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1. Let us consider gradient learning of the linear regressor y = w⊤x. Given the single train-
ing example (x = [

√
3, 1]⊤, y = 0), the least squares learning reduces to the minimization

of the following criterion

f(x,w) =
1

2
∥w⊤x∥22 =

1

2
((w1x1)

2 + (w2x2)
2)

TASK 1.1 Derive the recurrent formula for values of weights in the k-th iteration

wk
1 = ρ1(α)

kw0
1 =

wk
2 = ρ2(α)

kw0
2, =

TASK 1.2 For which learning rate α the gradient descent converges (at least slowly) in both
dimensions?
Hint: The smaller the |ρi(α)|, the faster the convergence. Find α for which both
formulas converge to zero.

αconvergent ∈

TASK 1.3 What is the best learning rate α∗, which guarantees the fastest convergence rate
for arbitrary weight initialization w0 and this particular training example.
Hint: Choose alpha, which minimizes the maximum of both convergence rates:

α∗ = argmin
α

max{|ρ1(α)|, |ρ2(α)|} =
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2. Consider stochastic continuous policy, that selects the action u ∈ R in the state x ∈ R
according to the following probability distribution:

πθ(u|x) =
1√
2π

exp(−1

2
(θx− u)2)

with scalar parameter θ = 1. This policy maps one-dimensional state x on the Gaussian
probability distribution (with the unit variance) of possible actions u.

TASK 2.1 Let us assume that the robot/agent is in state x1 = −2. Sketch the shape of
probability distribution πθ(u|x1 = −2) from which the actions are drawn.

TASK 2.2 The policy performs the action u1 = 1 (that has been randomly generated from the
probability distribution), and the robot ends up in the state x2 = +3. The reward
function for the resulting training trajectory τ = [x1,u1,x2] is r(τ) = 2. Estimate
REINFORCE policy gradient:

∂ log πθ(u|x)
∂θ

∣∣∣
x = x1
u = u1

· r(τ) =

TASK 2.3 Update policy parameters by the gradient ascent method with α = 1/6 and sketch
the shape of the updated distribution πθupdated(u|x1 = −2)

θupdated =
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3. You are given an input feature map (image) x, a convolution layer Conv2d(in channels=3,
out channels=6, kernel size=5, stride=1, padding=0, dilation=1), an activation function
ReLU, a batch normalization layer BatchNorm2d(6), a max pooling layer MaxPool2d(2,
2) and an output y.

TASK 3.1: Consider the following architecture

x→ Conv2d→ ReLU→ BatchNorm2d→ MaxPool2d→ y

and compute the receptive field (RF) of the output, i.e., the size of the region in
the input x that produces the feature yi,i:

RF =

TASK 3.2: Tick the correct answer (multiple choice).

□ A receptive field depends on the size of the input image.

□ A batch normalization procedure consists of feature-wise operations which do not
alter the receptive field of the network.

□ Some linear layers increase the size of the receptive field.

□ The larger the convolutional stride, the larger the receptive field.

□ By adding more convolutional layers, an arbitrarily large receptive field can be
achieved.

□ A large receptive field usually negatively impacts the ability of the neural network
to understand the context of the input image.
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4. Consider the composite normalizing flow f : R3 → R3, f = f1 ◦ f2 of length 2

PZ ∼ z

g1
−→
←−
f1

y

g2
−→
←−
f2

x ∼ PX

Z ∼ U([−1, 1]3), i.e., Z is a real random vector in R3 with uniform distribution over the
cube of edge length 2.

TASK 4.1: g1 is specified as a linear transformation

g1 : y = Az + b,

where A is a 3× 3 square matrix and b is a 3× 1 column vector

A =

 1 0 0
3 2 1
1 2 3

 , b =

 0
1
1

 .

We have f1 = g−1
1 . Calculate the determinant of Jacobian of f1, i.e., calculate

det(Jf1) = det(Jg−1
1
). Note that you do not need to know the inverse matrix A−1

to complete this task.

TASK 4.2: f2 is a simple coupling flow R3 → R3 that is specified as follows, y = f2(x):

y1 = x1,
y2 = x2 · exp(+2x1) + x1,
y3 = x3 · exp(−2x1) + x1.

Calculate the determinant of the Jacobian f2.



VIR 2022 Exam 1 - Page 5 of 6 Variant: A

TASK 4.3: Consider the real data point x∗ = (0, 1, 1)T . Assume that x∗ was generated from
distribution PX which is further normalized by the flow transformation f to the
distribution PZ ∼ U([−1, 1]3).
Calculate the latent representation z∗ of x∗ under f (Hint: A−1 is not required).

z∗ = f(x∗) = f1 ◦ f2(x∗) =

TASK 4.4: What is the value of density pX at this point? Use the change of variable formula

pX(x) = pZ(f(x)) · | det(Jf )|

and results from TASK 4.1, 4.2, 4.3 to complete the task.

pX(x) =
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5. Give us feedback !!!

What you did not like:

• Which lectures should we remove?

• Which labs should we remove?

• Which homework should we remove?

• Anything else we should remove?

What you did like:

• Which lectures should we preserve?

• Which labs should we preserve?

• Which homework should we preserve?

• Anything else we should preserve?

In case that you still have enough time, draw me a funny Xmas image ;-)


