VIR 2022	Name:	
Midterm test		
Variant: A	Points	

1. ML regression: You have a sonar sensor mounted in the front of a submarine. The sensor is based on sending the sound impulse and receiving the signal reflected from a potential obstacle in front of the submarine. You can measure the time-of-flight, i.e. the time it takes from sending till receiving reflected signal, therefore the distance to the obstacle is roughly proportional to the half of the time-of-flight and the speed of sound propagation in the water. In addition to that a static time delay is also present, therefore you decide to model this relation as the affine function:

$$y = w_1 x + w_0$$

• 1.1 Let us assume that y values were estimated by a device whose outputs are damaged by additive zero-mean Laplace **noise**:

$$\text{Laplace}(\mu, b) = \frac{1}{2b} \exp(-\frac{|y - \mu|}{b}),$$

where μ is its mean value and $b \in \mathbb{R}^+$ is its diversity (quantity proportional to its variance). You are given a training set $\mathcal{D} = \{(x_1, y_1) \dots (x_N, y_N)\}$ of measured time-of-flights x_i and corresponding obstacle distances y_i . Define the probability distribution $p(y|x, \mathbf{w})$ of predicted values $y \in \mathbb{R}$ given the measurement $x \in \mathbb{R}$ and weights $\mathbf{w} \in \mathbb{R}^2$. Write down the optimization problem, which corresponds to the maximum likelihood estimate of the model parameters \mathbf{w} and simplify the resulting optimization problem if possible to provide a loss function.

$$p(y|x, \overline{w}) = \frac{1}{2b} e^{-\frac{|w_1x+w_0-\mu|}{b}}$$

HLE: argmax Tp(yilx, W) Loss: fr∑-log[p(yilx, W)]

* 1.2 Consider now, that time-to-time an unidentified floating object (UFO) such as fish or garbage appeared between the sonar and the obstacle, when y-value has been determined, therefore some small fraction of measurements y_i rather corresponds to the distance from the UFO. Draw the shape of a probability distribution that models such a case.

VIR 2022

2. Vector-jacobian-product: Consider computational graph below:

The graph consists of two functions:

a function that perform Cyclic Row Shift (CRS) of the input matrix $\mathbf{x} \in \mathbb{R}^{N \times M}$ and returns matrix $\mathbf{v} \in \mathbb{R}^{N \times M}$, that is shifted in the row direction down and the last row is moved to the first row. For example if N = M = 3, the function works as follows:

$$\mathbf{y} = \text{CRS}(\mathbf{x}) = \text{CRS}\Big(\begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{bmatrix} \Big) = \begin{bmatrix} x_{31} & x_{32} & x_{33} \\ x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \end{bmatrix}$$

b the loss function that is defined as weighted sum of squares:

$$\mathcal{L} = \sum_i \mathbf{w}_i \mathbf{y}_i^2$$

...

If the problem seems too complicated, solve a simpler variant (with -1 point penalty), where $\mathbf{x}, \mathbf{y} \in \mathbb{R}^N$ are N-dimensional vectors only.

• 2.1 Derive gradient of the loss
$$\mathcal{L}$$
 wrt x (i.e. $N \times M$ matrix).

.

$$\frac{\partial \mathcal{L}}{\partial x_{A1}} = \frac{\partial \mathcal{L}}{\partial y_{2A}} \frac{\partial Y_{1A}}{\partial x_{AA}} = \frac{\partial \mathcal{L}}{\partial y_{2A}} = 2 W_{2A} Y_{2A} = \frac{\partial Y_{2A}}{\partial x_{AA}} = 2 W_{2A} Y_{2A} = 2 W_{2A} = 2 W_{2A} Y_{2A} = 2 W_{2A} = 2 W_{$$

• 2.2 Define vector-jacobian-product function $v_{jp_{CBS}}(\mathbf{p})$, where $\mathbf{p} \in \mathbb{R}^{N \times M}$ is assumed to be the upstream gradient vector. Discuss computational and memory requirements on the backward pass using Jacobian multiplications and vjp_{CRS} function (one short sentence only)

$$I(RS, ... inverse cyclic row shift
I(RS, ... inverse cyclic row shift
Lyshift in the other direction than (RS
P(RS(\vec{x}) = I(RS(\vec{x}))$$

Vi

(omputational and memory requirements of vipers are much smaller than Jacobian multiplications. As we do not need to compute anything we just shift the values of upstream gradient.

- 3. Sigmoid regression: Consider sigmoid regression problem, where the sigmoid function $\sigma(w_2x^2 + w_1x + w_0)$, that is parameterized by $\mathbf{w} \in \mathbb{R}^3$, is fitted into (x,y)-points in the least squares sense. Circle correct answers and strike-through the incorrect answers:
 - 3.1 If x_i comes from uniform distribution U(-1, 1), $y_i \in \mathbb{R}^+$ and $w_0, w_2 >> 0$ are very large positive numbers, the gradient is

-(small)

- normal

- large
- negative

- undefined.
- 3.2 The criterion function that is minimized is
 - non-decreasing
 - non-increasing
 - always positive
 - always negative
 - monotonously increasing
 - differentiable

- convex

- concave
- always smaller than $\sum_i y_i^2$.
- 3.3 The problem of fitting the function $y = \sigma(w_2x^2 + w_1x + w_0)$ in the least squares sense has closed-form solution.

Variant: A

4. Leaky-ReLU: We define Leaky Rectified Linear Unit function with parameter α as maximum of two linear functions: $\mathbf{y} = \mathbf{lrelu}(\mathbf{x}, \alpha) = \max\{\mathbf{x}, \alpha \mathbf{x}\}$. The function maps single input \mathbf{x} on single output value \mathbf{y} , i.e. $\mathbf{y}, \mathbf{x} \in \mathbb{R}$. The parameter $\alpha \in \mathbb{R}$ corresponds to its slope for negative inputs.

• 4.2 Define a Leaky Rectified Linear Unit $lrelu(\mathbf{x}, \alpha)$ in pseudocode.

• 4.3 Define the gradient of the $\mathbf{lrelu}(\mathbf{x}, \alpha)$ activation function in pseudocode. The function has a single argument \mathbf{x} and outputs $\frac{\partial \mathbf{lrelu}(\mathbf{x}, \alpha)}{\partial \mathbf{x}}$. Hint: Break up the function into two separate cases (if-else).

def
$$|relu_grad(x, \lambda):$$

if $x \ge 0$
return λ
else:
return λ

• 4.4 Let us assume that you set hyper parameter $\alpha = 0$. What happens in GD, when learning reaches the state in which all training samples cause negative input into this lrelu-layer?

- 5. **Prior:** Consider problem of fitting the line $y = w_1x + w_0$ in the least squares sense, where training set consists of a single training example: $\mathcal{D} = \{(x_1 = 2, y_1 = 2)\}$. Since there is more than one hypothesis consistent with this training set, you decide to use a regularization.
 - 5.1 Draw the situation in (x, y)-plane and (w_0, w_1) -plane.

• 5.2 Suggest a suitable regularization and write down the underlying optimization problem that you have to solve.

regularization:
$$P(\vec{w}) = W_1^2 + W_2^2 = \|\vec{w}\|^2$$

optimization p: min $(\|y - w_1 x + w_0\|^2 + \|\vec{w}\|^2)$
min $(g(x_1 y_1 \vec{w})))$
 \vec{w}

• 5.3 What is the globally optimal solution \mathbf{w}^* under the suggested regularization?

6. Conv2D feedforward and backward pass: In all questions, assume that the stride denotes length of convolutional stride, pad denotes symmetric zero-padding, rate is dilatation rate of convolution. conv stands for convolution layer.

You are given input feature map (image) \mathbf{x} and kernel \mathbf{w} :

- -	1	0	2		2	0
$\mathbf{x} =$	2	1	-1	$\mathbf{w} =$	2	1
	0	0	2		0	T

• 6.1 Compute output of $\mathbf{y} = \operatorname{conv}(\mathbf{x}, \mathbf{w}, \operatorname{stride} = 1, \operatorname{pad} = 0, \operatorname{rate} = 2) =$

• 6.2 Let us assume that convolution is followed by another layer (say function z = f(y) with $z \in \mathbb{R}$). What is the dimensionality of upstream gradient for the convolutional layer:

• 6.3 What is vjp_{conv}(**p**) of this particular convolution with respect to weights, where **p** is upstream gradient?