of elements of the input vector explicit. Perceptron is a
linear classifier; these are well understood, have low VC dimension, etc. and thus it is a
natural next step to combine them to a more complex classifiers: By letting more of them
sharing the input, as well as using their outputs ai’s as inputs to other perceptrons:

x1

x2

σ(w1 · x+ b1)

σ(w2 · x+ b2)

σ(w3 · x+ b3)

σ(w4 · x+ b4)

a1

a2

a3

a4

σ(w · a+ b) ŷ

http://cmp.felk.cvut.cz

3/50
Neural Networks - Motivation (2)

Universal Approximation Theorem. Another strong motivation for forming such
combinations of simple classifiers is the theorem which states that if σ : R→ R is a
nonconstant, bounded and continuous function and f is a continuous function on unit
hypercube [0, 1]n then for any ε > 0 there exists N ∈ N, vi, bi ∈ R and wi ∈ Rn such that

F (x) =

N∑
i=1

viσ(wi · x+ bi) , and (2)

|F (x)− f(x)| < ε , ∀x ∈ [0, 1]m (3)

By comparison, we see that the approximation is exactly captured by the following network
with single hidden layer and linear output:

x

σ(w1 · x+ b1)

σ(w2 · x+ b2)

...
σ(wN · x+ bN)

a1

a2

...

aN

v · a ŷ

ŷ = F (x)

http://cmp.felk.cvut.cz

4/50
Neural Networks - Motivation (3)

‘Biological’ motivation - a real neuron is known to combine inputs to an output which is
then passed to other neurons.

http://cmp.felk.cvut.cz

5/50
Historical Note

� Perceptron (Rosenblatt, 1956) with its simple learning algorithm generated a lot of
excitement

� Minsky and Papert (1969) showed that even a simple XOR cannot be learnt by a
perceptron

� But chaining perceptrons to a network (Multi-Layer Perceptron, MLP) can learn XOR

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.5

1.0

0.5

0.0

0.5

1.0

1.5

XOR arrangement

http://cmp.felk.cvut.cz

6/50
Layers, Concise Equivalent Representation

The network

x1

x2

σ(w1 · x+ b1)

σ(w2 · x+ b2)

σ(w3 · x+ b3)

σ(w4 · x+ b4)

a1

a2

a3

a4

σ(w · a+ b) ŷ

hidden layerinput layer output layer
can be rewritten in a more concise form as follows:

(in) x∈R2

−−−→
W∈R4×2,b∈R4

σ(Wx+ b)
a∈R4

−−−→
w∈R4,b∈R

σ(w · a+ b)
ŷ∈R−−→ (out) (4)

where we introduced a convention that for σ : R→ R and z ∈ Rk,
σ(z) = [σ(z1), σ(z2), ..., σ(zk)]

>, i.e. the function is applied per component of the vector z.

A network with M hidden layers can be written as (here shown with affine output layer)

(in) a1=x∈Rn

−−−−−−→
[
σ(Wiai + bi)

ai+1−−−→
]M

i=1

→ WM+1aM+1 + bM+1
ŷ∈RK

−−−−→ (out)
hidden layers output layer

(5)

http://cmp.felk.cvut.cz

7/50
Layer Anatomy

(in) a1=x∈Rn

−−−−−−→
[
σ(Wiai + bi)

ai+1−−−→
]M

i=1

→ WM+1aM+1 + bM+1
ŷ∈RK

−−−−→ (out)
hidden layers output layer

(6)

Each hidden layer of an NN is composed of an affine function, followed by a non-linearity.

Non-linear functions
� σ(z) = sign(z) : used for the original perceptron. Unusable for an NN because this
non-linear function is discontinuous and not differentiable at 0, and everywhere else has
zero gradient. So, once we would like to optimize the parameters of the combination of
perceptrons, gradient descent and other methods based on first and second order
approximations could not proceed. This is why the original sign function has been
replaced by functions with ‘nicer’ properties.

1.0 0.5 0.0 0.5 1.0
z

1.0

0.5

0.0

0.5

1.0

a

signum

http://cmp.felk.cvut.cz

8/50
Layer Anatomy, Non-Linear Functions

Non-linear functions
� σ(z) = 1/(1 + e−z) : logistic sigmoid, σ : R→ [0, 1]
� σ(z) = tanh(z) = (ez − e−z)/(ez + e−z) : tanh sigmoid, σ : R→ [−1, 1]
� σ(z) = max(0, z) : ReLU (rectified linear unit)
� σ(z) = max(0, z) + min(0, sz) (0 < s < 1): Leaky ReLU
� Many other

6 4 2 0 2 4 6
z

1.0

0.5

0.0

0.5

1.0

a

tanh

6 4 2 0 2 4 6
z

0.2

0.0

0.2

0.4

0.6

0.8

1.0

a

sigmoid

6 4 2 0 2 4 6
z

0

1

2

3

4

5

a

ReLU

6 4 2 0 2 4 6
z

1

0

1

2

3

4

5
a

LReLU, s= 0. 2

http://cmp.felk.cvut.cz

9/50
Output Layer and Loss Functions. K-class Classification (1)

So far, we have made a general assumption that the output of NN is a K-element vector
ŷ ∈ RK. Now we will discuss what form the output should take and how we will measure
how good the output is.
K-class Classification. We may formally number the classes as 1, 2, ...,K. But if classes
are not ordinal, these numbers are really just labels; it doesn’t mean that objects from
classes 2 and 3 are in some sense closer than objects from classes 1 and K, say. Therefore,
it would make no sense to have a one-dimensional output ŷ trying to predict the class label.
Instead, the output layer will consist of an affine function producing a K-dimensional vector,
followed by the softmax which will convert it to class probabilities:

aM+1−−−→ WM+1aM+1 + bM+1
z∈RK

−−−→ softmax ŷ∈RK

−−−−→ (out)
output layer

(7)

with [softmax(z)]k =
exp zk∑K
l=1 exp zl

. (8)

For representing the class y of the training data point (x, y), one-hot representation is used
which simply makes a K-dimensional vector which is everywhere zero except for the y-th
component which is 1:

onehot(y) = [δ1y, δ2y, ...δKy]
>
= [0, 0, ..., 1

↑
y-th place

, ..., 0]
> ∈ RK (9)

http://cmp.felk.cvut.cz

10/50
Output Layer and Loss Functions. K-class Classification (2)

For a training data point (x, y), how to measure how far the prediction ŷ ∈ [0, 1]K for x is
from the target vector y = onehot(y) ∈ {0, 1}K?

� Squared difference:
J(ŷ,y) = ‖ŷ − y‖2 . (10)

This loss = 0 when the prediction matches the target and > 0 otherwise.

� Negative log-likelihood. To avoid confusion, let us denote the index of the target class l
for a training data point (x, l); then

J(ŷ,y) = −y> log ŷ = −
K∑

i=1

yi log ŷi = − log ŷl . (11)

Example: K-class logistic regression. The class conditionals
ŷ(x) = [p(1|x), p(2|x), ..., p(K |x)] ∈ RK can be written as (W ∈ Rn×K, b ∈ RK):

(in) x∈Rn

−−−→ Wx+ b
z∈RK

−−−→ softmax ŷ∈RK

−−−−→ (out) (12)

http://cmp.felk.cvut.cz

11/50
Output Layer and Loss Functions. 2-class Classification

For two classes, the output ŷ of the NN can be 1-dimensional, modeling the class posterior
p(1|x) ∈ [0, 1]. The posterior p(2|x) is computed simply as 1− ŷ.

Example: 2-class logistic regression. The posteriors p(1|x), p(2|x) are modeled as
(x,w ∈ Rn, b ∈ R):

p(1|x) = 1

1 + e−(w·x+b)
, p(2|x) = 1− p(1|x) (13)

This can be written as a single-neuron NN with output ŷ = p(1|x):

(in) x−→ σ(w · x+ b)
ŷ−→ (out) (14)

where σ(z) = 1/(1 + e−z) is the logistic sigmoid non-linearity.

Recall that negative log-likelihood loss has been used for the 2-class logistic regression:

J(ŷ, y) = −[y log ŷ + (1− y) log(1− ŷ)] (15)

where class labels y have conveniently been changed as (1, 2) 7→ (1, 0). The procedure for
finding the optimal parameters θ = {w, b} was the gradient descent.

http://cmp.felk.cvut.cz

12/50
Output Layer and Loss Functions. Regression

The NN can of course also be used for regression, that is, finding a function which predicts a
target y ∈ RK which is not constrained to represent probability distribution.

Squared difference is an obvious choice for such a problem.

http://cmp.felk.cvut.cz

13/50
Training the NN

Let the training data be T = {(x1,y1), (x2,y2), ..., (xN ,yN)}, where without loss of
generality we assume that class labels yi’s have been converted to their one-hot
representations yi’s if needed. Let θ denote all parameters of the NN. We want to minimize

J(T ;θ) =
∑

(x,y)∈T

J(ŷ(x),y) . (16)

Gradient-based methods are used most of the time for minimizing the loss function J(T ;θ)
w.r.t. θ. We need to evaluate the gradient of loss w.r.t. the NN parameters, ∂J(ŷ(x),y)

∂θ
,

in order to use it for updates of the gradient-descent type:

θt+1 ← θt − µ
∑

(x,y)∈T ′⊆T

∂J(ŷ(x),y)

∂θ
(17)

where µ is the learning rate and the summation is not necessarily over the entire dataset.

http://cmp.felk.cvut.cz

14/50
Computing gradient (1)

When computing the gradient, we will make use of the chain rule. Let f : Rn → R and
g : Rm → Rn. For x ∈ Rm, let y = g(x). Let us consider the composition of these
functions, f(g(x)) = f(y) (f ◦ g : Rm → R). There holds

∂f(g(x))

∂xk
=

n∑
i=1

∂f

∂yi

∂yi

∂xk
. (18)

This can be written in a matrix form,

∂f(g(x))

∂x
=
∂f

∂y

∂y

∂x
= f ′y′ , (19)

where f ′ = ∂f/∂y and y′ = ∂y/∂x are Jacobian matrices:

f ′ =

[
∂f

∂y1
,
∂f

∂y2
, ...,

∂f

∂yn

]
, (20)

y′ =


∂y1
∂x1

∂y1
∂x2

· · · ∂y1
∂xm

∂y2
∂x1

∂y2
∂x2

· · · ∂y2
∂xm...

∂yn
∂x1

∂yn
∂x2

· · · ∂yn
∂xm

 (21)

http://cmp.felk.cvut.cz

15/50
Example: Gradient by Back Propagation (1)

Let us have the following network:
a1∈Rn

−−−−→
a1=x

W1a1 + b1
z2∈Rm2

−−−−−→ σ
a2∈Rm2

−−−−−→ W2a2 + b2
z3∈Rm3

−−−−−→ . . . (22)

σ
a3∈Rm3

−−−−−→ W3a3 + b3
ŷ∈RK

−−−−→ J(ŷ,y)

where the non-linearities have been explicitly put to the chain. The set of NN parameters is
θ = {W1,W2,W3,b1,b2,b3}. For the loss, let us consider J(ŷ,y) = ‖ŷ − y‖2.
1. Compute v3 =

∂J
∂ŷ

∣∣
ŷ
. This is a row vector, v3 ∈ RK, v3 = 2(ŷ − y)

>.
2. ∂J

∂b3
= v3

∂ŷ
∂b3

∣∣
a3

= v31 = v3

3. ∂J
∂(W3)kl

= v3
∂ŷ

∂(W3)kl
= v3[0, 0, ..., (a3)l

↑
at k-th element

, ..., 0, 0]
>
= (v3)k(a3)l

So, arranging partial derivatives of J w.r.t. elements of W3 ∈ RK×m3 to a matrix of
the same dimensions then we can write

∂J

∂W3
=


∂J

∂(W3)11
∂J

∂(W3)12
· · · ∂J

∂(W3)1m1
∂J

∂(W3)21
∂J

∂(W3)22
· · · ∂J

∂(W3)2m1... . . .
∂J

∂(W3)K1

∂J
∂(W3)K2

· · · ∂J
∂(W3)Km1

 = v3
>a3

> (23)

http://cmp.felk.cvut.cz

16/50
Example: Gradient by Back Propagation (2)

Let us have the following network:
a1∈Rn

−−−−→
a1=x

W1a1 + b1
z2∈Rm2

−−−−−→ σ
a2∈Rm2

−−−−−→ W2a2 + b2
z3∈Rm3

−−−−−→ . . . (24)

σ
a3∈Rm3

−−−−−→ W3a3 + b3
ŷ∈RK

−−−−→ J(ŷ,y)

4. Compute v2 = v3
∂ŷ
∂a3

∣∣
a3

∂a3
∂z3

∣∣
z3

= v3W3diag[σ′(z3)] = (v3W3)� σ′(z3);
Here σ′(x) = [σ′(x1), σ

′(x2), ..., σ
′(xn)] with x ∈ Rn and σ′ the derivative of σ,

diag(x) for x ∈ Rn forms an n-by-n diagonal matrix with elements of x on the
diagonal, and � is the Hadamard (element-wise) product.

5. ∂J
∂b2

= v2

6. ∂J
∂W2

= v2
>a2

>

7. Compute v1 = v2W2diag[σ′(z2)] = (v2W2)� σ′(z2)

8. ∂J
∂b1

= v1

9. ∂J
∂W1

= v1
>a1

>

http://cmp.felk.cvut.cz

17/50
Gradient-based Optimization, Back Propagation

� As it has been just shown, gradient for all parameters can be efficiently computed
(without repeating already performed computations) by computation flow from the last
layer to the first – hence the name Back Propagation (aka backprop)

� Recall the update rule:

θt+1 ← θt − µ
∑

(x,y)∈T ′⊆T

∂J(ŷ(x),y)

∂θ
(25)

• How to choose the learning rate µ? The rate is often changed adaptively during
learning, based on monitoring of the learning process

• The summation is often done over a subset T ′ of the training data. This provides
an estimate of the actual gradient and the technique is called Stochastic Gradient
Descent (SGD). Many alternatives (important one: SGD with momentum)

• How to initialize the parameters? Rule of thumb (core idea, many variants):
Initialize them such that variance of outputs is equal to 1 for all layers.

http://cmp.felk.cvut.cz

18/50

Deep Learning

http://cmp.felk.cvut.cz

19/50
Deep Learning

� Extremely successful branch of Machine Learning methods

� Lot of progress in recent (>10) years

� Includes:

• Convolutional Neural Nets (CNNs): suitable for inputs which are
translation-invariant and ’warpable’. Typical examples are visual signals (images)

• Recurrent neural networks (RNNs): allow previous outputs to be used as inputs;
recognition of time-series signals, speech recognition

• Autoencoders: The goal is to output the inputs; The hidden layers have a
bottleneck (fewer neurons than input layer) and thus the network is forced to learn
’compressed’ representation of the input

• . . .

http://cmp.felk.cvut.cz

20/50
Example: Convolutional Neural Networks

Consider an image (an input layer) which is 64× 64 pixels large. Let the next layer be a
layer of the same size. If this is modeled as a fully connected network, the number of
connections is (642)2 ≈ 16M .

In contrast to that,

1. Make the connections only in a 5× 5 neighbourhood of each neuron in the second
layer; This would lower the number of parameters to 642 · 25 ≈ 102k

2. Make the parameters of all 5× 5 connections shared ; This lowers the number of
parameters to only 25.

Doing this corresponds to learning a convolutional filter of size 5× 5. In practice, N (e.g.
N = 32) filters are learnt in the first layer, forming N -channel output. The next layer then
operates on all N channels, thus when e.g. N = 32 and the receptive field is 3× 3, each of
the next convolutional filters has 32 · 32 parameters.

Convolutional structure reduces the number of parameters by orders of magnitude.

http://cmp.felk.cvut.cz

WHAT IS CONVOLUTION

https://developer.apple.com/library/ios/documentation/Performance/Conceptual/vImage/ConvolutionOperations/ConvolutionOperations.html

Classical NN

for image

is convolution

with image

size kernel

21/50

http://cmp.felk.cvut.cz

DEEP LEARNING IS HIERARCHICAL

REPRESENTATION LEARNING

Quoc.V.Le et.al.,2011. Building high-level features using large scale
unsupervised learning

22/50

http://cmp.felk.cvut.cz

TYPICAL CNN STRUCTURE (LENET-5)

http://eblearn.sourceforge.net/lib/exe/lenet5.png

• (Conv-ReLU-Pool)xN Softmax. Simple
• (Conv-ReLU)xN-Pool- (Conv-Relu)x2N-Pool….Softmax. Popular.

• Some Inception arch. Have fun :)

23/50

http://cmp.felk.cvut.cz

POOLING

http://cs231n.github.io/convolutional-networks/

24/50

http://cmp.felk.cvut.cz

MAX POOLING

http://cs231n.github.io/convolutional-networks/

25/50

http://cmp.felk.cvut.cz

26/50
CNNS: Important details/concepts

� weights init

� dropout

� batch normalization

� data augmentation

� padding

http://cmp.felk.cvut.cz

WEIGHTS INITIALIZATION

 Preserve var=1

of all layers

output.

How?

There are lots of

papers with

variants

Mishkin and Matas. All you need is a good init. ICLR, 2016

27/50

http://cmp.felk.cvut.cz

WEIGHTS INITIALIZATION

 Gaussian noise with some coefficient:

 Xavier:

 He (0.5 * Xavier for ReLU)

 Orthonormal (Saxe et.al. 2013)

 Data-dependent: LSUV

Mishkin and Matas. All you need is a good init. ICLR, 2016

28/50

http://cmp.felk.cvut.cz

BATCH NORMALIZATION

Ioffe et.al 2015

29/50

http://cmp.felk.cvut.cz

BATCH NORMALIZATION
30/50

http://cmp.felk.cvut.cz

DROPOUT
31/50

http://cmp.felk.cvut.cz

DROPOUT

 Play with rates. 0.5 is rarely optimal choice (but

often good)

32/50

http://cmp.felk.cvut.cz

DROPOUT

 Dropout_rate * width = constant – doesn`t work!

33/50

http://cmp.felk.cvut.cz

DATA AUGMENTATION

 Common (helps 99% cases):

 Random crop: e.g., 227x227 from 256x256 px

(AlexNet)

 Horizontal mirror

 Dataset dependent:

 Random rotation

 Affine transform

 Random scale

 Color augmentation

 Noise input

 Thin plate deformation

 Unleash your imagination

34/50

http://cmp.felk.cvut.cz

PADDING. VALID AND SAME CONVOLUTION

http://www.johnloomis.org/ece563/notes/filter/conv/convolution.html

Same = padding with zeros
by ½ kernel size.

The most common choice

35/50

http://cmp.felk.cvut.cz

PADDING

 Padding:

 Preserving spatial size, not “washing out”

information

 Dropout-like augmentation by zeros

Caffenet128

with conv padding: 47% top-1 acc

w/o conv padding: 41% top-1 acc.

It is huge difference

36/50

http://cmp.felk.cvut.cz

37/50

Notable approaches & Applications

http://cmp.felk.cvut.cz

HOW TO DO – LET`S GO TO WHITEBOARD

 Image retrieval Babenko et. al (2014)

 Person identification Chopra et. al 2006

 Ranking Wang et.al 2014

 Playing games. Atari (2013) Go (2016)

 Text generation https://github.com/karpathy/char-rnn

 Image generation Radford et.al 2016

 Action recognition Simonyan et.al 2014

 Anomaly detection
https://www.youtube.com/watch?v=ds73ULGjnpc&fea
ture=youtu.be

 Translation Cho et al 2014

 Fraud detection at PayPal
http://university.h2o.ai/cds-lp/cds02.html

38/50

http://cmp.felk.cvut.cz

DEEP LEARNING APPLICATIONS

 Alpha Go :)

 Image recognition

 Speech Recognition. Cortana, Siri

 Translation

 Anomaly detection

 Fraud detection

 Video recognition

 Robotics

 Recommendation systems

 DNA, biology, and more..

39/50

http://cmp.felk.cvut.cz

ALPHAGO

Mastering the game of Go with deep neural networks and tree search
Silver et.al 2016

40/50

http://cmp.felk.cvut.cz

IMAGE CLASSIFICATION

Select all dogs. Our assignment…almost :)

State-of-art since 2012. Krizhevsky et.al 2012
Superhuman level an ImageNet classification since 2015.

He et.al 2015, Szegedy et.al 2015

41/50

http://cmp.felk.cvut.cz

OBJECT DETECTION
42/50

http://cmp.felk.cvut.cz

SPEECH RECOGNITION

 Cortana

 Siri

 OK, Google

Figure from Huang et.al. 2015.

43/50

http://cmp.felk.cvut.cz

ANOMALY DETECTION
44/50

http://cmp.felk.cvut.cz

VIDEO CAPTIONING

Translating Videos to Natural Language Using Deep Recurrent Neural
Networks. Venugopalan et.al. 2015

45/50

http://cmp.felk.cvut.cz

TEXT TRANSLATION

From [Bahadanau et al., 2015] slides at ICLR 2015.

46/50

http://cmp.felk.cvut.cz

DEEP LEARNING FRAMEWORKS FOR

REGULATORY GENOMICS AND EPIGENOMICS

https://www.youtube.com/watch?v=2vpKB3j-OY0

47/50

http://cmp.felk.cvut.cz

ROBOTICS: NAVIGATION

https://www.youtube.com/watch?v=umRdt3zGgpU

48/50

http://cmp.felk.cvut.cz

FRAUD DETECTION

As simple classification
http://www.slideshare.net/0xdata/

paypal-fraud-detection-with-deep-learning-in-h2o-presentationh2oworld2014

49/50

http://cmp.felk.cvut.cz

50/50
Neural Networks Summary

+ Flexible technique; can be employed both for classification and regression

+ Multiclass classification

+ Outputs probabilities of all classes, giving access to confidence of prediction

− Interpretability

− Objective function has multiple extrema and gradient-based learning is not guaranteed
to find the global minimum

http://cmp.felk.cvut.cz

	First page
	ccmp Neural Networks - Motivation (1)
	ccmp Neural Networks - Motivation (2)
	ccmp Neural Networks - Motivation (3)
	ccmp Historical Note
	ccmp Layers, Concise Equivalent Representation
	ccmp Layer Anatomy
	ccmp Layer Anatomy, Non-Linear Functions
	ccmp Output Layer and Loss Functions. K-class Classification (1)
	ccmp Output Layer and Loss Functions. K-class Classification (2)
	ccmp Output Layer and Loss Functions. 2-class Classification
	ccmp Output Layer and Loss Functions. Regression
	ccmp Training the NN
	ccmp Computing gradient (1)
	ccmp Example: Gradient by Back Propagation (1)
	ccmp Example: Gradient by Back Propagation (2)
	ccmp Gradient-based Optimization, Back Propagation
	ccmp
	ccmp Deep Learning
	ccmp Example: Convolutional Neural Networks
	ccmp CNNS: Important details/concepts
	ccmp
	ccmp Neural Networks Summary
	Last page

