Linear image classification

Karel Zimmermann

http://cmp.felk.cvut.cz/~zimmerk/

Vision for Robotics and Autonomous Systems https://cyber.felk.cvut.cz/vras/

Center for Machine Perception https://cmp.felk.cvut.cz

Department for Cybernetics Faculty of Electrical Engineering Czech Technical University in Prague

Outline

- Pre-requisites: linear algebra, Bayes rule
- MAP/ML estimation, prior and overfitting
- Linear regression
- Linear classification

Why is it hard?

CIFAR-10: classify 32x32 RGB images into 10 categories https://www.cs.toronto.edu/~kriz/cifar.html

Huge within-class variability & among-class similarity!

Why it is hard?

- Viewpoint
- Occlusion
- Illumination
- Pose
- Type
- Context

Huge within-class variability & among-class similarity!

bird

cat

dog

CIFAR-10: classify 32x32 RGB images into 10 categories https://www.cs.toronto.edu/~kriz/cifar.html

RGB images (\mathbf{x}_i)

airplane

automobile

Two-class recognition problem: classify airplane/automobile

```
def classify( ):
???
return p
```

Probability of image being from the class airplane How to model it?

RGB images (\mathbf{x}_i)

$$-1$$

Classification

We model probability of image x being label +1 or -1 as

$$p(y|\mathbf{x}, \mathbf{w}) = \begin{cases} \sigma(f(\mathbf{x}, \mathbf{w})) & y = +1\\ 1 - \sigma(f(\mathbf{x}, \mathbf{w})) & y = -1 \end{cases}$$

RGB images (\mathbf{x}_i)

$$+1$$

$$-1$$

Classification

We model probability of image x being label +1 or -1 as

$$p(y|\mathbf{x}, \mathbf{w}) = \begin{cases} \sigma(f(\mathbf{x}, \mathbf{w})) & y = +1\\ 1 - \sigma(f(\mathbf{x}, \mathbf{w})) & y = -1 \end{cases}$$

where

$$\sigma(f(\mathbf{x}, \mathbf{w})) = \frac{1}{1 + \exp(-f(\mathbf{x}, \mathbf{w}))}$$

is sigmoid function.

RGB images (\mathbf{x}_i)

$$+1$$

-1

Classification

We model probability of image x being label +1 or -1 as

$$p(y|\mathbf{x}, \mathbf{w}) = \begin{cases} \sigma(f(\mathbf{x}, \mathbf{w})) & y = +1 \\ 1 - \sigma(f(\mathbf{x}, \mathbf{w})) & y = -1 \end{cases}$$

RGB images (\mathbf{x}_i)

$$+1$$

$$-1$$

Classification

We model probability of image x being label +1 or -1 as

$$p(y|\mathbf{x}, \mathbf{w}) = \begin{cases} \sigma(f(\mathbf{x}, \mathbf{w})) & y = +1 \\ 1 - \sigma(f(\mathbf{x}, \mathbf{w})) & y = -1 \end{cases}$$

RGB images (\mathbf{x}_i)

$$+1$$

Classification

We model probability of mage x being label +1 or -1 as

$$p(y|\mathbf{x}, \mathbf{w}) = \begin{cases} \sigma(f(\mathbf{x}, \mathbf{w})) & y = +1 \\ 1 - \sigma(f(\mathbf{x}, \mathbf{w})) & y = -1 \end{cases}$$

RGB images (\mathbf{x}_i)

$$+1$$

$$-1$$

Classification

We model probability of image x being label +1 or -1 as

$$p(y|\mathbf{x}, \mathbf{w}) = \begin{cases} \sigma(f(\mathbf{x}, \mathbf{w})) & y = +1\\ 1 - \sigma(f(\mathbf{x}, \mathbf{w})) & y = -1 \end{cases}$$

Linear classifier model probability of being from class +1 as $p = \sigma\left(\mathbf{w}^{\top}\overline{\mathbf{x}}\right)$

What is dimensionality of x and w?

RGB images (\mathbf{x}_i)

$$+1$$

$$-1$$

Classification Example: Linear classifier

RGB images (\mathbf{x}_i)

Classification Example: Linear classifier

RGB images (\mathbf{x}_i)

$$+1$$

$$= \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Classification Example: Linear classifier

Show python code

RGB images (\mathbf{x}_i)

Training

Training = search for unknown parameters w which fits a given data

Training data

RGB images (\mathbf{x}_i)

$$+1$$

-1

[⁄]Tr<mark>⁄aining</mark>

Training = search for unknown parameters w which fits a given data

$$p(y|\mathbf{x}, \mathbf{w}) = \begin{cases} \sigma(f(\mathbf{x}, \mathbf{w})) & y = +1 \\ 1 - \sigma(f(\mathbf{x}, \mathbf{w})) & y = -1 \end{cases}$$

RGB images (\mathbf{x}_i)

+1 -1

Training

Training = search for unknown parameters w which fits a given data

$$p(y|\mathbf{x}, \mathbf{w}) = \begin{cases} \sigma(f(\mathbf{x}, \mathbf{w})) & y = +1 \\ 1 - \sigma(f(\mathbf{x}, \mathbf{w})) & y = -1 \end{cases}$$

Labels
$$(y_i)$$

RGB images (\mathbf{x}_i)

Training

Training = search for unknown parameters w which fits a given data

$$p(y|\mathbf{x}, \mathbf{w}) = \begin{cases} \sigma(f(\mathbf{x}, \mathbf{w})) & y = +1 \\ 1 - \sigma(f(\mathbf{x}, \mathbf{w})) & y = -1 \end{cases}$$

Probability of observing y_i when measuring \mathbf{x}_i is

RGB images (\mathbf{x}_i)

$$+1$$
 -1

Training

Training = search for unknown parameters w which fits a given data

$$p(y|\mathbf{x}, \mathbf{w}) = \begin{cases} \sigma(f(\mathbf{x}, \mathbf{w})) & y = +1 \\ 1 - \sigma(f(\mathbf{x}, \mathbf{w})) & y = -1 \end{cases}$$

Probability of observing y_i when measuring \mathbf{x}_i is

RGB images (\mathbf{x}_i)

$$+1$$

$$-1$$

Training

Training = search for unknown parameters w which fits a given data

Probability of observing y_i when measuring \mathbf{x}_i is

Two-class classification problem

$$p(y|\mathbf{x}, \mathbf{w}) = \begin{cases} \sigma(f(\mathbf{x}, \mathbf{w})) & y = +1\\ 1 - \sigma(f(\mathbf{x}, \mathbf{w})) & y = -1 \end{cases}$$

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \left(\sum_{i} -\log(p(y_i|\mathbf{x}_i, \mathbf{w})) \right)$$

Two-class classification problem

$$p(y|\mathbf{x}, \mathbf{w}) = \begin{cases} \sigma(f(\mathbf{x}, \mathbf{w})) & y = +1\\ 1 - \sigma(f(\mathbf{x}, \mathbf{w})) & y = -1 \end{cases}$$

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \left(\sum_{i} -\log(p(y_i|\mathbf{x}_i, \mathbf{w})) \right)$$

```
loss = 0

for each (x, y) from training set:

p = sigmoid(f(x,w))

if y==1:

loss = loss + -log(p)

else:

loss = loss + -log(1-p)
```


$$p(y|\mathbf{x}, \mathbf{w}) = \begin{cases} \sigma(f(\mathbf{x}, \mathbf{w})) & y = +1\\ 1 - \sigma(f(\mathbf{x}, \mathbf{w})) & y = -1 \end{cases}$$

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \left(\sum_{i} -\log(p(y_i|\mathbf{x}_i, \mathbf{w})) \right)$$

$$= -\log \left[\sigma(y_i f(\mathbf{x}_i, \mathbf{w}))\right]$$

Logistic loss
$$\log \left[1 + \exp(-y_i f(\mathbf{x}_i, \mathbf{w}))\right]$$

$$p(y|\mathbf{x}, \mathbf{w}) = \begin{cases} \sigma(f(\mathbf{x}, \mathbf{w})) & y = +1 \\ 1 - \sigma(f(\mathbf{x}, \mathbf{w})) & y = -1 \end{cases} \quad \bar{y} = 1$$

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \left(\sum_{i} -\log(p(y_i|\mathbf{x}_i, \mathbf{w})) \right)$$

 $\begin{aligned} loss &= 0 \\ for each (x, y) from training set: \\ P &= [1\text{-sigmoid}(f(x,w)); \\ sigmoid(f(x,w))] \\ loss &= loss + -log(P[y]) \end{aligned}$

$$p(y|\mathbf{x}, \mathbf{w}) = \begin{cases} \sigma(f(\mathbf{x}, \mathbf{w})) & y = +1 \\ 1 - \sigma(f(\mathbf{x}, \mathbf{w})) & y = -1 \end{cases} \quad \bar{y} = 1$$

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \left(\sum_{i} -\log(p(y_i|\mathbf{x}_i, \mathbf{w})) \right)$$

$$p(y|\mathbf{x}, \mathbf{w}) = \begin{cases} \sigma(f(\mathbf{x}, \mathbf{w})) & y = +1 \\ 1 - \sigma(f(\mathbf{x}, \mathbf{w})) & y = -1 \end{cases} \quad \bar{y} = 1$$

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \left(\sum_{i} -\log(p(y_i|\mathbf{x}_i, \mathbf{w})) \right)$$

$$-\log \left[\begin{array}{c} \mathbf{0} & \mathbf{0} \\ -\log \left[\begin{array}{c} 1 - \sigma(f(\mathbf{x}_i, \mathbf{w})) \\ \sigma(f(\mathbf{x}_i, \mathbf{w})) \end{array}\right]_{\bar{y}_i}$$

⇔ Cross-entropy loss

$$-\left[\bar{y}_i \cdot \log\left(\sigma(f(\mathbf{x}_i, \mathbf{w}))\right) + (1 - \bar{y}_i) \cdot \log\left(1 - \sigma(f(\mathbf{x}_i, \mathbf{w}))\right)\right]$$

$$\bar{y}_i = \frac{y_i + 1}{2} \in \{0, 1\}$$

$$p(y|\mathbf{x}, \mathbf{w}) = \begin{cases} \sigma(f(\mathbf{x}, \mathbf{w})) & y = +1\\ 1 - \sigma(f(\mathbf{x}, \mathbf{w})) & y = -1 \end{cases}$$

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \left(\sum_{i} -\log(p(y_i|\mathbf{x}_i, \mathbf{w})) \right)$$

$$= -\log \left[\sigma(y_i f(\mathbf{x}_i, \mathbf{w}))\right]$$

Logistic loss
$$\log \left[1 + \exp(-y_i f(\mathbf{x}_i, \mathbf{w}))\right]$$

$$-\left[\bar{y}_i \cdot \log\left(\sigma(f(\mathbf{x}_i, \mathbf{w}))\right) + (1 - \bar{y}_i) \cdot \log\left(1 - \sigma(f(\mathbf{x}_i, \mathbf{w}))\right)\right]$$

$$\bar{y}_i = \frac{y_i + 1}{2} \in \{0, 1\}$$

RGB images (\mathbf{x}_i)

TrainingExample: Training linear classifier

def train(
$$\mathbf{x}_i = \mathbf{vec}(\mathbf{x}_i)$$
) \forall_i

return \mathbf{w}^*

Labels
$$(y_i)$$

RGB images (\mathbf{x}_i)

TrainingExample: Training linear classifier

RGB images (\mathbf{x}_i)

Training Example: Training linear classifier

score

-2.5

Small $\mathbf{w}^{\top}\overline{\mathbf{x}}_i$ while $y_i = -1$

RGB images (\mathbf{x}_i)

TrainingExample: Training linear classifier

RGB images (\mathbf{x}_i)

TrainingExample: Training linear classifier

0.03

Small loss for for small $\mathbf{w}^{\top} \overline{\mathbf{x}}_i$ while $y_i = -1$

RGB images (\mathbf{x}_i)

TrainingExample: Training linear classifier

Large $\mathbf{w}^{\top}\overline{\mathbf{x}}_i$ while $y_i = -1$

2.5

RGB images (\mathbf{x}_i)

TrainingExample: Training linear classifier

RGB images (\mathbf{x}_i)

TrainingExample: Training linear classifier

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \sum_{i} \log \left[1 + \exp(-y_i \, \mathbf{w}^\top \overline{\mathbf{x}}_i) \right]$$

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \sum_{i} \log \left[1 + \exp(-y_i \, \mathbf{w}^\top \overline{\mathbf{x}}_i) \right]$$

$$\mathcal{L}(\mathbf{w})$$

- There is no closed-form solution
- Gradient optimization

$$\mathbf{w} = \mathbf{w} - \alpha \left[\frac{\partial \mathcal{L}(\mathbf{w})}{\partial \mathbf{w}} \right]^{\mathsf{T}}$$
 where $\frac{\partial \mathcal{L}(\mathbf{w})}{\partial \mathbf{w}} =$?

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \underbrace{\sum_{i} \log \left[1 + \exp(-y_i \, \mathbf{w}^\top \overline{\mathbf{x}}_i) \right]}_{i}$$

$$\mathcal{L}(\mathbf{w})$$

- There is no closed-form solution
- Gradient optimization

$$\mathbf{w} = \mathbf{w} - \alpha \left[\frac{\partial \mathcal{L}(\mathbf{w})}{\partial \mathbf{w}} \right]^{\mathsf{T}} \text{where } \frac{\partial \mathcal{L}(\mathbf{w})}{\partial \mathbf{w}} = \sum_{i} \frac{-y_{i} \overline{\mathbf{x}}_{i}^{\mathsf{T}}}{1 + \exp(y_{i} \mathbf{w}^{\mathsf{T}} \overline{\mathbf{x}}_{i})}$$

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \sum_{i} \log \left[1 + \exp(-y_i \, \mathbf{w}^\top \overline{\mathbf{x}}_i) \right]$$

$$\mathcal{L}(\mathbf{w})$$

- There is no closed-form solution
- Gradient optimization

$$\mathbf{w} = \mathbf{w} - \alpha \left[\frac{\partial \mathcal{L}(\mathbf{w})}{\partial \mathbf{w}} \right]^{\mathsf{T}} \text{where } \frac{\partial \mathcal{L}(\mathbf{w})}{\partial \mathbf{w}} = \sum_{i} \frac{-y_{i} \overline{\mathbf{x}}_{i}^{\mathsf{T}}}{1 + \exp(y_{i} \mathbf{w}^{\mathsf{T}} \overline{\mathbf{x}}_{i})}$$

Learned weights as a template:

automobile

Show python code

Labels (y_i) RGB images (\mathbf{x}_i)

Three-class recognition problem:

RGB images (\mathbf{x}_i)

Three-class recognition problem:

RGB images (\mathbf{x}_i)

Model probability distribution over classes by softmax function

$$p(y|\mathbf{x}, \mathbf{W}) = \begin{bmatrix} \exp(f(\mathbf{x}, \mathbf{w}_1)) \\ \exp(f(\mathbf{x}, \mathbf{w}_2)) \\ \exp(f(\mathbf{x}, \mathbf{w}_3)) \end{bmatrix} / \sum_{k} \exp(f(\mathbf{x}, \mathbf{w}_k) = \mathbf{s}(\mathbf{f}(\mathbf{x}, \mathbf{W}))$$

RGB images (\mathbf{x}_i)

Three-class recognition problem:

$$\mathbf{s} \left(\begin{bmatrix} -2 \\ +1 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} 0.03 \\ 0.71 \\ 0.26 \end{bmatrix}$$

Classification (probability modeled by soft-max function):

$$p(y|\mathbf{x}, \mathbf{W}) = \begin{bmatrix} \exp(f(\mathbf{x}, \mathbf{w}_1)) \\ \exp(f(\mathbf{x}, \mathbf{w}_2)) \\ \exp(f(\mathbf{x}, \mathbf{w}_3)) \end{bmatrix} / \sum_{k} \exp(f(\mathbf{x}, \mathbf{w}_k) = \mathbf{s}(\mathbf{f}(\mathbf{x}, \mathbf{W})))$$

Classification (probability modeled by soft-max function):

$$p(y|\mathbf{x}, \mathbf{W}) = \begin{bmatrix} \exp(f(\mathbf{x}, \mathbf{w}_1)) \\ \exp(f(\mathbf{x}, \mathbf{w}_2)) \\ \exp(f(\mathbf{x}, \mathbf{w}_3)) \end{bmatrix} / \sum_{k} \exp(f(\mathbf{x}, \mathbf{w}_k) = \mathbf{s}(\mathbf{f}(\mathbf{x}, \mathbf{W})))$$

X

• Classification (probability modeled by soft-max function):

$$p(y|\mathbf{x}, \mathbf{W}) = \begin{bmatrix} \exp(f(\mathbf{x}, \mathbf{w}_1)) \\ \exp(f(\mathbf{x}, \mathbf{w}_2)) \\ \exp(f(\mathbf{x}, \mathbf{w}_3)) \end{bmatrix} / \sum_{k} \exp(f(\mathbf{x}, \mathbf{w}_k) = \mathbf{s}(\mathbf{f}(\mathbf{x}, \mathbf{W}))$$

• Probability of observing y_i when measuring \mathbf{x}_i is

$$p(y_i|\mathbf{x}_i, \mathbf{W}) = \mathbf{s}_{y_i}(\mathbf{f}(\mathbf{x}_i, \mathbf{W})) \qquad \qquad \mathbf{y}_{3} \qquad \mathbf{x}$$

• Classification (probability modeled by soft-max function):

$$p(y|\mathbf{x}, \mathbf{W}) = \begin{bmatrix} \exp(f(\mathbf{x}, \mathbf{w}_1)) \\ \exp(f(\mathbf{x}, \mathbf{w}_2)) \\ \exp(f(\mathbf{x}, \mathbf{w}_3)) \end{bmatrix} / \sum_{k} \exp(f(\mathbf{x}, \mathbf{w}_k) = \mathbf{s}(\mathbf{f}(\mathbf{x}, \mathbf{W}))$$

• Probability of observing y_i when measuring \mathbf{x}_i is

$$p(y_i|\mathbf{x}_i, \mathbf{W}) = \mathbf{s}_{y_i}(\mathbf{f}(\mathbf{x}_i, \mathbf{W}))$$

Training: MLE estimate of W

$$\mathbf{W}^* = \arg\min_{\mathbf{W}} \sum -\log \mathbf{s}_{y_i}(\mathbf{f}(\mathbf{x}_i, \mathbf{W}))$$

• Classification (probability modeled by soft-max function):

$$p(y|\mathbf{x}, \mathbf{W}) = \begin{bmatrix} \exp(f(\mathbf{x}, \mathbf{w}_1)) \\ \exp(f(\mathbf{x}, \mathbf{w}_2)) \\ \exp(f(\mathbf{x}, \mathbf{w}_3)) \end{bmatrix} / \sum_{k} \exp(f(\mathbf{x}, \mathbf{w}_k) = \mathbf{s}(\mathbf{f}(\mathbf{x}, \mathbf{W}))$$

• Probability of observing y_i when measuring \mathbf{x}_i is

$$p(y_i|\mathbf{x}_i, \mathbf{W}) = \mathbf{s}_{y_i}(\mathbf{f}(\mathbf{x}_i, \mathbf{W}))$$

Training: MLE estimate of W

$$\mathbf{W}^* = \arg\min_{\mathbf{W}} \sum -\log \mathbf{s}_{y_i}(\mathbf{f}(\mathbf{x}_i, \mathbf{W}))$$

RGB images (\mathbf{x}_i)

def train(
$$\mathbf{x}_i = \operatorname{vec}(\mathbf{x}_i)$$
) $\mathbf{x}_i = \operatorname{vec}(\mathbf{x}_i)$

$$\mathbf{W}^* = \arg\min_{\mathbf{W}} \sum_{i} -\log \mathbf{s}_{y_i}(\mathbf{W}\,\overline{\mathbf{x}}_i))$$

return W*

$$y_i = 2$$

$$\mathbf{s}(\mathbf{W}\,\overline{\mathbf{x}}_i) = \begin{bmatrix} 0.03\\0.71\\0.26 \end{bmatrix}$$

$$\Rightarrow -\log \mathbf{s}_{y_i}(\mathbf{W}\,\overline{\mathbf{x}}_i) = -\log(0.71) = 0.15$$

Car classified as car yields small loss

$$\det \operatorname{train}(\underbrace{1}_{1}, \underbrace{1}_{1}, \underbrace{1}_{2}, \underbrace{2}_{2}, \underbrace{2}_{3}, \underbrace{3}_{3}, \underbrace{3}_{3})) :$$

$$\mathbf{x}_{i} = \operatorname{vec}(\underbrace{1}_{\mathbf{W}}, \underbrace{1}_{i}, \underbrace{1}_{i$$

$$y_i = 1$$

$$\mathbf{s}(\mathbf{W}\,\overline{\mathbf{x}}_i) = \begin{bmatrix} 0.03\\0.57\\0.40 \end{bmatrix}$$

$$\Rightarrow -\log \mathbf{s}_{y_i}(\mathbf{W}\,\overline{\mathbf{x}}_i) = -\log(0.03) = 1.52$$

Plane classified as car yields huge loss

$$\det \operatorname{train}(\underbrace{1}_{1} \underbrace{1}_{1} \underbrace{1}_{2} \underbrace{2}_{2} \underbrace{2}_{3} \underbrace{3}_{3} \underbrace{3}_{3}) :$$

$$\mathbf{x}_{i} = \operatorname{vec}(\underbrace{1}_{W} \underbrace{1}_{i} \underbrace{1}_{i} - \log \mathbf{s}_{y_{i}}(\mathbf{W} \overline{\mathbf{x}}_{i}))$$

$$\operatorname{return} \mathbf{W}^{*}$$

Dataset

Learned weights of linear classifier

Accuracy

MNIST

91%

Demo: https://ml4a.github.io/ml4a/looking_inside_neural_nets/

37%

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \left(\sum_{i} -\log(p(y_i|\mathbf{x}_i, \mathbf{w})) \right) + (-\log p(\mathbf{w}))$$

• Classification:
$$p(y|\mathbf{x},\mathbf{w}) = \begin{cases} \sigma(f(\mathbf{x},\mathbf{w})) & y = +1 \\ 1 - \sigma(f(\mathbf{x},\mathbf{w})) & y = -1 \end{cases}$$

• Choice of $f(\mathbf{x}, \mathbf{w})$ is crucial

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \left(\sum_{i} -\log(p(y_i|\mathbf{x}_i, \mathbf{w})) \right) + (-\log p(\mathbf{w}))$$

• Classification:
$$p(y|\mathbf{x},\mathbf{w}) = \begin{cases} \sigma(f(\mathbf{x},\mathbf{w})) & y = +1 \\ 1 - \sigma(f(\mathbf{x},\mathbf{w})) & y = -1 \end{cases}$$

• Linear $f(\mathbf{x}, \mathbf{w})$ cannot generate wild decision boundary

1D example:

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \left(\sum_{i} -\log(p(y_i|\mathbf{x}_i, \mathbf{w})) \right) + (-\log p(\mathbf{w}))$$

• Classification:
$$p(y|\mathbf{x},\mathbf{w}) = \begin{cases} \sigma(f(\mathbf{x},\mathbf{w})) & y = +1 \\ 1 - \sigma(f(\mathbf{x},\mathbf{w})) & y = -1 \end{cases}$$

• Linear $f(\mathbf{x}, \mathbf{w})$ cannot generate wild decision boundary

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \left(\sum_{i} -\log(p(y_i|\mathbf{x}_i, \mathbf{w})) \right) + (-\log p(\mathbf{w}))$$

• Classification:
$$p(y|\mathbf{x},\mathbf{w}) = \begin{cases} \sigma(f(\mathbf{x},\mathbf{w})) & y = +1 \\ 1 - \sigma(f(\mathbf{x},\mathbf{w})) & y = -1 \end{cases}$$

• Linear $f(\mathbf{x}, \mathbf{w})$ cannot generate wild decision boundary

1D example:

$$\xrightarrow{00 \times \times \times \times \times 000}$$

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \left(\sum_{i} -\log(p(y_i|\mathbf{x}_i, \mathbf{w})) \right) + \left(-\log p(\mathbf{w}) \right)$$

loss function prior/regulariser
• Classification:
$$p(y|\mathbf{x},\mathbf{w}) = \begin{cases} \sigma(f(\mathbf{x},\mathbf{w})) & y = +1 \\ 1 - \sigma(f(\mathbf{x},\mathbf{w})) & y = -1 \end{cases}$$

• Linear $f(\mathbf{x}, \mathbf{w})$ cannot generate wild decision boundary

2D example: x circle XOR

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \left(\sum_{i} -\log(p(y_i|\mathbf{x}_i, \mathbf{w})) \right) + (-\log p(\mathbf{w}))$$

• Classification:
$$p(y|\mathbf{x},\mathbf{w}) = \begin{cases} \sigma(f(\mathbf{x},\mathbf{w})) & y = +1 \\ 1 - \sigma(f(\mathbf{x},\mathbf{w})) & y = -1 \end{cases}$$

• Wild $f(\mathbf{x}, \mathbf{w})$ with high-dimensional \mathbf{w} suffers from the curse of dimensionality and overfitting

$$\xrightarrow{\circ\circ} \xrightarrow{\times} \times$$
1D case

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \left(\sum_{i} -\log(p(y_i|\mathbf{x}_i, \mathbf{w})) \right) + (-\log p(\mathbf{w}))$$

loss function prior/regulariser
• Classification:
$$p(y|\mathbf{x},\mathbf{w}) = \begin{cases} \sigma(f(\mathbf{x},\mathbf{w})) & y = +1 \\ 1 - \sigma(f(\mathbf{x},\mathbf{w})) & y = -1 \end{cases}$$

• Wild $f(\mathbf{x}, \mathbf{w})$ with high-dimensional \mathbf{w} suffers from the curse of dimensionality and overfitting

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \left(\sum_{i} -\log(p(y_i|\mathbf{x}_i, \mathbf{w})) \right) + (-\log p(\mathbf{w}))$$

loss function prior/regulariser
• Classification:
$$p(y|\mathbf{x},\mathbf{w}) = \begin{cases} \sigma(f(\mathbf{x},\mathbf{w})) & y = +1 \\ 1 - \sigma(f(\mathbf{x},\mathbf{w})) & y = -1 \end{cases}$$

• Wild $f(\mathbf{x}, \mathbf{w})$ with high-dimensional \mathbf{w} suffers from the curse of dimensionality and overfitting

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \left(\sum_{i} -\log(p(y_i|\mathbf{x}_i, \mathbf{w})) \right) + (-\log p(\mathbf{w}))$$

• Classification:
$$p(y|\mathbf{x}, \mathbf{w}) = \begin{cases} \sigma(f(\mathbf{x}, \mathbf{w})) & y = +1 \\ 1 - \sigma(f(\mathbf{x}, \mathbf{w})) & y = -1 \end{cases}$$

- Wild $f(\mathbf{x}, \mathbf{w})$ with high-dimensional \mathbf{w} suffers from the curse of dimensionality and overfitting
- We exploit prior $p(\mathbf{w})$ to restrict the wildness of $f(\mathbf{x}, \mathbf{w})$
 - L2 regulariser $p(\mathbf{w}) = \mathcal{N}_{\mathbf{w}}(0, \sigma^2) \Rightarrow \|\mathbf{w}\|_2^2$
 - L1 regulariser, L1+L2 regulariser (elastic net)
 - prior on $f(\mathbf{x}, \mathbf{w})$ structure (e.g. consists of convolutions)
 - batch normalization

Conclusions

- Explained regression and linear classifier as MAP/ML estimator
- Discussed under/overfitting and regularisations
- Next lesson will go deeper

Competencies required for the test T1

- Derive MAP/ML estimate for two-class and K-class classification problem.
- Compute logistic-loss and cross-entropy-loss
- Understand when classifier has high/low values.
- Understand when loss has high/low values.

