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Simple recurrent block

torch.nn.RNN(1nput size, hidden dim, n layers)

X+ 1nput_size

PyTorch: https://pytorch.org/docs/stable/nn.html



https://pytorch.org/docs/stable/nn.html

RNN example with backprop

Consider linear recurrent neural network with L2 loss depicted on the image below. The
network is initialized with parameters 6, = 1,60, = 0, 2o = 0. You are given the following

training sequence:

time=1 | time=2
xr = 0 Lo = ].
y1=1 | ya=3

Estimate gradient of the overall loss (computed over all available outputs y; for both

available times 7« = 1, 2) with respect to 6,.

Hint: Unroll the network in time, to obtain a usual feedforward network with two loss

nodes. Do the backpropagation as usual.
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Simple recurrent block - feed-forward pass

Given a finite input sequence: hy x; x» xs
we remove the recurrent connection by:

® successive substitution of inputs and
e unrolling the net
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Simple recurrent block - feed-forward pass

Given a finite input sequence: Xy X3
we remove the recurrent connection by:

® successive substitution of inputs and
e unrolling the net




Simple recurrent block - feed-forward pass

Given a finite input sequence: X3
we remove the recurrent connection by:

® successive substitution of inputs and
e unrolling the net




Simple recurrent block - feed-forward pass

* Unrolled computational graph:
e |tIs normal feedforward network



Simple recurrent block - feed-forward pass

* Unrolled computational graph:
* |t is normal feedforward network
* |t consists of several same blocks with the same weights!
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Simple recurrent block - backward pass

on:

Cross-en

ropy loss on the last output only (for simplicity)



Simple recurrent block - backward pass
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Simple recurrent block - backward pass
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Simple recurrent block - backward pass




Simple recurrent block - backward pass
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Simple recurrent block - backward pass
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Simple recurrent block - backward pass

2
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Simple recurrent block - backward pass
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RNN vs feedforward network

recurrent (RNN) ht — fW(Xt7 fW(Xt—17 SR fW(X17 h()))
feedforward: h; = g(x¢,x¢-1,...x1, W) (stacking sequence to long input vector)

 RNN works for ditferent lengths of input sequences
 RNN share weights between different time instances
(similarly as convolution on spatial domain).

 Some RNN are spatio-temporal convolutions [Hinton 1988]
 Memory is attention in time [Alex Graves 2020]

 RNN is universal (can compute any function computable by Turing machine)



https://en.wikipedia.org/wiki
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https://en.wikipedia.org/wiki/Turing_machine#Universal_Turing_machines
https://en.wikipedia.org/wiki/Turing_machine#Universal_Turing_machines
https://en.wikipedia.org/wiki/Turing_machine#Universal_Turing_machines

Simple recurrent block - backward pass

gt
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N\

deep blocks often sutfer from vanishing gradient
=> petter structure needea

LSTM (kind of ResNet for recurrent networks)



Simple recurrent block



Simple recurrent block
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LSTM block
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x; current observation (embedding of one-hot encoding)

‘| live with my parents, ...
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LSTM block
cell state is long term memory= vector [singular/plural, feminine/masculine, case, ...]
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LSTM block
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LSTM block

cell state is long term memory= vector [singular/plural, feminine/masculine, case, ...]
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LSTM block
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LSTM block
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LSTM block
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LSTM block
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LSTM block
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LSTM block
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LSTM block
cell state is long term memory= vector [singular/plural, feminine/masculine, case, ...]
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LSTM block
cell state is long term memory= vector [singular/plural, feminine/masculine, case, ...]
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LSTM block
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LSTM block
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LSTM block
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L STM block

torch.nn.LSTM(1nput size, hidden dim, n layers)
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RNN architectures: one-to-many

Y1 Yo

* Music generation
* Image captioning

y3



RNN architectures: one-to-many

W W
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e Sentiment classification
* Action recognition

1

y3



RNN architectures: one-to-many

Y1 Yo

» Coloring/enhancing video sequences
 Named-entity recognition
e Speech recognition

y3



RNN architectures: one-to-many

e Machine translation
e Question answering

VA

Y3



RNN architectures: many-to-many

output: variable-size sequence

Y1 L I B | y3

decoder

Input: variable-size sequence

context: fixed-size semantic summary of input sequence



RNN architectures: Machine translation
output: Czech sentence

Y1 [ I B | y3

+ = hy = (x4, h3)

encoder decoder

in}f:;ut: English sentence

RNN can theoretically remember everything important but in practice
it suffers from catastrophic forgetting (important relations could be very far).

Let’'s process the whole sentence at once through transformer!
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encoder Queries Keys Values
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encoder Queries Keys Values
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encoder Queries Keys Values
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| Bertviz attention weights of
Layer: S § Attention: Input - Input -

I attention head
The_
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didn_ didn_
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the_ the_ ‘It=animal” vs “it=street”??
street street
because_ because_
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too_ foo
":' ;"e attention weights of

- - green attention head

https://colab.research.google.com/github/tensortlow/tensor2tensor/blob/master/
tensor2tensor/notebooks/hello_t2t.ipynb



https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb
https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb

BertViz

Layer: |0 v|Attention: | All v
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a a
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said said

Model assumes “she=nurse”

https://www.comet.com/site/blog/explainable-ai-for-transformers/
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BertViz (GPT2 model)
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https://www.comet.com/site/blog/explainable-ai-for-transformers/

Transtormers and Attention in iImages

65



Attention modules [Woo et al,ECCV, 2018]
https://arxiv.org/pdf/1807.06521v2.pdf

Croquet ball Eel __I-_I_ammerhead Eskimao dog Snow leopard Boat paddle = Daddy longlegs School bus

Input
image

ResNet50
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ResNet50
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ResNet50
+ CBAM

P =0.96039 P =0.59790 P =0.84387 P =0.71000 P =0.98482 P = 0.90806 P =0.78636 P = 0.98567
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https://arxiv.org/pdf/1807.06521v2.pdf
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DETR: transformers for object detection
https://arxiv.org/abs/2005.12872

-
“-

,,,, _.-— ho object (o)

-

no object (o)

transformer ey
encoder- ;

decoder

set of image features set of box predictions bipartite matching loss

® NO anchors
® Output set of N bbs (ordering does not matter)
e Matching loss matches each predicted bb with ground truth bb, or enforces &


https://arxiv.org/abs/2005.12872

Attention in RL

Value function V(Xx) Advantage function A(x,u)




Summary
o self-attention overfits (requires large dataset) => combining with hard explicit

attention may work better
e memory Is attention through time [Alex Graves 2020]

e pylorch library: https://github.com/The-Al-Summer/self-attention-cv
model = MultiHeadSelfAttention(dim=64)




Future?

e Most of predictions were wrong
1954 |IBM predicted that natural language processing will be solved in 3 years
1965 Herbert Simon: machines will replace humans in all manual works

1970 Marvin Minsky: machines will have general Al comparable with humans
2014 Rei Kurzwell: the same for for 2029, now talks about 2045

e Rodney Brooks prediction score card:
https://rodneybrooks.com/predictions-scorecard-2021-january-01/

® [alse generalization
o Al is better in solving particular instances (image processing, stabilization)
e Rather carefully isolated successes than exponentially growing general Al


https://rodneybrooks.com/predictions-scorecard-2021-january-01/

