

Exam test

Variant: A
Points 20

1. Let us consider gradient learning of the linear regressor $y=\mathbf{w}^{\top} \mathbf{x}$. Given the single training example ($\mathbf{x}=[\sqrt{3}, 1]^{\top}, y=0$), the least squares learning reduces to the minimization of the following criterion

$$
f(\mathbf{x}, \mathbf{w})=\frac{1}{2}\left\|\mathbf{w}^{\top} \mathbf{x}\right\|_{2}^{2}=\frac{1}{2}\left(\left(w_{1} x_{1}\right)^{2}+\left(w_{2} x_{2}\right)^{2}\right)
$$

$$
\left.\frac{\partial f}{\partial w_{1}}\right|_{x_{1}}=\left.w_{1} x_{1}^{2}\right|_{x_{1}}=3 w_{1}
$$

TASK 1.1 Derive the recurrent formula for values of weights in the k-th iteration $\left.\frac{\partial f}{\partial w_{2}}\right|_{x_{2}}=\left.w_{2} x_{2}^{2}\right|_{x_{2}}=w_{2}$

$$
\begin{aligned}
w_{1}^{k} & =\rho_{1}(\alpha)^{k} w_{1}^{0} \\
w_{2}^{k} & =\rho_{2}(\alpha)^{k} w_{2}^{0}, \\
w^{\prime} & \left.=(1-\alpha)^{2}\right)^{2} w_{2}^{1}
\end{aligned}
$$

TASK 1.2 For which learning rate α the gradient descent converges (at least slowly) in both dimensions?
Hint: The smaller the $\left|\rho_{i}(\alpha)\right|$, the faster the convergence. Find α for which both formulas converge to zero.

$$
\begin{aligned}
& \alpha^{\text {convergent }} \in(0,2 / 3) \\
& |1-3 \alpha|<1 \quad \text { }
\end{aligned}
$$

TASK 1.3 What is the best learning rate α^{*}, which guarantees the fastest convergence rate for arbitrary weight initialization \mathbf{w}^{0} and this particular training example.
Hint: Choose alpha, which minimizes the maximum of both convergence rates:

$$
\begin{aligned}
& \alpha^{*}=\arg \min _{\alpha} \max \left\{\left|\rho_{1}(\alpha)\right|,\left|\rho_{2}(\alpha)\right|\right\}=\frac{1}{2} \\
& 1-\alpha^{*}=3 \alpha^{*}-1 \\
& \alpha^{*}=\frac{1}{2}
\end{aligned}
$$

2. Consider stochastic continuous policy, that selects the action $\mathbf{u} \in \mathbb{R}$ in the state $\mathbf{x} \in \mathbb{R}$ according to the following probability distribution:

$$
\pi_{\theta}(\mathbf{u} \mid \mathbf{x})=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2}(\theta \mathbf{x}-\mathbf{u})^{2}\right)
$$

with scalar parameter $\theta=1$. This policy maps one-dimensional state \mathbf{x} on the Gaussian probability distribution (with the unit variance) of possible actions \mathbf{u}.

TASK 2.1 Let us assume that the robot/agent is in state $\mathbf{x}_{1}=-2$. Sketch the shape of probability distribution $\pi_{\theta}\left(\mathbf{u} \mid \mathbf{x}_{1}=-2\right)$ from which the actions are drawn.

$$
\pi_{1}(\mu \mid-2)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2}(\mu+2)^{2}\right) \rightarrow N(-2,1)
$$

TASK 2.2 The policy performs the action $\mathbf{u}_{1}=1$ (that has been randomly generated from the probability distribution), and the robot ends up in the state $\mathbf{x}_{2}=+3$. The reward function for the resulting training trajectory $\tau=\left[\mathbf{x}_{1}, \mathbf{u}_{1}, \mathbf{x}_{2}\right]$ is $r(\tau)=2$. Estimate REINFORCE policy gradient:

$$
\begin{aligned}
& \left.\quad \frac{\partial \log \pi_{\theta}(\mathbf{u} \mid \mathbf{x})}{\partial \theta}\right|_{\substack{x=x_{1} \\
\mathbf{u}=\mathbf{u}_{1}}} \cdot r(\tau)=\left.\frac{\partial}{\partial \theta} \log \left[\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\theta_{x}-\mu\right)^{2}\right)\right]\right|_{\substack{x_{1} \\
\mu_{1}}} \cdot r(\tau)= \\
& =-(\theta x-\mu) \times\left.\right|_{\substack{x_{1} \\
\mu_{1}}} \cdot r(\tau)=-12
\end{aligned}
$$

TASK 2.3 Update policy parameters by the gradient ascent method with $\alpha=1 / 6$ and sketch the shape of the updated distribution $\pi_{\theta^{\text {updated }}}\left(\mathbf{u} \mid \mathbf{x}_{1}=-2\right)$

$$
\begin{aligned}
& \theta^{\text {updated }}=\theta+\alpha(-12)=-1 \\
& \pi_{-1}(\mu \mid-2)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2}(\mu-2)^{2}\right) \rightarrow \mathcal{N}(2,1)
\end{aligned}
$$

3. You are given an input feature map (image) \mathbf{x}, a convolution layer Conv2d(in_channels $=3$, out_channels $=6$, kernel_size $=5$, stride $=1$, padding $=0$, dilation $=1$), an activation function ReLU, a batch normalization layer BatchNorm2d(6), a max pooling layer MaxPool2d(2, 2) and an output \mathbf{y}.

TASK 3.1: Consider the following architecture, hemaji vii na RF

$$
\mathbf{x} \rightarrow \text { Conv2d } \rightarrow \text { ReLU } \rightarrow \text { BatchNorm2d } \rightarrow \text { MaxPool2d } \rightarrow \mathbf{y}
$$

and compute the receptive field $(R F)$ of the output, i.e., the size of the region in the input \mathbf{x} that produces the feature $\mathbf{y}_{i, i}$:

$$
\begin{aligned}
& \text { Conv2D: zajimà nàs kernel_size a dilation } \\
& \qquad \begin{array}{c}
k=5
\end{array} \quad \begin{array}{c}
d=1
\end{array} \Rightarrow 5 \times 5 \\
& M_{a x} P_{o o l} 2 D:+1 \text { k } 2 F(2 \times 2)
\end{aligned}
$$

$$
R F=6 \times 6
$$

TASK 3.2: Tick the correct answer (multiple choice).A receptive field depends on the size of the input image.
\downarrow A batch normalization procedure consists of feature-wise operations which do not alter the receptive field of the network.
\square^{\prime} Some linear layers increase the size of the receptive field.
\square The larger the convolutional stride, the larger the receptive field.
\square By adding more convolutional layers, an arbitrarily large receptive field can be achieved.
\square A large receptive field usually negatively impacts the ability of the neural network to understand the context of the input image.
4. Consider the composite normalizing flow $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, f=f_{1} \circ f_{2}$ of length 2

$$
P_{Z} \sim \boldsymbol{z} \underset{\underset{f_{1}}{\longrightarrow}}{\stackrel{g_{1}}{\longrightarrow}} \stackrel{g_{2}}{\underset{f_{2}}{\longleftrightarrow}} \boldsymbol{x} \sim P_{X}
$$

$Z \sim U\left([-1,1]^{3}\right)$, i.e., Z is a real random vector in \mathbb{R}^{3} with uniform distribution over the cube of edge length 2.

TASK 4.1: g_{1} is specified as a linear transformation

$$
g_{1}: \boldsymbol{y}=A \boldsymbol{z}+\boldsymbol{b}
$$

where A is a 3×3 square matrix and b is a 3×1 column vector

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
3 & 2 & 1 \\
1 & 2 & 3
\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

We have $f_{1}=g_{1}^{-1}$. Calculate the determinant of Jacobian of f_{1}, i.e., calculate $\operatorname{det}\left(\mathrm{J}_{f_{1}}\right)=\operatorname{det}\left(\mathrm{J}_{g_{1}^{-1}}\right)$. Note that you do not need to know the inverse matrix A^{-1} to complete this task.

TASK 4.2: f_{2} is a simple coupling flow $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ that is specified as follows, $\boldsymbol{y}=f_{2}(\boldsymbol{x})$:

$$
\begin{aligned}
& y_{1}=x_{1} \\
& y_{2}=x_{2} \cdot \exp \left(+2 x_{1}\right)+x_{1} \\
& y_{3}=x_{3} \cdot \exp \left(-2 x_{1}\right)+x_{1}
\end{aligned}
$$

Calculate the determinant of the Jacobian f_{2}.

TASK 4.3: Consider the real data point $\boldsymbol{x}^{*}=(0,1,1)^{T}$. Assume that \boldsymbol{x}^{*} was generated from distribution P_{X} which is further normalized by the flow transformation f to the distribution $P_{Z} \sim U\left([-1,1]^{3}\right)$.
Calculate the latent representation \boldsymbol{z}^{*} of \boldsymbol{x}^{*} under f (Hint: A^{-1} is not required).

$$
\boldsymbol{z}^{*}=f\left(\boldsymbol{x}^{*}\right)=f_{1} \circ f_{2}\left(\boldsymbol{x}^{*}\right)=
$$

TASK 4.4: What is the value of density p_{X} at this point? Use the change of variable formula

$$
p_{X}(\boldsymbol{x})=p_{Z}(f(\boldsymbol{x})) \cdot\left|\operatorname{det}\left(\mathrm{J}_{f}\right)\right|
$$

and results from TASK 4.1, 4.2, 4.3 to complete the task.

$$
p_{X}(\boldsymbol{x})=
$$

