

https://cw.fel.cvut.cz/b191/courses/b3b33vir

Karel Zimmermann

Outline

- Introduction of the VIR-team
- Outline of the course lectures
- Outline of the course labs
- Organization (homework, tests, semestral work)

- Karel Zimmermann
 (associate professor at CTU)
- main lecturer

- Karel Zimmermann
 (associate professor at CTU)
- main lecturer
- Teymur Azayev
 (PhD student since 2018)
- head of the labs
- motion control & deep learning
- Patrik Vacek
 (PhD student since 2019)
- lab tutor

- Introduction of the VIR-team
- Outline of the course lectures
- Outline of the course labs
- Organization (homework, tests, semestral work)

Motivation for unusual organization

- What I did not like as a student:
 - lectures are boring and make me sleepy
 - weak connection between (i) theory (math, statistics, algebra) and (ii) applications (robotics)
 - non-interactive lectures
 - semestral work: limited space for own creativity
- What I do not like as teacher:
 - lectures are boring and make me sleepy
 - weak motivation of students for continuous studying
 - weak motivation of students for interactive discussions
 - weak motivation of students for originality
 - strong motivation of students for plagiarism

https://cw.fel.cvut.cz/b201/courses/b3b33vir/start

	date	week	topic
	21.09.2020	1	Lec 1: <u>Overview</u> and lecture outline, Regression/Classification as ML/MAP estimate Lec 2: <u>Neural networks</u> : Fully-connected layer + computational graph + backpropagation
	28.9.2020	2	State holidays
	05.10.2020	3	Lec 3: <u>Layers:</u> Convolution, Activation functions, Batch-Instance Norm, MaxPooling, Losses + backpropagation
	12.10.2020	4	Lec 4: <u>Training:</u> SGD, momentum, convergence rate, Adagrad, RMSProp, AdamOptimizer, diminishing/exploding gradient, oscilation
	19.10.2020	5	Lec 5: Architectures I: detection (Yolo), segmentation (DeepLab), classification (ResNet)
	26.10.2020	6	Lec 6: <u>Architectures II:</u> pose regression, spatial transformer nets,
			Test T1
	02.11.2020	7	Lec 7: <u>Learning from unlabelled data</u> : Contrastive learning, rotation, jigsaw, physics, Colorization, semantic segmenation from image-class labels, Inverse RL, guest lecture by Patrik Vacek
	09.11.2020	8	Lec 8: <u>Attention, Recurrent neural networks and other memory</u> <u>structures:</u> guest lecture by Teymur Azayev
	16.11.2020	9	Lec 9: Reinforcement Learning: DQN, GAE+TD(lambda), REINFORCE, DDPG, Actor-Critic, applications
	23.11.2020	10	Lec 10: <u>Domain transfer:</u> VAE, MAML, monodepth
	30.11.2020	11	Lec 11: <u>Generative Adversarial Networks:</u> guest lecture by David Coufal, UTIA)
	07.12.2020	12	??
	14.12.2020	13	Exam Test ET
Fa	04.01.2021	14	Poster session (teams present their semestral works)

	date	week	topic
	21.09.2020	1	Lec 1: <u>Overview</u> and lecture outline, Regression/Classification as ML/MAP estimate Lec 2: <u>Neural networks</u> : Fully-connected layer + computational graph + backpropagation
	28.9.2020	2	State holidays
	05.10.2020	3	Lec 3: <u>Layers:</u> Convolution, Activation functions, Batch-Instance Norm, MaxPooling, Losses + backpropagation
	12.10.2020	4	Lec 4: <u>Training:</u> SGD, momentum, convergence rate, Adagrad, RMSProp, AdamOptimizer, diminishing/exploding gradient, oscilation
	19.10.2020	5	Lec 5: Architectures I: detection (Yolo), segmentation (DeepLab), classification (ResNet)
	26.10.2020	6	Lec 6: <u>Architectures II:</u> pose regression, spatial transformer nets, LIFTs Test T1
	02.11.2020	7	Lec 7: <u>Learning from unlabelled data</u> : Contrastive learning, rotation, jigsaw, physics, Colorization, semantic segmenation from image-class labels, Inverse RL, guest lecture by Patrik Vacek
	09.11.2020	8	Lec 8: <u>Attention, Recurrent neural networks and other memory</u> <u>structures:</u> guest lecture by Teymur Azayev
	16.11.2020	9	Lec 9: Reinforcement Learning: DQN, GAE+TD(lambda), REINFORCE, DDPG, Actor-Critic, applications
	23.11.2020	10	Lec 10: <u>Domain transfer:</u> VAE, MAML, monodepth
	30.11.2020	11	Lec 11: Generative Adversarial Networks: guest lecture by David Coufal, UTIA)
	07.12.2020	12	??
	14.12.2020	13	Exam Test ET
Fa	04.01.2021	14	Poster session (teams present their semestral works)

A ST

	date	week	topic
	21.09.2020	1	Lec 1: <u>Overview</u> and lecture outline, Regression/Classification as ML/MAP estimate Lec 2: <u>Neural networks:</u> Fully-connected layer + computational graph + backpropagation
	28.9.2020	2	State holidays
	05.10.2020	3	Lec 3: <u>Layers:</u> Convolution, Activation functions, Batch-Instance Norm, MaxPooling, Losses + backpropagation
	12.10.2020	4	Lec 4: <u>Training:</u> SGD, momentum, convergence rate, Adagrad, RMSProp, AdamOptimizer, diminishing/exploding gradient, oscilation
	19.10.2020	5	Lec 5: Architectures I: detection (Yolo), segmentation (DeepLab), classification (ResNet)
	26.10.2020	6	Lec 6: <u>Architectures II:</u> pose regression, spatial transformer nets, LIFTs Test T1
	02.11.2020	7	Lec 7: <u>Learning from unlabelled data</u> : Contrastive learning, rotation, jigsaw, physics, Colorization, semantic segmenation from image-class labels, Inverse RL, guest lecture by Patrik Vacek
	09.11.2020	8	Lec 8: <u>Attention, Recurrent neural networks and other memory</u> <u>structures:</u> guest lecture by Teymur Azayev
	16.11.2020	9	Lec 9: Reinforcement Learning: DQN, GAE+TD(lambda), REINFORCE, DDPG, Actor-Critic, applications
	23.11.2020	10	Lec 10: <u>Domain transfer:</u> VAE, MAML, monodepth
	30.11.2020	11	Lec 11: <u>Generative Adversarial Networks:</u> guest lecture by David Coufal, UTIA)
	07.12.2020	12	??
	14.12.2020	13	Exam Test ET
Fa	04.01.2021	14	Poster session (teams present their semestral works)

We will formulate classification and regression problems as Bayesian parameter estimation of a probability distribution

- Pre-requisites:
 - ALG (basic linear algebra)
 - PSI (probability, ML and Bayes rule)

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \left(\sum_{i} -\log(p(y_i|\mathbf{x}_i, \mathbf{w})) \right) + (-\log p(\mathbf{w}))$$

loss function

prior/regulariser

Czech Technical University in Prague Faculty of Electrical Engineering, Department of Cybernetics

	date	week	topic
	21.09.2020	1	Lec 1: <u>Overview</u> and lecture outline, Regression/Classification as ML/MAP estimate Lec 2: <u>Neural networks</u> : Fully-connected layer + computational graph + backpropagation
	28.9.2020	2	State holidays
	05.10.2020	3	Lec 3: <u>Layers:</u> Convolution, Activation functions, Batch-Instance Norm, MaxPooling, Losses + backpropagation
	12.10.2020	4	Lec 4: <u>Training:</u> SGD, momentum, convergence rate, Adagrad, RMSProp, AdamOptimizer, diminishing/exploding gradient, oscilation
	19.10.2020	5	Lec 5: Architectures I: detection (Yolo), segmentation (DeepLab), classification (ResNet)
	26.10.2020	6	Lec 6: <u>Architectures II:</u> pose regression, spatial transformer nets, LIFTs Test T1
	02.11.2020	7	Lec 7: <u>Learning from unlabelled data</u> : Contrastive learning, rotation, jigsaw, physics, Colorization, semantic segmenation from image-class labels, Inverse RL, guest lecture by Patrik Vacek
	09.11.2020	8	Lec 8: <u>Attention, Recurrent neural networks and other memory</u> <u>structures:</u> guest lecture by Teymur Azayev
	16.11.2020	9	Lec 9: Reinforcement Learning: DQN, GAE+TD(lambda), REINFORCE, DDPG, Actor-Critic, applications
	23.11.2020	10	Lec 10: <u>Domain transfer:</u> VAE, MAML, monodepth
	30.11.2020	11	Lec 11: <u>Generative Adversarial Networks:</u> guest lecture by David Coufal, UTIA)
	07.12.2020	12	??
	14.12.2020	13	Exam Test ET
Fa	04.01.2021	14	Poster session (teams present their semestral works)

	date	week	topic
	21.09.2020	1	Lec 1: <u>Overview</u> and lecture outline, Regression/Classification as ML/MAP estimate Lec 2: <u>Neural networks</u> : Fully-connected layer + computational graph + backpropagation
	28.9.2020	2	State holidays
	05.10.2020	3	Lec 3: <u>Layers:</u> Convolution, Activation functions, Batch-Instance Norm, MaxPooling, Losses + backpropagation
	12.10.2020	4	Lec 4: <u>Training:</u> SGD, momentum, convergence rate, Adagrad, RMSProp, AdamOptimizer, diminishing/exploding gradient, oscilation
	19.10.2020	5	Lec 5: Architectures I: detection (Yolo), segmentation (DeepLab), classification (ResNet)
	26.10.2020	6	Lec 6: <u>Architectures II:</u> pose regression, spatial transformer nets, LIFTs Test T1
	02.11.2020	7	Lec 7: <u>Learning from unlabelled data</u> : Contrastive learning, rotation, jigsaw, physics, Colorization, semantic segmenation from image-class labels, Inverse RL, guest lecture by Patrik Vacek
	09.11.2020	8	Lec 8: <u>Attention, Recurrent neural networks and other memory</u> <u>structures:</u> guest lecture by Teymur Azayev
	16.11.2020	9	Lec 9: Reinforcement Learning: DQN, GAE+TD(lambda), REINFORCE, DDPG, Actor-Critic, applications
	23.11.2020	10	Lec 10: <u>Domain transfer:</u> VAE, MAML, monodepth
	30.11.2020	11	Lec 11: <u>Generative Adversarial Networks:</u> guest lecture by David Coufal, UTIA)
	07.12.2020	12	??
	14.12.2020	13	Exam Test ET
Fa Fa	04.01.2021	14	Poster session (teams present their semestral works)

Learning of single neuron

$$w_{1} = -1 \quad \frac{\partial p}{\partial w_{1}} = 0.4 \quad \frac{\partial p}{\partial y_{1}} = 1*0.2 = 0.2$$

$$x_{1} = +2 \quad \frac{\partial v}{\partial y_{1}} = 1 \quad + \frac{v = -1}{\partial v} \quad \frac{\partial v}{\partial v} = 0.27 = > \max$$

$$w_{2} = +1 \quad w_{2} = 1 \quad + \frac{\partial p}{\partial v} = 0.2$$

$$w_1 = w_1 + \frac{\partial p}{\partial w_1}$$

Edge gradient:

$$\frac{\partial p}{\partial w_1} = \frac{\partial p}{\partial y_1} \frac{\partial y_1}{\partial w_1}$$

Chain-rule in computational graph $\frac{\partial p}{\partial w_1} = \frac{\partial p}{\partial v} \frac{\partial v}{\partial y_1} \frac{\partial y_1}{\partial w_1}$

Learning of fully connected neural network

- Pre-requisites:
 - Math II (partial derivatives, chain-rule)

We will dive deep into learning

You will exploit what you have learnt in the optimization course

$$\mathbf{w}_{t+1} \approx \mathbf{w}_{t} - \alpha \left[\operatorname{diag} \left(\nabla \mathbf{w}_{t} \nabla \mathbf{w}_{t}^{\mathsf{T}} \right)^{1/2} \right]^{-1} \left. \frac{\partial f(\mathbf{w})}{\partial \mathbf{w}} \right|_{\mathbf{w} = \mathbf{w}_{t}}$$

$$\mathbf{w}_{t+1} \approx \mathbf{w}_{t} - \frac{\alpha}{\sqrt{\nabla \mathbf{w}_{t}^{2} + \epsilon}} \odot \nabla \mathbf{w}_{t}$$

Pre-requisities: OPT

	date	week	topic
	21.09.2020	1	Lec 1: <u>Overview</u> and lecture outline, Regression/Classification as ML/MAP estimate Lec 2: <u>Neural networks</u> : Fully-connected layer + computational graph + backpropagation
	28.9.2020	2	State holidays
	05.10.2020	3	Lec 3: <u>Layers:</u> Convolution, Activation functions, Batch-Instance Norm, MaxPooling, Losses + backpropagation
	12.10.2020	4	Lec 4: <u>Training:</u> SGD, momentum, convergence rate, Adagrad, RMSProp, AdamOptimizer, diminishing/exploding gradient, oscilation
	19.10.2020	5	Lec 5: Architectures I: detection (Yolo), segmentation (DeepLab), classification (ResNet)
	26.10.2020	6	Lec 6: <u>Architectures II:</u> pose regression, spatial transformer nets, LIFTs Test T1
	02.11.2020	7	Lec 7: <u>Learning from unlabelled data</u> : Contrastive learning, rotation, jigsaw, physics, Colorization, semantic segmenation from image-class labels, Inverse RL, guest lecture by Patrik Vacek
	09.11.2020	8	Lec 8: <u>Attention, Recurrent neural networks and other memory</u> <u>structures:</u> guest lecture by Teymur Azayev
	16.11.2020	9	Lec 9: Reinforcement Learning: DQN, GAE+TD(lambda), REINFORCE, DDPG, Actor-Critic, applications
	23.11.2020	10	Lec 10: <u>Domain transfer:</u> VAE, MAML, monodepth
	30.11.2020	11	Lec 11: <u>Generative Adversarial Networks:</u> guest lecture by David Coufal, UTIA)
	07.12.2020	12	??
8 28	14.12.2020	13	Exam Test ET
Fa Fa	04.01.2021	14	Poster session (teams present their semestral works)

We will study winning architectures in recognition, object detection and semantic segmentation

PoseTrack challenge (ICCV 2017/ECCV 2018) https://posetrack.net

	date	week	topic
	21.09.2020	1	Lec 1: <u>Overview</u> and lecture outline, Regression/Classification as ML/MAP estimate Lec 2: <u>Neural networks</u> : Fully-connected layer + computational graph + backpropagation
	28.9.2020	2	State holidays
	05.10.2020	3	Lec 3: <u>Layers:</u> Convolution, Activation functions, Batch-Instance Norm, MaxPooling, Losses + backpropagation
	12.10.2020	4	Lec 4: <u>Training:</u> SGD, momentum, convergence rate, Adagrad, RMSProp, AdamOptimizer, diminishing/exploding gradient, oscilation
	19.10.2020	5	Lec 5: Architectures I: detection (Yolo), segmentation (DeepLab), classification (ResNet)
	26.10.2020	6	Lec 6: <u>Architectures II:</u> pose regression, spatial transformer nets, LIFTs Test T1
	02.11.2020	7	Lec 7: <u>Learning from unlabelled data</u> : Contrastive learning, rotation, jigsaw, physics, Colorization, semantic segmenation from image-class labels, Inverse RL, guest lecture by Patrik Vacek
	09.11.2020	8	Lec 8: <u>Attention, Recurrent neural networks and other memory</u> <u>structures:</u> guest lecture by Teymur Azayev
	16.11.2020	9	Lec 9: Reinforcement Learning: DQN, GAE+TD(lambda), REINFORCE, DDPG, Actor-Critic, applications
	23.11.2020	10	Lec 10: <u>Domain transfer:</u> VAE, MAML, monodepth
	30.11.2020	11	Lec 11: <u>Generative Adversarial Networks:</u> guest lecture by David Coufal, UTIA)
	07.12.2020	12	??
	14.12.2020	13	Exam Test ET
Fa	04.01.2021	14	Poster session (teams present their semestral works)

- Introduction of the VIR-team
- Outline of the course lectures
- Outline of the course labs
- Organization (homework, tests, semestral work)

Labs

- Head of the labs is Teymur
- You can use personal / school computers
- You will use Python, Numpy, PyTorch, Pycharm (consider install it in advance)

import numpy as np http://www.numpy.org

import torch
https://pytorch.org/

https://www.jetbrains.com/pycharm/

https://colab.research.google.com/

Labs

- Semestral work and homework have competitive setup:
 - GPUs available: https://cyber.felk.cvut.cz/cs/study/gpu-servers/

cantor.felk.cvut.cz

- 16 jader / 32 threadu,
- 256GB RAM, 500GB SSD,
- 8 x NVIDIA GTX 1080Ti

taylor.felk.cvut.cz

- 16 jader / 32 threadu,
- 256GB RAM, 500GB SSD,
- 8 x NVIDIA GTX 1080Ti

- Introduction of the VIR-team
- Outline of the course lectures
- Outline of the course labs
- Organization (homework, tests, semestral work)

Credit requirements and point summary

- 35 points from the semestral work
 - evaluation based on students and lecturers voting
 - it is assumed that work will correspond to at least 3*7*6=126 hours of work
- 25 **points** from homework (HW1, HW2)
 - automatic evaluation
 - competitive setting if possible
- 40 points from test (T1, ET)
 - including the exam test
- minimum credit requirements is:
 - 50 points (out of 100)
 - at least 1 point from each homework
 - at least 1 point from each test

Final grade

final grade determined by the total number of points

No of points	Exam assessment
0-49	F
50- 59	Е
60-69	D
70-79	С
80-89	В
90-100	А

Summary

- We will be happy if you help in any possible way
 - suggesting better course logo
 - suggesting/preparing new homework
 - implementing nice demos (software or hardware)
 - giving any reasonable feedback
 - start your own research with us

What can you do?

- We're looking for students
 - competent in theory and practice (code development, work with real robotic platforms)
 - motivated to write top research papers with us
 - willing to work hard under our guidance
- We're offering:
 - diploma/bachelor theses, semester work or project
 - paid internships / summer jobs
 - international collaboration opportunities

Object detection and tracking

- [1] <u>K.Zimmermann</u>, D.Hurych, T.Svoboda, Non-Rigid *Object Detection with Local Interleaved Sequential Alignment (LISA)*, **TPAMI (IF=5)**, 2014
- [2] <u>K.Zimmermann</u>, J.Matas, T.Svoboda, *Tracking by an Optimal Sequence of Linear Predictors*, **TPAMI (IF=5 selected for II.pillar evaluation)**, 2009.

Motion and compliance control of flippers

[3] Pecka, Zimmermann, Svoboda, Hlavac, et al.

IROS/RAL/TIE(IF=6), 2015-2018

Traffic sign detection and 3D localization

1.5 year PostDoc in Luc van Gool's lab at Katholieke Universiteit Leuven

[4] R.Timofte, K.Zimmermann, Luc van Gool, Multi-view traffic sign detection, recognition, and 3D localisation,

MVA (IF=1.5, over 200 citations), 2011

Experiment: Active 3D mapping

RGB (only for visualization)

[5] Zimmermann, Petricek, Salansky, Svoboda, Learning for Active 3D Mapping, ICCV oral (rank A*, AC=2%), 2017 Faculty of Electrical Engineering, Department of Cybernetics