VIR 2022	Name:
Training questions for midterm test	
Variant: A	Points

1. MLE loss: You are given probability distribution model $p(y|x, w) = xw \exp(-xwy)$, which models probability of variable $y \in \mathbb{R}^+$, given measurement $x \in \mathbb{R}$ and unknown model parameters $w \in \mathbb{R}$. You are given a training set $\mathcal{D} = \{(x_1, y_1) \dots (x_N, y_N)\}$. Write down the optimization problem, which corresponds to the maximum likelihood estimate of the model parameters w? Simplify resulting optimization problem if possible. 2. MLE loss: You are given Laplace probability distribution model

$$p(y|x,w) = \frac{1}{2}\exp(-|wx+b-y|),$$

which models probability of variable $y \in \mathbb{R}^+$, given measurement $x \in \mathbb{R}$ and unknown model parameters $w, b \in \mathbb{R}$. You are given a training set $\mathcal{D} = \{(x_1, y_1) \dots (x_N, y_N)\}$. Write down the optimization problem, which corresponds to the maximum likelihood estimate of the model parameters w, b? Simplify resulting optimization problem if possible. 3. Simple backpropagation: Consider the following network

$$y = \left(\sin(\mathbf{w})\right)^{\top} \mathbf{x},$$

where $\sin(\mathbf{w})$ denotes element-wise function $[\sin(\mathbf{w}_1), \sin(\mathbf{w}_2)]^{\top}$. Consider an input $\mathbf{x} = [2, 1]^{\top}, \mathbf{w} = [\pi/2, \pi]^{\top}$ and label l = 1.

• Draw the computational graph of the forward pass of this network. Preserve vectorized form, so that the vector **w** correspond to a single edge in the graph.

• Compute the forward pass of the network in the computational graph.

• Use loss $\mathcal{L}(y, l) = -\log(y \cdot l)$ to compute the loss value between the forward prediction y and label l. Add this loss to the computational graph.

• Populate the computation graph by local gradients and use the chain rule to compute the gradient $\frac{\partial \mathcal{L}(y,l)}{\partial \mathbf{w}}$ and estimate an update of parameters \mathbf{w} with learning rate $\alpha = 0.5$.

- 4. Vector-jacobian-product: Consider computational graph below, which consists of
 - 1. function that Select Even Elements (SEE) from input vector $\mathbf{x} \in \mathbb{R}^{2N}$ and returns them as $\mathbf{y} \in \mathbb{R}^{N}$:

$$\mathbf{y} = SEE(\mathbf{x})$$

2. loss function defined as weighted sum

$$\mathcal{L} = \sum_i \mathbf{w}_i \mathbf{x}_i$$

• What is SEE Jacobian $\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$? What is its dimensionality?

• Derive partial derivative of the loss ${\cal L}$ wrt ${\bf x}$

• Define vector-jacobian-product function $vjp_{SEE}(\mathbf{p})$, where $\mathbf{p} \in \mathbb{R}^{N}$ is assumed to be the upstream gradient vector. Discuss computational and memory requirements on the backward pass using Jacobian multiplications and vjp_{SEE} function.

5. Conv2D feedforward pass: In all questions, assume stride denotes length of convolutional stride, pad denotes symmetric zero-padding, rate is dilatation rate of atrous convolution. conv stands for convolution or atrous convolution layer and max is maxpooling layer.

You are given input feature map (image) \mathbf{x} and kernel \mathbf{w} :

$$\mathbf{x} = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \\ 0 & 0 & 2 \end{bmatrix} \quad \mathbf{w} = \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}$$

Compute outputs of the following layers:

• $\operatorname{conv}(\mathbf{x}, \mathbf{w}, \operatorname{stride} = 1, \operatorname{pad} = 0, \operatorname{rate} = 2) =$

• $\operatorname{conv}(\mathbf{x}, \mathbf{w}, \operatorname{stride} = 3, \operatorname{pad} = 1, \operatorname{rate} = 1) =$

• $\max(\mathbf{x}, 2 \times 2) =$

6. **Conv1D backward pass:** You are given network (without loss layer) which consists of the convolutional layer and the max-pooling layer. The structure is defined as follows:

$$f(\mathbf{x}, \mathbf{w}) = \max\left(\operatorname{conv}(\mathbf{x}, \mathbf{w}), 1 \times 2\right)$$

• Draw computational graph and compute the feed-forward pass for input feature map (image) **x** and convolutional kernel **w**:

 $\mathbf{x} = \boxed{2 \quad 1 \quad 2} \quad \mathbf{w} = \boxed{1 \quad 0}$

• Estimate gradient wrt kernel **w** (i.e. compute local gradients for the max-pooling layer and the convolutional layer and substitute edge-values computed in the feed-forward pass).

$$\frac{\partial f(\mathbf{x}, \mathbf{w})}{\partial \mathbf{w}} =$$

• Update weights using pure SGD ($\alpha = 0.5$).

• Update weights using SGD ($\alpha = 0.5$).

7. Conv2D dimensionality: You want to design a convolutional layer which maps $100 \times 100 \times 3$ input (height×width×depth) on $40 \times 40 \times 6$ output feature map. Propose suitable number of kernels, kernel size, stride and padding.

number_of_kernels =
kernel_size_h =
kernel_size_w =
stride =
pad =

- 8. **Conv2D dimensionality:** You are given an input volume X of dimension $[batch \times channel \times width \times height] = [4 \times 2 \times 13 \times 13]$ Consider a one 2D convolutional filter F of size $[width \times height] = [5 \times 5]$
 - Assuming a stride of 2, What is the size of padding, which ensures that the feature map is size 7x7 of the input map? Note: A padding size of 1 for a $[30 \times 30]$ image gives it a resulting size of $[32 \times 32]$, in other words, zeros are added on both sides.
 - Calculate the total memory in bytes of the learnable parameters of the filter, assuming that each weight is a dual-precision float (FP64).

Calculate the amount of operations performed by a single application of the filter (just one "stamp"). Each addition or multiplication counts as a single operation.
 For example: αx + βy + c amounts to 2 multiplication and 2 addition operations, totaling 4 operations.

• Considering the entire input dimensions of X, given a stride of 2, no padding, calculate the amount of filter applications ("stamps") that you have to perform to process the entire input.

9. Activation functions: Discuss and possibly derive advantages and drawbacks of activation functions (sigmoid, relu, lrelu, elu).

- 10. Theoretical properties of Conv2D: You are given convolutional network $y = f(\mathbf{x}, \mathbf{w}, \mathbf{v})$ consisting of two layers
 - convolutional layer with one 3×3 kernel (stride 1, padding=0), with weights denoted w (bias is completely ignored for simplicity)
 - convolutional layer with one 3×3 kernel (stride 1, padding=0), with weights denoted v (bias is completely ignored for simplicity)
 - What is the dimensionality of input \mathbf{x} if output y is a scalar value?
 - Hard question (should be considered only for students targeting on Agrade) Let us assume that you initialized values of all kernels by zeros, such that $\mathbf{w} = \mathbf{0}$ and $\mathbf{v} = \mathbf{0}$. You are given a training set consisting of pairs of real-valued, finite inputs \mathbf{x}_i and corresponding real-valued scalar outputs y_i . You trained the network on the training set to minimize L_2 -loss using Stochastic Gradient Descent (SGD). What relations (if any) will hold among trained weights after the training (assuming that the SGD converged to a finite values)? Proove your claims if possible.

Hint: Recall that, if you have convolutional layer $z = \operatorname{conv2d}(\mathbf{x}, \mathbf{w})$ followed by another layer u = p(z), then gradient $\frac{\partial p(\operatorname{conv2d}(\mathbf{x}, \mathbf{w}))}{\partial \mathbf{w}} = \operatorname{conv2d}(\mathbf{x}, \frac{\partial p(\mathbf{z})}{\partial \mathbf{z}})$, where $\frac{\partial p(\mathbf{z})}{\partial \mathbf{z}}$ denotes the upstream gradient. Similarly $\frac{\partial p(\operatorname{conv2d}(\mathbf{x}, \mathbf{w}))}{\partial \mathbf{x}} = \operatorname{conv2d}(\frac{\partial p(\mathbf{z})}{\partial \mathbf{z}}, \mathbf{w})$ with padding corresponding to a desired gradient size. Look at backprop in computational graph.

• Let us assume, that we create new network $g(\mathbf{x}, \mathbf{w}_1, \dots, \mathbf{w}_4, \mathbf{v}_1, \dots, \mathbf{v}_4)$ by introducing additional kernels into convolutional layers of $f(\mathbf{x}, \mathbf{w}, \mathbf{v})$. What kind of function is g? Can you replace g by a simplier function $\hat{g}(\mathbf{x}, \theta)$, that preserves *expressing power* of g: i.e. given any parameters $\mathbf{w}_1, \dots, \mathbf{w}_4, \mathbf{v}_1, \dots, \mathbf{v}_4$, there exists lower dimensional parameter θ such that

$$g(\mathbf{x}, \mathbf{w}_i, \mathbf{v}_j) = \hat{g}(\mathbf{x}, \theta)$$

for any possible **x**. What lowest possible dimensionality of θ ?

- 11. You are given a following figures of loss function over the training iterations.
 - Explain for each of the figures, what might be happening to the model during the training based on these curves
 - Propose at least a one way how to solve each of these issues.

