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Neural networks

a neural network is a complex composite function built from
individual layers of neurons, neurons represent simple com-
putation units

neurons are parametrized, so the whole network
is a highly parametrized function

adjustment of parameters is called network learning
back propagation of an error represented by some loss funtion

shallow networks - only one hidden layer of neurons

deep networks - multiple layers
(up to 200 layers, millions of parameters)



Standard neural networks

e standard neuron h:R?% — R has form

h(x) = act(wx + b)

1

- act(z) = max(0, z) (relu), act(z) = E—E

(sigmoid)

e w.beRY- parameters

hidden hidden

output
input /



Convolutional neural networks

e convolution filters moving over the input
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source: https://towardsdatascience.com/mnist-handwritten-digits-classification-using-a-convolutional-neural-network-cnn-af5fafbc35e9

e down-sampling and up-samplig operations, pooling



Well recognized DL tasks

classification
ImageNet Large Scale Visual Recognition Challenge AlexNet
CNN network won the contest using convolutional implemen-
tation (2012)

reccurent neural networks (RNNSs)
LSTM, GRU - units, NLP tasks, Google Translator

reinforcement learning DeepMind (UK, Google 2014)
AlhaGo vs. Lee Sedol (4:1, 2016), AlphaGoZero vs. Al-
phaGo (100:0, 2017) AlphaZero vs. Stockfish (28:72:0,
2018), Dota 2 tournaments ...

generative programming
Ian Godfellow et al. (2014) - Generative Adversial Networks
https://arxiv.org/abs/1406.2661



Elementary concepts

random variable X ~ Py, (2, A, Px)

- Q2 - space of elementary events X € Q2
- A - sigma algebra of measurable events
- Px - distribution of X

distribution of X

- set function on A, Py : A — [0, 1]

- obeys Kolmogorov's laws of probability
- typically Q € R? and A = B(R%)

data D = {x; € R¥}7_, comes from distribution Pp
I.e., we assume that there exists a random variable D

such that D ~ Pp (sometimes we use P4,t5 instead of Pp)

How to specify Pp on the basis of D7



Elementary concepts

if €2 is countable, Pp can be given by enumeration, i.e.,
Pp(w;) =p;, fori=1,...,n (finite) or i € N (countable)

if Q2 = Rd, specification of cdf is possible, but inconvenient
in higher dimensions, so the most common approach is
to specify a density pp : R? — [0,00) of Pp and one has

Pp(A) = /A pp(x)de for A € B(RY)

cannot handle distributions which do not have densities,
complex formulas in high dimensions for dependent data

How to get the density from empirical data?



Elementary concepts

if pp € {py,0 € ©} (a parametric set of densities)
task reduces to estimate 6* from data D and pp = py~
maximum likelihnood estimation

in @ non-parametric context, kernel density estimation
IS the standard choice

@) = g 3 K (*5)

k=1

K :R% & R, a kernel (bump) function, h > 0 is the bandwidth
practically applicable for d up to 5

How to sample from a given distribution/density?



Distance of probability distributions

space of probability distributions on R, B(R%) :

P = {P : probability distribution on (R%, B(R%))}

P is metrizable, e.qg., using Lévy-Prokhorov metric
7 P2 - [0,00), complicated formulas

another "metric” is the Kullback-Leibler divergence
let P,Qe P, P<kK(Q (if Q(x) =0, then P(xz) =0)

KL(P||Q) = de

p(x)
/Iog (q( )) p(x) dx

properties:
KL(P||Q) # KL(Q||P), KL(P||Q) > 0, KL(P||P) =0,

tight relation to theory of information (relative entropy),
theory of large deviations



Kullback-Leibler divergence

e (Wikipedia entry ...) In applications, P typically represents
the "true” distribution of data, observations, or a precisely
calculated theoretical distribution, while @ typically repre-
sents a theory, model, description, or approximation of P. In
order to find a distribution ) that is closest to P, we can
minimize KL divergence and compute (reverse) information
projection

e Kullback-Leibler divergence is a special case of a broader
class of statistical divergences called f-divergences

e Jensen-Shannon divergence - symmetrized KL divergence
1 1
JS(P||Q) = SKL(P||M) + S KL(Q||M)

where M = %(P + Q)



Reverse information projection (M-projection)

let P € P and Q C P (subset of prob. distributions)
1 = arg min KL(P
QKL g min (PllQ)
or for JS
Yo = arg min JSD(P
@JsD g min (PllQ)

Q™" is the closest distribution from subset of Q to P

easy to state, generally hard to solve (i.e., to find Q*)



Specification of O C P

via parametrized densities Q = {pg,0 € ©}

via parametrized transformations

e.g., let X ~ N(0,1) then X2 ~ x2(1)

X has some simple distribution which is easy to sample from
and is transformed to a complex one using a deterministic
function G

(above G(z) = 22)

Q is given by set of parametrized functions Gy, 0 € ©
(neural networks parametrized via their weights)

easy sampling from Gg(X), sample x ~ X (easy)
and then pass x through Gy(X), i.e., compute Gy(x)

How to solve the information projection problem?



Maximum likelihood estimation

e task
given set of data {x; ~ Pp}i*_; describe distribution Pp

e VMILE estimate Pp € Py = {Fy,0 € ©}
assume that Py has density, i.e., dPy = pg(x) dx
assume that x; i.i.d.
search for optimal 0me € © and set Pp = Py _

Omie = argmaxg Ey p, 109 py(x)

estimate 07,

1 n
argmaxg - > logpy(x;)
i=1

e Optimization in terms of KL-divergence

Omie = argming KL(Pp(x)||Py(x))
pp(x)

po(x) i

= argming fpp(w)



MLE in terms of KL-divergence

e best approximation of Pp using Fy
- Pp proxy for Pp, Pp(dz) = % 4,(dz) (Dirac m.)
- Py - model distribution with density pmodel(x|0)

e maximization MLE = minimization of KL(Ppl|Fp)
dP

KL(Pp||P) = /Iog—DdPD — /Iong(w)
dFy po(x)

= [10gpp(@)dPp — [ logps(z) dPp
—H[Pp] — /pe(w) dPp (Pp ~ Pp)

o —/|ng9(213) dPp (integration over Dirac)

dPp

Q

1 n
x —= ) logpy(x;)
"i=1 )

-~

=MLE



Generative modeling

e purpose
given data from an uknown distribution x ~ p(x)
model p(x) using a differentaible mapping G so that

p(x) ~ Gy, (p(2)) = G(p(2);6y))

where p(z) is a selected, simple prior, e.g. mv Gaussian

e Mmaximum likelihood estimation direct setting of density
under i.i.d. assumption, KL divergence minimization



Generative modeling

e solution to the information projection problem
KL-divergence minimalization
via playing discriminator, generator adversial game

Y

source: https://towardsdatascience.com/generative-adversarial-networks-learning-to-create-8b15709587c9



Partial criterions

e an ideal discriminator
D:xeR?—(0,1), i.e., logD : x — (—0,0)
we would like Dy (%) — 1, Dy (x/2*¢) — 0
I.e., maximize w.r.t. 0,

l0g( Dy, (")) 4+ log((1 — Dy, (xf*e)))

e an ideal generator
generator wants to fool discriminator,
i.e., it generates @/ so that Dy (x/%*¢) — 1
tune weights of the generator to minimize

109((1 — Dy (x/**))) = log((1 — Dy, (D(Gy,(2)))

w.r.t 04 for 0, fixed



Compound criterion

e compound criterion

V(D,G) =Egp...()[109 Dg,(®)] + Egpp(2)[109(1 — Dy, (Gg,(2))]

e Minimax optimization - set 0,4, 04 using
minmaxV(Dy ., G
jinma (Dy,, Go,)
e alternate optimization

- for fixed generator Ggg maximize V(ng, )

- for fixed discriminator Dy, minimize V(°,Geg)



T heoretical analysis

e Proposition 1. For any G fixed,
the optimal discriminator D’("; computes the function

D¥, — Pdata(T)
G Pdata(T) + pg(a:)

e Proposition 2. Let C(G) = V (DS, G), then global minimum
of ming C(G) is achieved if and only if pg = pgata-
At that point C(G) achieves value —log 4

e Proposition 3. Optimizing ming maxp V (D, G) corresponds
to minimizing JS(pgatallpg), which is minimal (=0) if and
only if pgata = pyg

source: https://arxiv.org/abs/1406.2661



A GAN concept
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source: https://medium.com/sigmoid/a-brief-introduction-to-gans



LLearning algorithm

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k& = 1, the least expensive option, in our
experiments.

for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {'r“} ..... Iim}} from noise prior pg(z).
e Sample minibatch of m examples {:1{“I ..... :1{""” } from data generating distribution
:1'91:13121(3t )

e Update the discriminator by ascending its stochastic gradient:

€05 o (20) s (10 (0 (-9)))]

=

end for
e Sample minibatch of m noise samples {=1) ... ="} from noise prior p,(=).
e Update the generator by descending its stochastic gradient:

m

P I CIC))]

The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

source: https://arxiv.org/abs/1406.2661



MNIS T dataset

e 60000/10000 - 28x28 greyscale images of handwritten digits

http://yann.lecun.com/exdb/mnist/
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MNIS T dataset

e 60000/10000 - 28x28 greyscale images of handwritten digits

GAN architecture: D,G - perceptron networks
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MNIS T dataset

e 60000/10000 - 28x28 greyscale images of handwritten digits

GAN architecture: D,G - convolution networks
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cGAN - 2014

e Conditional Generative Adversarial Nets https://arxiv.org/abs/1411.1784

e unconditional vs. conditional GAN, y — condition

Epmpyara (@) 109 D(@)] + Egpop (2)[109(1 — D(G(2))]
Epmpyara (@109 D(@|Y)] + Egpop, (2)[109(1 — D(G(2|y))]

e conditioning by extending latent variable of generator
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MNIS T dataset
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DCGAN - 2015

® Unsupervised Representation Learning with Deep Convolutional
Generative Adversarial Networks https://arxiv.org/abs/1511.06434

e architecture - uses convolutional layers




LSUN dataset

e 10 - categories, (church_outdoor, bedroom, bridge ...

https://www.yf.io/p/Isun

LSUN/c hu rch_outdoor

m’ s nﬁd

LSUNFhEd room




DCGAN - 2015

Figure 3: Generated bedrooms after five epochs of training. There appears to be evidence of visual
under-fitting via repeated noise textures across multiple samples such as the base boards of some of
the beds.



DCGAN - 2015
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StackGAN - 2016

® StackGAN: Text to Photo-realistic Image Synthesis with Stacked
Generative Adversarial Networks https://arxiv.org/abs/1612.03242

e Caltech-UCSD Birds 200 Dataset
http://www.vision.caltech.edu/visipedia/CUB-200-2011.html|

e 102 Category Flower Dataset
https://www.robots.ox.ac.uk/ vgg/data/flowers/102/



StackGAN - 2016
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Yellow_Headed_Blackbird_0017_8511_jpg

a bird has a bright golden crown and throat, it's breast is yellow, and back is black
upper body yellow and lower black with black color around beak
this bird has a bright yellow crown, a long straight bill, and white wingbars

this is a black bird with a yellow head and breast ...



StackGAN - 2016
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Figure 2. The architecture of the proposed StackGAN. The Stage-1 generator draws a low-resolution image by sketching rough shape and
basic colors of the object from the given text and painting the background from a random noise vector. Conditioned on Stage-1 results, the
Stage-1I generator corrects defects and adds compelling details into Stage-I results, yielding a more realistic high-resolution image.



StackGAN - 2016
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Figure 3. Example results by our StackGAN conditioned on text descriptions from CUB test set.
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Figure 4. Example results by our StackGAN conditioned on text descriptions from Oxford-102 test set and COCO validation set



StackGAN - 2016

This bird is The bird has This is a small,  This bird is
This bird 15 This bird has A white bird white, black, small beak, black bird with  white black and
Text bloe with white  wings that are with a black and brown in with reddish a white breast vellow in color,
description and has a Very brown and has crown and color, with a brown crown ahd white on with a short
short beak a vellow belly vellow beak brown beak and gray belly the wingbars. black beak

Stage-1
images

- ¢
- 3

Figure 5. Samples generated by our StackGAN from unseen texts in CUB test set. Each column lists the text description, images generated
from the text by Stage-1 and Stage-1I of StackGAN.

Stage-II
images

e https://github.com/hanzhanggit/StackGAN



BEGAN - 2017

e BEGAN: Boundary Equilibrium Generative Adversarial Networks
https://arxiv.org/abs/1703.10717

e ecnergy based GAN, discriminator assigns low energy values
to real data and high otherwise, generator produces samples
assigned with low energy by discriminator - generalized view

of loss functions
training minimization of loss

V(D,G) =Eqyp. (@)D, @] + Ega[(m — Dy (Gg, ()]

where m is a positive margin and 0 < ng <m



BEGAN - 2017

e architecture - uses convolutional layers

| Embedding (h) |
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Figure 1: Network architecture for the generator and discriminator.



BEGAN - 2017

e CcelebA dataset - http://mmilab.ie.cuhk.edu.hk/projects/CelebA.html

000006, pg
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BEGAN - 2017

e generated fake images

Figure 3: Random 64x64 samples at varying v € {0.3,0.5,0.7}



PGGAN - 2018

® Progressive Growing of GANSs for Improved Quality, Stability,
and Variation https://arxiv.org/abs/1710.10196

e architecture - uses convolutional layers

G Latent Latent Latent
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L J

Training progresses

Figure 1: Our training starts with both the generator (G) and discriminator (D) having a low spa-
tial resolution of 4x4 pixels. As the training advances, we incrementally add layers to G and D,
thus increasing the spatial resolution of the generated images. All existing layers remain trainable
throughout the process. Here refers to convolutional layers operating on N x N spatial
resolution. This allows stable synthesis in high resolutions and also speeds up training considerably.
One the right we show six example images generated using progressive growing at 1024 x 1024.



PGGAN - 2018

e architecture - uses convolutional layers

Figure 5: 1024 x 1024 images generated using the CELEBA-HQ dataset. See Appendix F for a
larger set of results, and the accompanying video for latent space interpolations.



PGGAN - 2018

e architecture - uses convolutional layers

Figure 5: 1024 x 1024 images generated using the CELEBA-HQ dataset. See Appendix F for a
larger set of results, and the accompanying video for latent space interpolations.



ImageNet

e over 14 mil. of images from 20 thousand categories
based on the WordNet database (a dictionary)
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BigGAN - 2019

® [ arge Scale GAN Training for High Fidelity Natural Image Synthesis
https://arxiv.org/abs/1809.11096

e we show that GANs benefit dramatically from scaling, and
train models with two to four times as many parameters and
eight times the batch size compared to prior art

e training on 128 to 512 cores of a Google TPUv3 Pod

Batch | Ch. | Param (M) | Shared | Skip-z | Ortho. | Ttr x10° FID IS

256 64 81.5 SA-GAN Baseline 1000 18.65 52.52
512 64 81.5 X X X 1000 15.30 TT(£1.18)
1024 64 81.5 X X X 1000 14.88 63 03{:|:1 42)
2048 64 81.5 X X X 732 12.39 76.85(=x3.83)
2048 | 96 1735 X X X | 295(£18) | 0.54(£0.62) | 02.98(£4.27)
2048 | 96 160.6 7 X X | IS5(E11) | 0.18(£0.13) | 91.94(£1.32)
2048 96 158.3 v v X 152(%7) 8.73(x=0.45) | 98.76(£2.84)
2048 96 158.3 v v v 165(+13) 8.51(+0.32) | 99.31(£2.10)
2048 64 71.3 v v v 3TL(£T) 10. 48{:|:D 10) | 86.90(+0.61)

Table 1: Frechet Inception Distance (FID, lower is better) and Inception Score (IS, higher is better)

for ablations of our proposed modifications. Batch is batch size, Param is total number of param-
eters, Ch. is the channel multiplier representing the number of units in each layer, Shared is using
shared embeddings, Skip-z is using skip connections from the latent to multiple layers, Ortho. is
Orthogonal Regularization, and Itr indicates if the setting is stable to 10° iterations, or it collapses
at the given iteration. Other than rows 1-4, results are computed across 8 random initializations.



BigGAN - 2019

architecture - uses convolutional layers




Open questions

e \What sorts of distributions can GANs model?

e How can we scale GANs beyond image synthesis?
(text, audio, computer-aided drug design - https://insilico.com)

e \What can we say about the global convergence of the training
dynamics?

e How does GAN training scale with batch size?

e \What is the relationship between GANs and adversarial
examples?

source: https://distill.pub/2019/gan-open-problems



