VIR 2022
Midterm test
Variant: A

Name: \qquad

1. ML regression: You have a sonar sensor mounted in the front of a submarine. The sensor is based on sending the sound impulse and receiving the signal reflected from a potential obstacle in front of the submarine. You can measure the time-of-flight, i.e. the time it takes from sending till receiving reflected signal, therefore the distance to the obstacle is roughly proportional to the half of the time-of-flight and the speed of sound propagation in the water. In addition to that a static time delay is also present, therefore you decide to model this relation as the affine function:

$$
y=w_{1} x+w_{0}
$$

- 1.1 Let us assume that y values were estimated by a device whose outputs are damaged by additive zero-mean Laplace noise:

$$
\operatorname{Laplace}(\mu, b)=\frac{1}{2 b} \exp \left(-\frac{|y-\mu|}{b}\right)
$$

where μ is its mean value and $b \in \mathbb{R}^{+}$is its diversity (quantity proportional to its variance). You are given a training set $\mathcal{D}=\left\{\left(x_{1}, y_{1}\right) \ldots\left(x_{N}, y_{N}\right)\right\}$ of measured time-of-flights x_{i} and corresponding obstacle distances y_{i}. Define the probability distribution $p(y \mid x, \mathbf{w})$ of predicted values $y \in \mathbb{R}$ given the measurement $x \in \mathbb{R}$ and weights $\mathbf{w} \in \mathbb{R}^{2}$. Write down the optimization problem, which corresponds to the maximum likelihood estimate of the model parameters \mathbf{w} and simplify the resulting optimization problem if possible to provide a loss function.

* 1.2 Consider now, that time-to-time an unidentified floating object (UFO) such as fish or garbage appeared between the sonar and the obstacle, when y-value has been determined, therefore some small fraction of measurements y_{i} rather corresponds to the distance from the UFO. Draw the shape of a probability distribution that models such a case.

2. Vector-jacobian-product: Consider computational graph below:

The graph consists of two functions:
a function that perform Cyclic Row Shift (CRS) of the input matrix $\mathbf{x} \in \mathbb{R}^{N \times M}$ and returns matrix $\mathbf{y} \in \mathbb{R}^{N \times M}$, that is shifted in the row direction down and the last row is moved to the first row. For example if $N=M=3$, the function works as follows:

$$
\mathbf{y}=\operatorname{CRS}(\mathbf{x})=\operatorname{CRS}\left(\left[\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right]\right)=\left[\begin{array}{lll}
x_{31} & x_{32} & x_{33} \\
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23}
\end{array}\right]
$$

b the loss function that is defined as weighted sum of squares:

$$
\mathcal{L}=\sum_{i} \mathbf{w}_{i} \mathbf{y}_{i}^{2}
$$

If the problem seems too complicated, solve a simpler variant (with -1 point penalty), where $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{N}$ are N -dimensional vectors only.

- 2.1 Derive gradient of the loss \mathcal{L} wrt x (i.e. $N \times M$ matrix).
- 2.2 Define vector-jacobian-product function $\operatorname{vjp}_{\text {CRS }}(\mathbf{p})$, where $\mathbf{p} \in \mathbb{R}^{\mathbf{N} \times \mathbf{M}}$ is assumed to be the upstream gradient vector. Discuss computational and memory requirements on the backward pass using Jacobian multiplications and vjp ${ }_{\text {CRS }}$ function (one short sentence only).

3. Sigmoid regression: Consider sigmoid regression problem, where the sigmoid function $\sigma\left(w_{2} x^{2}+w_{1} x+w_{0}\right)$, that is parameterized by $\mathbf{w} \in \mathbb{R}^{3}$, is fitted into (x, y)-points in the least squares sense. Circle correct answers and strike-through the incorrect answers:

- 3.1 If x_{i} comes from uniform distribution $U(-1,1), y_{i} \in R^{+}$and $w_{0}, w_{2} \gg 0$ are very large positive numbers, the gradient is
- small
- normal
- large
- negative
- positive
- undefined.
- 3.2 The criterion function that is minimized is
- non-decreasing
- non-increasing
- always positive
- always negative
- monotonously increasing
- differentiable
- convex
- concave
- always smaller than $\sum_{i} y_{i}^{2}$.
- 3.3 The problem of fitting the function $y=\sigma\left(w_{2} x^{2}+w_{1} x+w_{0}\right)$ in the least squares sense has closed-form solution.
- TRUE
- FALSE

4. Leaky-ReLU: We define Leaky Rectified Linear Unit function with parameter α as maximum of two linear functions: $\mathbf{y}=\operatorname{lrelu}(\mathbf{x}, \alpha)=\max \{\mathbf{x}, \alpha \mathbf{x}\}$. The function maps single input \mathbf{x} on single output value \mathbf{y}, i.e. $\mathbf{y}, \mathbf{x} \in \mathbb{R}$. The parameter $\alpha \in \mathbb{R}$ corresponds to its slope for negative inputs.

- 4.1 Draw graph of $\mathbf{y}=\operatorname{lrelu}(\mathbf{x}, \alpha=0.1)$
- 4.2 Define a Leaky Rectified Linear Unit $\operatorname{lrelu}(\mathbf{x}, \alpha)$ in pseudocode.
- 4.3 Define the gradient of the $\operatorname{lrelu}(\mathbf{x}, \alpha)$ activation function in pseudocode. The function has a single argument \mathbf{x} and outputs $\frac{\partial \operatorname{lrelu}(\mathbf{x}, \alpha)}{\partial \mathbf{x}}$. Hint: Break up the function into two separate cases (if-else).
- 4.4 Let us assume that you set hyper parameter $\alpha=0$. What happens in GD, when learning reaches the state in which all training samples cause negative input into this lrelu-layer?

5. Prior: Consider problem of fitting the line $y=w_{1} x+w_{0}$ in the least squares sense, where training set consists of a single training example: $\mathcal{D}=\left\{\left(x_{1}=2, y_{1}=2\right)\right\}$. Since there is more than one hypothesis consistent with this training set, you decide to use a regularization.

- 5.1 Draw the situation in (x, y)-plane and $\left(w_{0}, w_{1}\right)$-plane.
- 5.2 Suggest a suitable regularization and write down the underlying optimization problem that you have to solve.
- 5.3 What is the globally optimal solution \mathbf{w}^{*} under the suggested regularization?

6. Conv2D feedforward and backward pass: In all questions, assume that the stride denotes length of convolutional stride, pad denotes symmetric zero-padding, rate is dilatation rate of convolution. conv stands for convolution layer.
You are given input feature map (image) \mathbf{x} and kernel \mathbf{w} :

$$
\mathbf{x}=\begin{array}{|l|l|l|}
\hline 1 & 0 & 2 \\
\hline 2 & 1 & -1 \\
\hline 0 & 0 & 2 \\
\hline
\end{array} \quad \mathbf{w}=\begin{array}{|l|l|}
\hline 2 & 0 \\
\hline 0 & 1 \\
\hline
\end{array}
$$

- 6.1 Compute output of $\mathbf{y}=\operatorname{conv}(\mathbf{x}, \mathbf{w}$, stride $=1$, pad $=0$, rate $=2)=$
- 6.2 Let us assume that convolution is followed by another layer (say function $\mathbf{z}=f(\mathbf{y})$ with $\mathbf{z} \in \mathbb{R}$). What is the dimensionality of upstream gradient for the convolutional layer:
- 6.3 What is $\operatorname{vjp}_{\text {conv }}(\mathbf{p})$ of this particular convolution with respect to weights, where \mathbf{p} is upstream gradient?

