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Note: To understand these methods value, imagine yourself as a manual labeller or stakeholder



Fully-supervised labels

e Features from networks trained on ImageNet can be used for other visual tasks, e.g. detection,
segmentation, action recognition, fine grained visual classification
e Any visual task can be solved to some extent by:
o Construct a large-scale dataset labelled for that task
o  Specify a training loss and neural network architecture
o  Train the network and deploy
e Main issue: Time and Financially consuming!
e Alternatives? Self-supervision



Self-supervision

e Expense of producing a new dataset for each new task

e Some areas are supervision-starved, e.g. medical data, where it is hard to
obtain annotation

e Availability of unlabelled images/videos flickr

e A form of unsupervised learning where the data provides the o0

Sup ervision 2017:1.2B/day 2011 68+

(9)

2017: 400H/min 2015: 40B+

e (reate artificial task that network would predict
e The task defines a proxy loss, and the network is forced to learn what

we really care about, e.g. a semantic representation, in order to solve it
e How infants may learn ...



Relative position - jigsaw puzzle

Semantics from non-semantic tasks

Unsupervised visual representation learning by context prediction, Carl Doersch, Abhinav Gupta, Alexei A. Eftos,
ICCV 2015
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Avoiding trivial shortcuts

Introduce gap between
the patches

Jitter / noise the
positions of the patches




Colourization

B
Grayscale image: L channel Concatenate (L,ab)
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Colourization examples




Sideways: Usage of Colorization
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Exemplar tasks

Perturbation or distortion
of image patches
Cropping and affine
transformations
(torchvision in pytorch)
Train to classify these
exemplars as same class

(f) Rotate {90°,180°,270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering

Figure 4. llustrations of the studied data augmentation operators. Each augmentation can transform data stochastically with some internal
parameters (e.g. rotation degree, noise level). Note that we only test these operators in ablation, the augmentation policy used to train our
models only includes random crop (with flip and resize), color distortion, and Gaussian blur. (Original image cc-by: Von.grzanka)

Ting Chen, et. al: A Simple Framework for Contrastive Learning of Visual Representations, ICML 2020



Autoencoders

e Learn efficient data encoding

e |learnrepresentations for
dimensionality reduction and
denoising

e Gather useful features from input
data

e Variational encoders, generative
models ...

=

Add noise to the
input image

Feed
corrupted
input into

autoencoder

Measure
reconstruction
loss against
original image
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Pre-train on relative-position task, w/o labels

e OnlImageNet dataset we train

network self-supervised, then fix Self-supervision task ImageNet PASCAL VOC
parameters and learn classifier on t(():lags;zcczitrlgg Derf :gon
extracted features Rel. Pos : 59 21 : 66.75

e On PASCAIT Qataset we tramonet with Colos 62.48 65.47
self-supervision and then train Exemplar 53.08 60.94
faster-RCNN . Rel. Pos + colour 66.64 68.75

e ImageNet labels == fully supervised [ pos + Exemplar 65.24 69.44

e Everything on same backbone Rel. Pos + colour + Exemplar 68.65 69.48
network ResNet-101 ImageNet labels 85.10 74.17

Multi-task self-supervised visual learning, C Doersch, A Zisserman, ICCV 2017



Image Transformations

e Whichimage has a correct rotation?

Unsupervised representation learning by predicting image rotations, Spyros Gidaris, Praveer Singh, Nikos Komodakis, ICLR 2018



Image transformations

90° rotation 270° rotation 180° rotation 0° rotation 270° rotation

Figure 1: Images rotated by random multiples of 90 degrees (e.g., 0, 90, 180, or 270 degrees). The
core intuition of our self-supervised feature learning approach is that if someone is not aware of the

concepts of the objects depicted in the images, he cannot recognize the rotation that was applied to
them.

Unsupervised representation learning by predicting image rotations, Spyros Gidaris, Praveer Singh, Nikos Komodakis, ICLR 2018
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Contrastive learning

@ )
ONE DOLL AR
MY

Epstein (2016)

In God
we fruty

e “Despite having seen a dollar bill countless number of times, we don’t retain a full
representation of it.”

e Wereally only retain enough features of the bill to distinguish it from other objects.

e Canwe build representation learning algorithms that don't concentrate on pixel-level
details, and only encode high-level features sufficient enough to distinguish different
objects?



Generative vs. contrastive

Generative / Predictive

Data
o

Data
1

Loss measured in the output space

Examples: Colorization, Auto-Encoders

Contrastive
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Classification
(similar or not)

Loss measured in the representation space
Examples: TCN, CPC, Deep-InfoMax

e Contrastive methods learn representations by contrasting positive and negative examples

e Pixel-level losses can lead to focus on pixel-based details, rather than latent factors.

e Pixel-based objectives often assume independence between each pixel, thereby reducing
their ability to model correlations or complex structure



Match the correct animal

Contrastive

e  Contrastive objective causes representations of corresponding views to “attract” each other, while representations
of non-corresponding views “repel” each other.

Procedure:
e  First, generate batches of a certain size, say N from the raw images
e  For each images, a random transformation / crop function is applied to get a pair @ Pair 1
e Each augmented image in a pair is passed through an encoder to get image representations. ;
e  For each augmented image in the batch, get an embedding vector

score(f(z), f(z)) >> score(f(z), f(z7))

similarity( @)
X+ is a data point similar to x (from transformation) ... a positive sample Softmax = s

x- is a data point dissimilar to x (not part of original), ... a negative sample similarity( ) +  similarity( E) + eSlmlla"tY( )
e e



Contrastive learning example  rcrnsincir 200

Gather images

Raw Corpus of Images

Apply transformations (Crop, color
jitter, rotate, translate)

Random Transformation

Data
—| Augmentation
s (T)

Original Image Transformed Image

https://amitness.com/2020/03/illustrated-simclr/



Contrastive learning example

Used encoder ResNet-50 (shared weights)

Representation
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Contrastive learnlng example - loss

e Cosine similarity

ce/Similarity

. = COSine
similarity( | @ similarity \""-

o1 o .
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Pairwise cosine similarity




Contrastive learning example - loss

e Cross-entropy loss

S|m|Iar|ty( . .)
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Contrastive learning example - Classification

e Oncethe SimCLR modelis trained on the contrastive learning task, it can be used for
transfer learning.
e Therepresentations from the encoder are used, not from projection head

Encoder [EI=T= ’ ‘

Encoder (T \ ‘

Base Encoder
(.

Finetuning

classification, detection, ...



Weak-supervision

Not fully descriptive, noised, limited labels provided

Insufficient datasets

Inexpensive way to learn

Multiple instance learning

Other knowledge about problem (for example Physics constraints, heuristics,
demonstrations)



Multiple Instance learning

¢ Training instances are arranged in sets, called bags.

¢ A label is provided for entire bags but not for instances.
Whatitis not:

e Fully-supervised learning

e Self-supervised learning

Its in the bag!

+1

Positive Example

Negative Example

Positive Bag

Negative Bag



ILlustration of MIL problem

Can enter the secret room

&

Can | the secret room???

What is the magic key???



Why Multiple instance learning

It has been proposed because:

e Some problems are naturally formulated as MIL
e |t deals with weakly annotated data.

¢ This reduces the annotation cost.

e Algorithms can now learn from a greater quantity of training
data.




Definition of the standard MIL assumption

A

[l positive bag

e Training instances are arranged in sets generally called bags. I negative bag

concept

e A label is given to bags but not to individual instances. @ @ ).
o
o

e Negative bags do not contain positive instances. ~

@
e Positive bags contain at least one or specific combination of ? @ :’ &

positive instances. :

Feature 1

Feature 2

¢ Positive and negative bags can differ by their instance
distributions

Image from : http://www.miproblems.org/mi-learning/



Example of MIL

Bag: Image with beach

Instance: Sand, water

Classify beach images

Both sand and water segments are
positive instances for beach
pictures.

However, picture of beach must
contain both segments of sand and
water. Otherwise, they can be
pictures of desert or sea.

Image from : J. Amores, “Multiple instance classification:
Artif. Intell., vol. 201, pp. 81-105, Aug. 2013.

Review, taxonomy and comparative study,”



Tasks that can be performed in MIL

wEn g g s Group-based
; . Bag classification in Instance classification e
Supervised Learning . classification and set
MIL in MIL —_—_
classification
Lo \_— \_—
SI-SI MI-MI MI-SI s1 MI

Test

Tcst
Test / T
X y/ S Train: est
e .Train AT:

unlabeled labeled unlabeled labeled instance [ F ] bag
A instance A instances bag ‘ bags classifier _classiﬁer

Image from: V. Cheplygina, D. M. J. Tax, and M. Loog, “On classification with bags, groups and sets,” Pattern Recognition Letters, vol. 59, pp. 11-17, Jul. 2015.




Difference against instances in optimality

e Instance and bag classification
are two different tasks.

e It has beenobserved by many
authors that the best algorithm
for instance classification is
rarely the best for bag
classification.

e “The key difference is the
instance misclassifying cost.”

G. Vanwinckelen, V. do O, D. Fierens, and H. Blockeel, “Instance-level accuracy versus bag-level accuracy
in multi-instance learning,” Data Mining Knowledge Discovery, 2015

optimal
false for instance optimal
fa.l§e for bag
positives  g|assification

negative  classification

Image from: M.-A. Carbonneau, E. Granger, and G. Gagnon, “Decision Threshold Adjustment Strategies for
Increased Accuracy in Multiple Instance Learning,” in Proc. The 6th International Conference on Image
Processing Theory, Tools and Applications (IPTA), 2016.



Bag Composition

e Depending on the applications,
bags can differ in:
o The proportion of positive
instances in positive bags
o Thesize of the bags.
o Instance Co-occurrences
o Intra-bags similarities

(55

Imaga bag Face concept

Images from: M.-A. Carbonneau, V. Cheplygina, E. Granger, and G. Gagnon, “Multiple Instance Learning: A Survey on Problems
Characteristics and Applications,” to be submitted to IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017.



Label Ambiguity

e Weak supervision implies label
ambiguity

o Noise.

o Lackof clear classes at
instance level.

o Ambiguous representation.

o Classes canshare the same
type of instances.




Examples: Object localization

e Obijective: Find objects in images.

e Bag: Collection of candidate annotation
boxes

e Instance: Sub-image corresponding to
candidate windows.

e Justification: A large quantity of data can be
used to learn because costly strong
annotations are not necessary.

H. O. Song, R. Girshick, S. Jegelka, J. Mairal, Z. Harchaoui, and T. Darrell, “On learning to
localize objects with minimal supervision,” International Conference on Machine Learning, 2014



Examples: Computer diagnosis

e Obijective: Predict if a subject is diseased or
healthy.

e Bags: Collection segments or patches
extracted from a medical image.

e Instances: Image segments or patches.

e Justification: A large quantity of images can be

MIL +: Diseased
‘ Classifier ‘

< : Normal

: . . : Feature Vector
used to train. Only a diagnosis is required per Insanc)

image. Expert local annotation are no longer
required.

Image from: M. Kandemir and F. A. Hamprecht, “Computer-aided diagnosis from
weak supervision: a benchmarking study.,” Comput. Med. Imaging Graph., vol.
42, pp. 44-50, Jun. 2015.



Example: Sentiment Analysis in Text (or any
other Text analysis ...)

Paul Bettany did a great role as the tortured father whose favorite little girl dies tragically of disease.

. . . . . For that, he deserves all the credit.
® ObJeCt|Ve. Pred ict If a teXt/Sentence However, the movie was mostly about exactly that, keeping the adventures of Darwin as he gathered data for

expresses positive or negative Sentiment. his theories as incomplete stories told to children and skipping completely the disputes regarding his ideas.

Two things bothered me terribly: the soundtrack, with its whiny sound, practically shoving sadness down

. the throat of the viewer, and the movie trailer, showing some beautiful sceneries, the theological musings of
e Bags: Texts/paragraphs. . iom . w2 b i vk Sl somees, the Cociopies Il
him and his wife and the enthusiasm of his best friends as they prepare for a battle against blind faith, thus
. 1 enrese mno =y )\'.1w) vletely.
Y I nsta nces: SentenceS. misrepresenting the movie completely

To put it bluntly, if one were to remove the scenes of the movie trailer from the movie, the result would be a

P i I : i non descript family drama about a little child dying and the hardships of her parents as a result.
Justification: La rgequa nti ty of te)d_: can Clearly, not what I expected from a movie about Darwin, albeit the movie was beautifully interpreted.
be harvested from the web. A sentiment
iS Usual |y given toa Complete text Whlle It Image from: D. Kotzias, M. Denil, P. Blunsom, and N. de Freitas, “Deep Multi-Instance Transfer
. L. . Learning,” CoRR, vol. abs/1411.3, 2014.
may contain positive and negative
sentences/words.




Cases for MIL

e Data points are grouped in sets

e Weak supervision is provided

e Problems are naturally formulated as MIL.

e Strong supervision is costly to obtain or a large quantity of weakly

labeled data can be leveraged.



Hongyu Ren,Learning with Weak Supervision from Physics and
Data-Driven Constraints, AAAI 2018

Physical constraints

e Y., = 4o + v0(iAt) + a(iAL)?

44

EN o
3 &

e This equation provides a necessary constraint,
which the correct mapping must satisfy.

e Minimize difference between constraint and
prediction (fit parabola)

43

42
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Physical constraints

The network is trained to predict angles
that cannot be distinguished from the
simulated dynamics, encouraging it to track
the metal ball over time.

-0.5

-J\/\J\/

0.5

— Ground Truth — Predictors |

LA




Audio-Visual Correspondence

e What can be learnt by looking at and listening to a large number of unlabelled videos?
o the networks are able to learn useful semantic concepts
o the two modalities can be used to search one another
o the object making the sound can be localised.

https://deepmind.com/blog/article/objects-that-sound



Audio-Visual Correspondence

ot

e Two types of proxy task

o Predict audio-visual
correspondence

o Predict audio-visual
synchronization

e No Classification labels —

e “Guitar” naturally emerges

in both modalities. guitar —

drum —=




Audio-Visual Embedding (AVE-Net)

e Theonly way for a system to solve this binary classification task is by learning to
detect various semantic concepts in both the visual and the audio domain

single frame .. Vvisual subnetwork
e Distance between audio | 7 : H_
and video vectors = = | Correspond?
o Small.. yes/no
o Large...Negative O —
y 31Cl0 subnetwor Contrastive
274 = - - loss based
— ’ [ [ g (y /| |mmp =] | ondistance
1s Semm—— P = I between

vectors



Cross-modal retrieval

e Since the correspondence score is computed purely based on the distance, the two
embeddings are forced to be aligned (i.e. the vectors live in the same space, and so can
be compared meaningfully), thus facilitating cross-modal retrieval:

Query Top 10 ranked audio clips

frame




Can we use it to localize object in the image?

AVE-Net Corresponds: yes/no?

Corresponds: yes/no?

AVOL-Net

maxpool 14x14

Euclidean distance Corresponds: where?
1

Adi . ’ EEEEE—.
Visual emb g udio embedding
convolutional softmax 1x1
L2 normalization L2 normalization b ves vy i
conv7 1x1x2

1ax14x) perlocation

| 14x14x2

all pairwise scalar products
14x14

poold 16x12 Apply Visual ConvNet 14x14 spatial grid of Single audio
1x1x512 convolutionally 128-D visual representation
representations 128-D

conve6 1x1x128

14x14x128

[ T |

Vision subnetwork
Audio subnetwork

Image ConvNet Audio ConvNet
14x14x512 14x14x512 o .
Multiple instance learning

pool4 16x12
1x1x512

Audio ConvNet
14x14x512

Vision subnetwork
Audio subnetwork

i |

257)(!00:(1

224x224x3 i i 224x224x3
t log-spectrogram VI DEO OO o

1 second 48kHz audio

257x200x1

t log-spectrogram

1 second 48kHz audio



https://www.youtube.com/watch?v=TFyohksFd48

Objects that sound - ImageNet classification

Evaluation procedure for self-supervised setting

O

O

Use method to extract features
Linear classification learned on ImageNet

On par with state-of-the-art methods

The only method that never seen ImageNet images

O

O

Probably did not see image with “Tibetian
Terrier”

Video frames have different quality than
images

Method Top 1 accuracy
Random 18.3%
Pathak et al. [21] 22.3%
Krihenbiihl et al. [ 1] 24.5%
Donahue et al. [ 7] 31.0%
Doersch et al. [0] 31.7%
Zhang et al. [34] (init: [14]) 32.6%
Noroozi and Favaro [ 1] 34.7%
Ours random 12.9%
Ours 32.3%



Simulators ---> VLC



