\mathbf{V}	TR.	201	9
•	110	401	. •

Name: _____

Exam test

Variant: A

Points _____

1. Consider the following network.

$$y = \sin(\mathbf{w}^{\mathsf{T}}\mathbf{x}) - b \tag{1}$$

• Draw the computational graph of the forward pass of this network. Note that **every** operator is a node with a given arity and output. For example, the + operator is a node which has two input arguments and a single output argument, etc...

- Consider an input $\mathbf{x} = [2, 1]\mathbf{w} = [\frac{\pi}{2}, \pi], b = 0$ and label l = 2.
 - Compute the forward pass of the network.

- Use an L_2 loss (Mean square error) to compute the loss value between the forward prediction y and label l. Add this loss to the computation graph.

– Use the chain rule to compute the gradient $\frac{\partial L(y,l)}{\partial \mathbf{w}}$ and estimate an update of parameters \mathbf{w} with learning rate $\alpha = 0.5$.

2. You are given an input volume X of dimension $[batch \times width \times height \times depth \times channel] = [3 \times 6 \times 6 \times 7 \times 1]$

Consider a 3D convolutional filter F of size $[width \times height \times depth] = [3 \times 3 \times 3]$

- What is the size of padding, which ensures the same spatial resolution of the output feature map? Note: A padding size of 1 for a $[30 \times 30]$ image gives it a resulting size of $[32 \times 32]$, in other words, zeros are added on both sides.
- Calculate the total memory in bytes of the learnable parameters of the filter, assuming that each weight is a half-precision float (FP16) which takes up 2 bytes each

• Calculate the amount of operations performed by a single application of the filter (just one stamp). Each addition or multiplication counts as a single operation. For example: $\alpha x + \beta y + c$ amounts to 2 multiplication and 3 addition operations, totaling 5 operations.

• Considering the entire input dimensions of X, given a stride of 1 in all dimensions, no padding and only valid convolutions, calculate the amount of filter applications ("stamps") that you have to perform to process the entire input.

- 3. Activation function maps single input \mathbf{x} on a single output value \mathbf{y} .
 - Define a Leaky Rectified Linear Unit $\mathbf{lrelu}(\mathbf{x})$ activation function in pseudocode, with $\alpha = 0.1$. The function has a single argument \mathbf{x} and output $\mathbf{y} = \mathbf{lrelu}(\mathbf{x})$.

• Define the gradient of the $\mathbf{lrelu}(\mathbf{x})$ activation function in pseudocode. The function has a single argument \mathbf{x} and outputs $\frac{\partial lrelu(x)}{\partial \mathbf{x}}$. Hint: Break up the function into two separate cases (if-else).

- 4. You are given batch of two one-dimensional training examples $\mathbf{B} = \{x_1 = 2, x_2 = 4\}$. The network consists of:
 - Batch-norm layer $BN_{\gamma,\beta}(\mathbf{B})$ with two learnable parameters $\gamma = 6, \beta = -1$.
 - L2-norm layer $\|\mathbf{y}\|_2^2 = \sum_i y_i^2$

Compute gradient of $||BN_{\gamma,\beta}(\mathbf{B})||_2^2$ with respect to the parameter γ .

Hint: Output of the batch-norm layer for this batch is two-dimensional.

5. You are given batch of two one-dimensional training examples $x_1 = 2, x_2 = 4$. The batch-norm layer has two learnable parameters $\gamma = 6, \beta = -1$. Compute jacobian of the batch-norm layer with respect to the parameter γ .

Hint: Output of the batch-norm layer for this batch is two-dimensional.

6. You are given batch of three one-dimensional training examples $x_1 = 5, x_2 = 2, x_3 = 1$. The batch-norm layer has two learnable parameters $\gamma = 6, \beta = -1$. Compute jacobian of the batch-norm layer with respect to the parameter β .

Hint: Output of the batch-norm layer for this batch is three-dimensional (you do not have to compute full feed-forward pass).

7. Consider MDP consisting of three states $\mathbf{x}_0 = 3$, $\mathbf{x}_1 = 1$, $\mathbf{x}_2 = 2$ and two types of actions $\mathbf{u} = 1$ and $\mathbf{u} = 2$, see image below. Agent selects action \mathbf{u} in the state \mathbf{x} according the following stochastic policy

$$\pi_{\theta}(\mathbf{u}|\mathbf{x}) = \begin{cases} \sigma(\theta\mathbf{x}) & \text{if } \mathbf{u} = 1\\ 1 - \sigma(\theta\mathbf{x}) & \text{if } \mathbf{u} = 2 \end{cases}$$

with scalar parameter $\theta = 2$. This policy maps one-dimensional state \mathbf{x} on the probability distribution of two possible actions $\mathbf{u} = 1$ or $\mathbf{u} = 2$.

Consider trajectory-reward function defined as follows:

$$r(\tau) = \sum_{\mathbf{x}_i \in \tau} (\mathbf{x}_i - 1)^2$$

Given training trajectory $\tau = [(\mathbf{x}_0 = 3), (\mathbf{u} = 1), (\mathbf{x}_1 = 1)]$, which consists of the single transition (outlined by red color), estimate REINFORCE policy gradient.

• Policy gradient

$$\frac{\partial \log \pi_{\theta}(\mathbf{u}|\mathbf{x})}{\partial \theta}\Big|_{\substack{\mathbf{x} = \mathbf{x}_0 \\ \mathbf{u} = \mathbf{u}_0}} \cdot r(\tau) =$$

• Updated weights with learning rate $\alpha = 1$

8. You are given network (without loss layer) which consists of the convolutional layer and the max-pooling layer. The structure is defined as follows:

$$f(\mathbf{x}, \mathbf{w}) = \max(\operatorname{conv}(\mathbf{x}, \mathbf{w}), 1 \times 2)$$

Given the input feature map (image) \mathbf{x} and convolutional kernel \mathbf{w} :

$$\mathbf{x} = \boxed{2 \mid 1 \mid 2} \quad \mathbf{w} = \boxed{1 \mid 0}$$

estimate gradient $\frac{\partial f(\mathbf{x}, \mathbf{w})}{\partial \mathbf{w}}$ of its output wrt kernel \mathbf{w} .

Hint: Draw computational graph, perform feed-forward pass, compute local gradients for the max-pooling layer and the convolutional layer and substitute edge-values computed in the feed-forward pass.

9. You are given the following network

$$f(\mathbf{x}, \mathbf{w}) = \frac{1}{2} \|\mathbf{w}^{\top} \mathbf{x}\|_{2}^{2} = \frac{1}{2} ((w_{1}x_{1})^{2} + (w_{2}x_{2})^{2})$$

and a single training example $\mathbf{x} = [\sqrt{3}, 1]^{\mathsf{T}}$. Consider Stochastic Gradient Descend algorithm, which updates the weights as follows:

$$\mathbf{w}^k = \mathbf{w}^{k-1} - \alpha \left. \frac{\partial f^{\top}(\mathbf{w})}{\partial \mathbf{w}} \right|_{\mathbf{w} = \mathbf{w}^{k-1}},$$

where α denotes its learning rate.

• For which α the SGD converges (at least slowly) in both dimensions? **Hint:** Derive formula for weight values in k-th iteration

$$w_1^k = \rho_1(\alpha)^k w_1^0$$

$$w_2^k = \rho_2(\alpha)^k w_2^0,$$

where $\rho_i(\alpha)$ denotes convergence rate in dimension i = 1, 2. Find α for which both formulas converges to zero (i.e. the global optimum).

• What is the best learning rate α^* , which guarantees the fastest convergence rate for arbitrary weight initialization \mathbf{w}^0 and this particular training example.

Hint: The smaller the $|\rho_i(\alpha)|$, the faster the convergence. Choose alpha, which minimize maximal convergence rate:

$$\alpha^* = \arg\min_{\alpha} \max\{|\rho_1(\alpha)|, |\rho_2(\alpha)|\}$$

10. Consider linear recurrent neural network with L2 loss depicted on the image below. The network is initialized with parameters $\theta_1 = 1, \theta_2 = 0, z_0 = 0$. You are given the following training sequence:

time=1	time=2	
$x_1 = 0$	$x_2 = 1$	
$y_1 = 1$	$y_2 = 3$	

Estimate gradient of the overall loss (computed over all available outputs y_i for both available times i = 1, 2) with respect to θ_1 .

Hint: Unroll the network in time, to obtain a usual feedforward network with two loss nodes. Do the backpropagation as usual.