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1. Let us consider gradient learning of the linear regressor y = w ' x. Given the single train-

ing example (x = [V/3,1]T,y = 0), the least squares learning reduces to the minimization
of the following criterion L
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TASK 1.2 For which learning rate o the gradient descent converges (at least slowly) in both
dimensions?

Hint: The smaller the |p;(a)|, the faster the convergence. Find a for which both
formulas converge to zero.
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TASK 1.3 What is the best learning rate o*, which guarantees the fastest convergence rate
for arbitrary weight initialization w® and this particular training example.
Hint: Choose alpha, which minimizes the maximum of both convergence rates:
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2. Consider stochastic continuous policy, that selects the action u € R in the state x € R
according to the following probability distribution:

1 1 "
mp(U|X) = —exp(—=(fx —u
with scalar parameter 6 = 1. This policy maps one-dimensional state x on the Gaussian
probability distribution (with the unit variance) of possible actions u.

TASK 2.1 Let us assume that the robot/agent is in state x; = —2. Sketch the shape of
probability distribution mg(ulx; = —2) from which the actions are drawn.
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TASK 2.2 The policy performs the action u; = 1 (that has been randomly generated from the
probability distribution), and the robot ends up in the state X, = +3. The reward
function for the resulting training trajectory 7 = [x1,u1,X2] is 7(7) = 2. Estimate
REINFORCE policy gradient:
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TASK 2.3 Update policy parameters by the gradient ascent method with o — 1/6 and sketch
the shape of the updated distribution Tgupdated (U|X; = —2)
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3. You are given an input feature map (image) x, a convolution layer Conv2d(in_channels=3,
out_channels=6, kernel_size=5, stride=1, padding=0, dilation=1), an activation function
ReLU, a batch normalization layer BatchNorm2d(6), a max pooling layer MaxPool2d(2,
2) and an output y.

TASK 3.1: Consider the following architectur RF

e// hbw\a\'\\l \;\Eu wen
x — Conv2d — ReLU — BatchNorm2d — MaxPool2d — y

and compute the receptive field (RF) of the output, i.e., the size of the region in
the input x that produces the feature Yig:
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TASK 3.2: Tick the correct answer (multiple choice).

O A receptive field depends on the size of the input image.

[ A batch normalization procedure consists of feature-wise operations which do not
alter the receptive field of the network.

o Some linear layers increase the size of the receptive field.
o The larger the convolutional stride, the larger the receptive field.

o By adding more convolutional layers, an arbitrarily large receptive field can be
achieved.

U A large receptive field usually negatively impacts the ability of the neural network
to understand the context of the input image.
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4. Consider the cémposite normalizing flow f: R3 — R3, f = f; o f5 of length 2

‘ 251 92

! Prvz 'y " x~P

\ R, Y x ~ Px
f1 f2

Z ~U([-1,1]%), i.e., Z ia real random vector in R® with uniform distribution over the
cube of edge length 2. \

TASK 4.1: g is specified as a linea; \transformation

\ g1:y=Az+Db,

where A is a 3 x 3 square ms}trix and b is a 3 X 1 column vector
\

100 0
A=|321]|, b=|1].
1\2 3 |

We have f; = g7!. Calculate the determinant of Jacobian of fi, i.e., calculate
det(Jy,) = det(J g1—1). Note that you do.not need to know the inverse matrix A~!
to complete this task. \

TASK 4.2: f, is a simple coupling flow R? — R? that is specified as follows, y = fo(x):

Y 1,
Y2 = xz-exp(+2z;) + x4,
y3 = z3-exp(—2z;) + 1.

Calculate the determinant of the Jacobian fs. \
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TASK 4.3: Consider the real data point &* = (0,1,1)7. Assume that =* was generated from
distribution Py which is further normalized by the flow transformation f to the

distribution Pz ~ U([-1, 1]?).
Calculate the latent representation z* of * under f (Hint: A~! is not required).

2 = f(@") = fio fola) =

TASK 4.4: What is the value of density px at this point? Use the change of variable formula
px(x) = pz(f(x)) - | det(Jg)|

and results from TASK 4.1, 4.2, 4.3 to complete the task.

px () =
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