\qquad

1. ML regression: You have a sonar sensor mounted in the front of a submarine. The sensor is based on sending the sound impulse and receiving the signal reflected from a potential obstacle in front of the submarine. You can measure the time-of-flight, i.e. the time it takes from sending till receiving reflected signal, therefore the distance to the obstacle is roughly proportional to the half of the time-of-flight and the speed of sound propagation in the water. In addition to that a static time delay is also present, therefore you decide to model this relation as the affine function:

$$
y=w_{1} x+w_{0}
$$

- 1.1 Let us assume that y values were estimated by a device whose outputs are damaged by additive zero-mean Laplace noise:

$$
\operatorname{Laplace}(\mu, b)=\frac{1}{2 b} \exp \left(-\frac{|y-\mu|}{b}\right)
$$

where μ is its mean value and $b \in \mathbb{R}^{+}$is its diversity (quantity proportional to its variance). You are given a training set $\mathcal{D}=\left\{\left(x_{1}, y_{1}\right) \ldots\left(x_{N}, y_{N}\right)\right\}$ of measured time-of-flights x_{i} and corresponding obstacle distances y_{i}. Define the probability distribution $p(y \mid x, \mathbf{w})$ of predicted values $y \in \mathbb{R}$ given the measurement $x \in \mathbb{R}$ and weights $\mathbf{w} \in \mathbb{R}^{2}$. Write down the optimization problem, which corresponds to the maximum likelihood estimate of the model parameters \mathbf{w} and simplify the resulting optimization problem if possible to provide a loss function.

$$
p(y \mid x, \vec{w})=\frac{1}{2 b} e^{-\frac{\left|w_{1} x+w_{0}-\mu\right|}{b}}
$$

MLE: $\underset{\arg \max _{\vec{w}}}{ } \pi_{p}\left(y_{i} \mid x, \vec{w}\right)$
Loss: $\frac{1}{N} \sum-\log \left[p\left(y_{i} \mid x_{i}, \overrightarrow{w^{2}}\right)\right]$

* 1.2 Consider now, that time-to-time an unidentified floating object (UFO) such as fish or garbage appeared between the sonar and the obstacle, when y-value has been determined, therefore some small fraction of measurements y_{i} rather corresponds to the distance from the UFO. Draw the shape of a probability distribution that models such a case.

$$
\begin{aligned}
& \text { Lecture }{ }^{5} \text {, } \\
& \text { slide } 31
\end{aligned}
$$

2. Vector-jacobian-product: Consider computational graph below:

The graph consists of two functions:
a function that perform Cyclic Row Shift (CRS) of the input matrix $\mathbf{x} \in \mathbb{R}^{N \times M}$ and returns matrix $\mathbf{y} \in \mathbb{R}^{N \times M}$, that is shifted in the row direction down and the last row is moved to the first row. For example if $N=M=3$, the function works as follows:

$$
\mathbf{y}=\operatorname{CRS}(\mathbf{x})=\operatorname{CRS}\left(\left[\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right]\right)=\left[\begin{array}{lll}
x_{31} & x_{32} & x_{33} \\
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23}
\end{array}\right]
$$

b the loss function that is defined as weighted sum of squares:

$$
\mathcal{L}=\sum_{i} \mathbf{w}_{i} \mathbf{y}_{i}^{2}
$$

If the problem seems too complicated, solve a simpler variant (with -1 point penalty), where $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{N}$ are N -dimensional vectors only.

- 2.1 Derive gradient of the loss \mathcal{L} wit \mathbf{x} (ie. $N \times M$ matrix).
$\frac{\partial \mathcal{L}}{\partial x_{11}}=\frac{\partial \mathcal{L}}{\partial y_{21}} \frac{\partial y_{21}}{\partial x_{11}} \quad \frac{\partial \mathcal{L}}{\partial y_{21}}=2 w_{21} y_{21} \quad \frac{\partial y_{21}}{\partial x_{11}}=1 \quad \frac{\partial \mathcal{L}}{\partial x_{11}}=2 w_{21} y_{21}=2 w_{21} x_{11}$
$\frac{\partial \mathcal{L}}{\partial \vec{x}}=\left[\begin{array}{lll}2 w_{21} x_{11} & 2 w_{22} x_{12} & 2 w_{23} x_{13} \\ 2 w_{31} x_{21} & 2 w_{32} x_{22} & 2 w_{33} x_{23} \\ 2 w_{11} x_{31} & 2 w_{12} x_{32} & 2 w_{13} x_{33}\end{array}\right]$
- 2.2 Define vector-jacobian-product function vip PRS (\mathbf{p}), where $\mathbf{p} \in \mathbb{R}^{\mathbf{N} \times \mathbf{M}}$ is assumed to be the upstream gradient vector. Discuss computational and memory requirements on the backward pass using Jacobian multiplications and vjpcrs function (one short sentence only).

ICRS ... inverse cyclic row shift
$\forall j P_{C R S}(\vec{x})=I C R S(\vec{x})$
Computational and memon, requirements of vj P CRS are much smaller than Jacobian multiplicadious. As we do not need to compute any, thing we just shift the values of upstream gradient.
3. Sigmoid regression: Consider sigmoid regression problem, where the sigmoid function $\sigma\left(w_{2} x^{2}+w_{1} x+w_{0}\right)$, that is parameterized by $\mathbf{w} \in \mathbb{R}^{3}$, is fitted into (x, y) -points in the least squares sense. Circle correct answers and strike-through the incorrect answers:

- 3.1 If x_{i} comes from uniform distribution $U(-1,1), y_{i} \in R^{+}$and $w_{0}, w_{2} \gg 0$ are very large positive numbers, the gradient is
-small
- normal
- large
- negative
- positive
- undefined.
- 3.2 The criterion function that is minimized is
- non-decreasing
- non-increasing
- always positive
- always negative
- monotonously increasing
differentiable
- concave
- always smaller than $\sum_{i} y_{i}^{2}$.
- 3.3 The problem of fitting the function $y=\sigma\left(w_{2} x^{2}+w_{1} x+w_{0}\right)$ in the least squares sense has closed-form solution.
- TRUE
- FALSE

4. Leaky-ReLU: We define Leaky Rectified Linear Unit function with parameter α as maximum of two linear functions: $\mathbf{y}=\operatorname{lrelu}(\mathbf{x}, \alpha)=\max \{\mathbf{x}, \alpha \mathbf{x}\}$. The function maps single input \mathbf{x} on single output value \mathbf{y}, i.e. $\mathbf{y}, \mathbf{x} \in \mathbb{R}$. The parameter $\alpha \in \mathbb{R}$ corresponds to its slope for negative inputs.

- 4.1 Draw graph of $\mathbf{y}=\operatorname{lrelu}(\mathbf{x}, \alpha=0.1)$

- 4.2 Define a Leaky Rectified Linear Unit $\operatorname{lrelu}(\mathbf{x}, \alpha)$ in pseudocode.

$$
\begin{gathered}
\text { def lrelu }(x, d) \text { : } \\
\text { if } x \geq 0 \text { : } \\
\text { return } x \\
\text { else: } \\
\text { return } \alpha x
\end{gathered}
$$

- 4.3 Define the gradient of the $\operatorname{lrelu}(\mathbf{x}, \alpha)$ activation function in pseudocode. The function has a single argument \mathbf{x} and outputs $\frac{\partial \operatorname{lrelu}(\mathbf{x}, \alpha)}{\partial \mathbf{x}}$. Hint: Break up the function into two separate cases (if-else).

$$
\begin{gathered}
\text { def lrelu_grad }(x, \alpha) \text { : } \\
\text { if } x \geq 0 \\
\text { return 人 } \\
\text { else: } \\
\text { return } \alpha
\end{gathered}
$$

- 4.4 Let us assume that you set hyper parameter $\alpha=0$. What happens in GD, when learning reaches the state in which all training samples cause negative input into this lrelu-layer?

$$
\text { gradient }=\overrightarrow{0} \Rightarrow \text { weights stop updating }
$$

5. Prior: Consider problem of fitting the line $y=w_{1} x+w_{0}$ in the least squares sense, where training set consists of a single training example: $\mathcal{D}=\left\{\left(x_{1}=2, y_{1}=2\right)\right\}$. Since there is more than one hypothesis consistent with this training set, you decide to use a regularization.

- 5.1 Draw the situation in (x, y)-plane and (w_{0}, w_{1})-plane.

- 5.2 Suggest a suitable regularization and write down the underlying optimization problem that you have to solve.
regularization: $p(\vec{w})=w_{1}^{2}+w_{2}^{2}=\|\vec{w}\|^{2}$
optimization $p: \min _{\vec{w}}\left(\left\|y-w_{1} x+w_{0}\right\|^{2}+\|\vec{w}\|^{2}\right)$

$$
\left.\min _{\vec{w}}^{\vec{w}}(g(x, y, \vec{w}))\right)
$$

- 5.3 What is the globally optimal solution \mathbf{w}^{*} under the suggested regularization?

$$
\begin{aligned}
& g(x, y, \vec{w})=y^{2}-2 y\left(w_{1} x+w_{0}\right)+w_{1}^{2} x^{2}+2 w_{0} w_{1} x+w_{0}^{2}+w_{1}^{2}+w_{0}^{2} \\
& \frac{\partial g}{\partial w_{0}}=-2 y+2 w_{1} x+4 w_{0} \xrightarrow{x=y=2} 4 w_{0}+4 w_{1}-4 \\
& \frac{\partial g}{\partial w_{1}}=-2 x y+2 w_{1} x^{2}+2 w_{0} x+2 w_{1} \xrightarrow{x=y=2} 4 w_{0}+10 w_{1}-8 \\
& \operatorname{grad}(g)=0 \Rightarrow \frac{2 w_{0}+5 w_{1}-8=0}{-2 w_{1}+2+5 w_{1}-8=0} \\
& 3 w_{1}=6 \Rightarrow w_{1}=2 \\
& W_{0}=-1 \\
& \vec{W}^{*}=\left[\begin{array}{c}
-1 \\
2
\end{array}\right]
\end{aligned}
$$

6. Conv2D feedforward and backward pass: In all questions, assume that the stride denotes length of convolutional stride, pad denotes symmetric zero-padding, rate is dilatation rate of convolution. conv stands for convolution layer.
You are given input feature map (image) \mathbf{x} and kernel \mathbf{w} :

$$
\mathbf{x}=\begin{array}{|l|l|l|}
\hline 1 & 0 & 2 \\
\hline 2 & 1 & -1 \\
\hline 0 & 0 & 2 \\
\hline
\end{array} \quad \mathbf{w}=\begin{array}{|l|l|}
\hline 2 & 0 \\
\hline 0 & 1 \\
\hline
\end{array}
$$

- 6.1 Compute output of $\mathbf{y}=\operatorname{conv}(\mathbf{x}, \mathbf{w}$, stride $=1$, pad $=0$, rate $=2)=$

$$
y=4
$$

- 6.2 Let us assume that convolution is followed by another layer (say function $\mathbf{z}=f(\mathbf{y})$ with $\mathbf{z} \in \mathbb{R}$). What is the dimensionality of upstream gradient for the convolutional layer:

- 6.3 What is $\operatorname{vjp}_{\text {conv }}(\mathbf{p})$ of this particular convolution with respect to weights, where \mathbf{p} is upstream gradient?

$$
v j p_{\text {con }-w}(\vec{p}, \vec{x})=\operatorname{conv}(\vec{x}, \vec{p}, \text { stride }=2, \text { pad }=0, \text { rate }=1)
$$

