Name: _____

Exam test

Variant: A

Points _____

1. Let us consider gradient learning of the linear regressor $y = \mathbf{w}^{\top} \mathbf{x}$. Given the single training example $(\mathbf{x} = [\sqrt{3}, 1]^{\top}, y = 0)$, the least squares learning reduces to the minimization of the following criterion

$$f(\mathbf{x}, \mathbf{w}) = \frac{1}{2} \|\mathbf{w}^{\top} \mathbf{x}\|_{2}^{2} = \frac{1}{2} ((w_{1}x_{1})^{2} + (w_{2}x_{2})^{2})$$

TASK 1.1 Derive the recurrent formula for values of weights in the k-th iteration

$$w_1^k = \rho_1(\alpha)^k w_1^0 = w_2^k = \rho_2(\alpha)^k w_2^0, =$$

TASK 1.2 For which learning rate α the gradient descent converges (at least slowly) in both dimensions?

Hint: The smaller the $|\rho_i(\alpha)|$, the faster the convergence. Find α for which both formulas converge to zero.

$$\alpha^{\rm convergent} \in$$

TASK 1.3 What is the best learning rate α^* , which guarantees the fastest convergence rate for arbitrary weight initialization \mathbf{w}^0 and this particular training example.

Hint: Choose alpha, which minimizes the maximum of both convergence rates:

$$\alpha^* = \arg\min_{\alpha} \max\{|\rho_1(\alpha)|, |\rho_2(\alpha)|\} =$$

Variant: A

2. Consider stochastic continuous policy, that selects the action $\mathbf{u} \in \mathbb{R}$ in the state $\mathbf{x} \in \mathbb{R}$ according to the following probability distribution:

$$\pi_{\theta}(\mathbf{u}|\mathbf{x}) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{1}{2}(\theta\mathbf{x} - \mathbf{u})^2)$$

with scalar parameter $\theta = 1$. This policy maps one-dimensional state \mathbf{x} on the Gaussian probability distribution (with the unit variance) of possible actions \mathbf{u} .

TASK 2.1 Let us assume that the robot/agent is in state $\mathbf{x}_1 = -2$. Sketch the shape of probability distribution $\pi_{\theta}(\mathbf{u}|\mathbf{x}_1 = -2)$ from which the actions are drawn.

TASK 2.2 The policy performs the action $\mathbf{u}_1 = 1$ (that has been randomly generated from the probability distribution), and the robot ends up in the state $\mathbf{x}_2 = +3$. The reward function for the resulting training trajectory $\tau = [\mathbf{x}_1, \mathbf{u}_1, \mathbf{x}_2]$ is $r(\tau) = 2$. Estimate REINFORCE policy gradient:

$$\frac{\partial \log \pi_{\theta}(\mathbf{u}|\mathbf{x})}{\partial \theta}\Big|_{\substack{\mathbf{x} = \mathbf{x}_1 \\ \mathbf{u} = \mathbf{u}_1}} \cdot r(\tau) =$$

TASK 2.3 Update policy parameters by the gradient ascent method with $\alpha = 1/6$ and sketch the shape of the updated distribution $\pi_{\theta^{\text{updated}}}(\mathbf{u}|\mathbf{x}_1 = -2)$

 $\theta^{\mathrm{updated}} =$

Variant: A

- 3. You are given an input feature map (image) **x**, a convolution layer Conv2d(in_channels=3, out_channels=6, kernel_size=5, stride=1, padding=0, dilation=1), an activation function ReLU, a batch normalization layer BatchNorm2d(6), a max pooling layer MaxPool2d(2, 2) and an output **y**.
- TASK 3.1: Consider the following architecture

$$\mathbf{x} \to \text{Conv2d} \to \text{ReLU} \to \text{BatchNorm2d} \to \text{MaxPool2d} \to \mathbf{y}$$

and compute the receptive field (RF) of the output, i.e., the size of the region in the input \mathbf{x} that produces the feature $\mathbf{y}_{i,i}$:

RF =

TASK 3.2: Tick the correct answer (multiple choice).

□ A receptive field depends on the size of the input image.
□ A batch normalization procedure consists of feature-wise operations which do not alter the receptive field of the network.
□ Some linear layers increase the size of the receptive field.
□ The larger the convolutional stride, the larger the receptive field.
□ By adding more convolutional layers, an arbitrarily large receptive field can be achieved.
□ A large receptive field usually negatively impacts the ability of the neural network to understand the context of the input image.

4. Consider the composite normalizing flow $f: \mathbb{R}^3 \to \mathbb{R}^3, f = f_1 \circ f_2$ of length 2

$$P_Z \sim oldsymbol{z} \stackrel{g_1}{\underset{f_1}{\longleftarrow}} oldsymbol{y} \stackrel{g_2}{\underset{f_2}{\longleftarrow}} oldsymbol{x} \sim P_X$$

 $Z \sim U([-1,1]^3)$, i.e., Z is a real random vector in \mathbb{R}^3 with uniform distribution over the cube of edge length 2.

TASK 4.1: g_1 is specified as a linear transformation

$$g_1: \boldsymbol{y} = A\boldsymbol{z} + \boldsymbol{b},$$

where A is a 3×3 square matrix and **b** is a 3×1 column vector

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 2 & 1 \\ 1 & 2 & 3 \end{bmatrix}, \quad \boldsymbol{b} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}.$$

We have $f_1 = g_1^{-1}$. Calculate the determinant of Jacobian of f_1 , i.e., calculate $\det(J_{f_1}) = \det(J_{g_1^{-1}})$. Note that you do not need to know the inverse matrix A^{-1} to complete this task.

TASK 4.2: f_2 is a simple coupling flow $\mathbb{R}^3 \to \mathbb{R}^3$ that is specified as follows, $\mathbf{y} = f_2(\mathbf{x})$:

$$y_1 = x_1,$$

 $y_2 = x_2 \cdot \exp(+2x_1) + x_1,$
 $y_3 = x_3 \cdot \exp(-2x_1) + x_1.$

Calculate the determinant of the Jacobian f_2 .

TASK 4.3: Consider the real data point $\mathbf{x}^* = (0, 1, 1)^T$. Assume that \mathbf{x}^* was generated from distribution P_X which is further normalized by the flow transformation f to the distribution $P_Z \sim U([-1, 1]^3)$.

Calculate the latent representation z^* of x^* under f (Hint: A^{-1} is not required).

$$m{z}^* = f(m{x}^*) = f_1 \circ f_2(m{x}^*) =$$

TASK 4.4: What is the value of density p_X at this point? Use the change of variable formula

$$p_X(\boldsymbol{x}) = p_Z(f(\boldsymbol{x})) \cdot |\det(\mathbf{J}_f)|$$

and results from TASK 4.1, 4.2, 4.3 to complete the task.

$$p_X(\boldsymbol{x}) =$$

Variant: A

5. Give us feedback !!!

villat you are not like	What	vou	did	\mathbf{not}	like
-------------------------	------	-----	-----	----------------	------

- Which **lectures** should we **remove**?
- Which labs should we remove?
- Which **homework** should we **remove**?
- Anything **else** we should **remove**?

What you did like:

- Which **lectures** should we **preserve**?
- Which labs should we preserve?
- Which **homework** should we **preserve**?
- Anything **else** we should **preserve**?

In case that you still have enough time, draw me a funny Xmas image ;-)