VIR 2019	Name:	
Test. 1		

December 15, 2021
Time Limit: 60 min
Points: _____

1. You are given Laplace probability distribution model $p(y|x, w) = \frac{1}{2} \exp(-|y - \mathbf{w}\bar{\mathbf{x}}|)$, which models probability of variable $y \in \mathbb{R}$, given measurement $x \in \mathbb{R}$ and unknown model parameters $w \in \mathbb{R}^2$. You are given a training set $\mathcal{D} = \{(x_1, y_1) \dots (x_N, y_N)\}$.

• ML regression: Write down the optimization problem, which corresponds to the maximum likelihood estimate of the model parameters \mathbf{w} . Simplify resulting loss function $\mathcal{L}(\mathbf{w})$ if possible.

• Feed-forward pass: Draw computational graph of $\mathcal{L}(\mathbf{w})$ and compute feed-forward pass with the following values: $\mathbf{w} = [1, -1]^{\mathsf{T}}, \mathbf{x}_1 = 2, y_1 = -1$. Keep vector notation to keep the graph simple.

Hint: assign a variable to each edge and evaluate its value and write it directly into the computational graph.

- 2. **Backpropagation:** Compute one iteration of the backpropagation algorithm in the computational graph above, with the learning rate $\alpha = \frac{1}{4}$. One iteration consists of the following steps:
 - (i) compute gradient w.r.t \mathbf{w} by the backward-pass,
 - (ii) update weights w,
 - (iii) substitute updated weights and compute the value of the new logistic loss.
 - What is the gradient (expression + value) of the back-propagated logistic loss?

$$\frac{\partial \mathcal{L}}{\partial \mathbf{w}} =$$

ullet What are updated weights (expression + value)

$$\mathbf{w}^{\mathrm{updated}} =$$

• What is the value of the updated logistic loss?

$$\mathcal{L}^{\mathrm{updated}} =$$