VIR 2022	Name:
, 	

Training questions

Exam test Points _____

1. You are given batch of two one-dimensional training examples $\mathbf{B} = \{x_1 = 2, x_2 = 4\}$ that are goes through the Batch-norm layer with $\gamma = 6$, $\beta = -1$ and $\epsilon = 0$:

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β Output: $\{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad \text{// mini-batch mean}$ $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad \text{// mini-batch variance}$ $\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad \text{// normalize}$ $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad \text{// scale and shift}$

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.

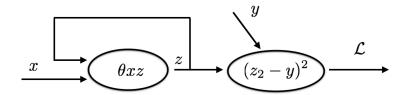
• Compute jacobian of batch norm output with respect to the learnable parameters. **Hint:** Output of the batch-norm layer for this batch is two-dimensional.

•	Why do we keep batch size larger than 1, when using batch norm layer?
•	How do you update γ and β (using jacobian) to increase the output values of the batch norm layer? Hint: Look at the each row of the jacobian.
•	What are the benefits of using the batch norm layer inside the neural networks?

2. Consider recurrent neural network depicted on the image below. The network is initialized with parameter $\theta = 2$ and initial hidden state $z_0 = 1$. You are given the following input sequence:

time=1	time=2
$x_1 = 1$	$x_2 = -1$

The loss is computed only on the **last** hidden state z_2 as a L2 distance from y=0. Estimate gradient $\frac{\partial \mathcal{L}}{\partial \theta}$ of the loss \mathcal{L} with respect to θ .



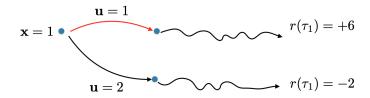
Hint: Unroll the network in time, to obtain a usual feedforward network. Do the backpropagation as usual.

$$\frac{\partial \mathcal{L}}{\partial \theta} =$$

3. Consider stochastic discrete policy, that selects action \mathbf{u} in state \mathbf{x} according to the following probability distribution:

$$\pi_{\theta}(\mathbf{u}|\mathbf{x}) = \begin{cases} \sigma(\theta\mathbf{x} + 1) & \text{if } \mathbf{u} = 1\\ 1 - \sigma(\theta\mathbf{x} + 1) & \text{if } \mathbf{u} = 2 \end{cases}$$

with scalar parameter $\theta = -1$. This policy maps one-dimensional state \mathbf{x} on the probability distribution of two possible actions $\mathbf{u} = 1$ or $\mathbf{u} = 2$. Consider simplified MDP, where stochastic discrete policy can perform the action only if the system is in state $\mathbf{x} = 1$ (e.g. hit the ball either by forehand or backhand), than the ball follows the trajectory τ_1 or τ_2 . The resulting trajectory is evaluated by reward function $r(\tau_1) = +6$, $r(\tau_2) = -2$.



• What are values of the advantage function of this policy in state $\mathbf{x} = 1$:

$$A(\mathbf{u} = 1, \mathbf{x} = 1) =$$

$$A(\mathbf{u} = 2, \mathbf{x} = 1) =$$

• You are given training trajectory $\tau = [\mathbf{x}_1 = 1, \mathbf{u}_1 = 1, ...]$. This trajectory consists of the single transition (outlined by red color) followed by the rest of the trajectory. Policy could have decided only the action in state $\mathbf{x} = 1$. Estimate A2C policy gradient:

$$\frac{\partial \log \pi_{\theta}(\mathbf{u}|\mathbf{x})}{\partial \theta}\Big|_{\substack{\mathbf{x} = \mathbf{x}_1 \\ \mathbf{u} = \mathbf{u}_1}} \cdot A(\mathbf{u} = \mathbf{u}_1, \mathbf{x} = \mathbf{x}_1) =$$

• Provide natural interpretation of a policy gradient: Why is the gradient of the policy logarithm $\frac{\partial \log \pi_{\theta}(\mathbf{u}|\mathbf{x})}{\partial \theta}$ multiplied by a value proportional to the expected sum of rewards? What is often followed -log, but in this task we follow +log?

4. You are given the following function

$$f(w) = 3w^2 - 1.$$

Consider gradient descend algorithm (SGD), which updates the scalar weight $w \in \mathcal{R}$ as follows:

$$w^k = w^{k-1} - \alpha \left. \frac{\partial f^\top(w)}{\partial w} \right|_{w = w^{k-1}},$$

where α denotes its learning rate.

• For which set of α values the SGD **converges** (at least slowly)?

 $\alpha_{\text{converge}} \in$

• For which set of α values the SGD **oscillates**?

 $\alpha_{\text{oscillate}} \in$

• For which set of α values the SGD diverges?

 $\alpha_{\text{diverge}} \in$

• What is the best learning rate α^* , which guarantees the **fastest convergence** rate for arbitrary weight initialization \mathbf{w}^0

 $\alpha^* =$

• Is it possible to find such α -subsets (i.e. the subsets where the SGD converges, diverges and oscillates) for f(w) = |w|? If so find it, if not explain the reasons and explain how to adjust the algorithm to achieve the convergence.

.