What can('t) we do we ConvNets?

Recurrent nets, Memory and attention

Karel Zimmermann
Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics

Prerequisites: derivative of compound function

Introduce notation:
$$\frac{\partial f(a,b)}{\partial a} = \partial_0 f(a,b), \quad \frac{\partial f(a,b)}{\partial b} = \partial_1 f(a,b)$$

$$f(a,b) = a^2 - b^2$$
, $g(x) = \sin(x) \implies f(x,g(x)) = x^2 - \sin^2(x)$

$$\frac{\partial f(x,g(x))}{\partial x} = \partial_0 f(x,g(x)) + \partial_1 f(x,g(x)) \frac{\partial g(x)}{\partial x} = 2x - 2\sin(x)\cos(x)$$

Prerequisites: derivative of compound function

$$\mathbf{h}_{1} = f(\mathbf{x}_{1}, \mathbf{h}_{0}, \mathbf{w}), \quad \mathbf{h}_{2} = f(\mathbf{x}_{2}, \mathbf{h}_{1}, \mathbf{w}) \Rightarrow \mathbf{h}_{2} = f(\mathbf{x}_{2}, f(\mathbf{x}_{1}, \mathbf{h}_{0}, \mathbf{w}), \mathbf{w})$$

$$\frac{\partial f(\mathbf{x}_{2}, f(\mathbf{x}_{1}, \mathbf{h}_{0}, \mathbf{w}), \mathbf{w})}{\partial \mathbf{w}} = \partial_{1} f(\mathbf{x}_{2}, f(\mathbf{x}_{1}, \mathbf{h}_{0}, \mathbf{w}), \mathbf{w}) \frac{\partial f(\mathbf{x}_{1}, \mathbf{h}_{0}, \mathbf{w})}{\partial \mathbf{w}}$$

Prerequisites: derivative of compound function

$$\mathbf{h}_{1} = f(\mathbf{x}_{1}, \mathbf{h}_{0}, \mathbf{w}), \quad \mathbf{h}_{2} = f(\mathbf{x}_{2}, \mathbf{h}_{1}, \mathbf{w}) \Rightarrow \mathbf{h}_{2} = f(\mathbf{x}_{2}, f(\mathbf{x}_{1}, \mathbf{h}_{0}, \mathbf{w}), \mathbf{w})$$

$$\frac{\partial f(\mathbf{x}_{2}, f(\mathbf{x}_{1}, \mathbf{h}_{0}, \mathbf{w}), \mathbf{w})}{\partial \mathbf{w}} = \partial_{1} f(\mathbf{x}_{2}, f(\mathbf{x}_{1}, \mathbf{h}_{0}, \mathbf{w}), \mathbf{w}) \frac{\partial f(\mathbf{x}_{1}, \mathbf{h}_{0}, \mathbf{w})}{\partial \mathbf{w}} + \partial_{2} f(\mathbf{x}_{2}, f(\mathbf{x}_{1}, \mathbf{h}_{0}, \mathbf{w}), \mathbf{w})$$

Simple recurrent block

torch.nn.RNN(input_size, hidden_dim, n_layers) hidden_dim V_{hh} \mathbf{h}_t \mathbf{h}_{t-1} $\mathbf{h}_t = \mathbf{f}_{\mathtt{W}}(\mathbf{x}_t, \mathbf{h}_{t-1})$ input_size

PyTorch: https://pytorch.org/docs/stable/nn.html

RNN example with backprop

Consider linear recurrent neural network with L2 loss depicted on the image below. The network is initialized with parameters $\theta_1 = 1$, $\theta_2 = 0$, $z_0 = 0$. You are given the following training sequence:

time=1	time=2
$x_1 = 0$	$x_2 = 1$
$y_1 = 1$	$y_2 = 3$

Estimate gradient of the overall loss (computed over all available outputs y_i for both available times i = 1, 2) with respect to θ_1 .

Hint: Unroll the network in time, to obtain a usual feedforward network with two loss nodes. Do the backpropagation as usual.

Given a finite input sequence: $h_0 \times_1 \times_2 \times_3$ we remove the recurrent connection by:

- successive substitution of inputs and
- unrolling the net

Given a finite input sequence: $h_0 \times_1 \times_2 \times_3$ we remove the recurrent connection by:

- successive substitution of inputs and
- unrolling the net

Given a finite input sequence: x₂ x₃ we remove the recurrent connection by:

- successive substitution of inputs and
- unrolling the net

Given a finite input sequence: x₃ we remove the recurrent connection by:

- successive substitution of inputs and
- unrolling the net

- Unrolled computational graph:
 - it is normal feedforward network

- Unrolled computational graph:
 - it is normal feedforward network
 - it consists of several same blocks with the same weights!

- Loss function:
 - cross-entropy loss on the last output only (for simplicity)

• Backprop:

$$rac{\partial \mathcal{L}(\mathbf{y_3},\mathbf{y}_3^{ ext{gt}})}{\partial \mathtt{W}} = ?$$

$$rac{\partial \mathcal{L}(\mathbf{y_3},\mathbf{y}_3^{ ext{gt}})}{\partial \mathtt{W}} = ?$$

RNN vs feedforward network

- recurrent (RNN): $\mathbf{h}_t = \mathbf{f}_{\mathtt{W}}(\mathbf{x}_t, \mathbf{f}_{\mathtt{W}}(\mathbf{x}_{t-1}, \dots \mathbf{f}_{\mathtt{W}}(\mathbf{x}_1, \mathbf{h}_0))$
 - feedforward: $\mathbf{h}_t = \mathbf{g}(\mathbf{x}_t, \mathbf{x}_{t-1}, \dots \mathbf{x}_1, \mathbf{w})$ (stacking sequence to long input vector)
 - RNN works for different lengths of input sequences
 - RNN share weights between different time instances (similarly as convolution on spatial domain).
 - Some RNN are spatio-temporal convolutions [Hinton 1988]
 - Memory is attention in time [Alex Graves 2020]
 - RNN is universal (can compute any function computable by Turing machine)

LSTM (kind of ResNet for recurrent networks)

Simple recurrent block

Simple recurrent block

cell state is long term memory= vector [singular/plural, feminine/masculine, case, ...]

cell state is long term memory= vector [singular/plural, feminine/masculine, case, ...]

cell state is long term memory= vector [singular/plural, feminine/masculine, case, ...]

cell state is long term memory= vector [singular/plural, feminine/masculine, case, ...

cell state is long term memory= vector [singular/plural, feminine/masculine, case, ...

cell state is long term memory= vector [singular/plural, feminine/masculine, case, ...

cell state is long term memory= vector [singular/plural, feminine/masculine, case, ...

cell state is long term memory= vector [singular/plural, feminine/masculine, case, ...

cell state is long term memory= vector [singular/plural, feminine/masculine, case, ...

cell state is long term memory= vector [singular/plural, feminine/masculine, case, ...]

cell state is long term memory= vector [singular/plural, feminine/masculine, case, ...]

cell state is long term memory= vector [singular/plural, feminine/masculine, case, ...]

LSTM block

torch.nn.LSTM(input size, hidden dim, n layers)

- Music generation
- Image captioning

- Sentiment classification
- Action recognition

- Coloring/enhancing video sequences
- Named-entity recognition
- Speech recognition

- Machine translation
- Question answering

output: variable-size sequence

context: fixed-size semantic summary of input sequence

RNN architectures: Machine translation

output: Czech sentence

RNN can theoretically **remember everything** important but in practice it suffers from **catastrophic forgetting** (important relations could be very far).

Let's process the whole sentence at once through transformer!

encoder

[Mikolov NIPS 2013]

Visualizing Word Embeddings using t-SNE

encoder

Scalar product measures similarity between vectors.

Get attention weights

Attention-weighted sum of values

Outputs:

Avoid for-loop by smart matrix multiplication

encoder

encoder Attention($\mathbf{X}, \mathbf{W}_q, \mathbf{W}_k, \mathbf{W}_v$ $S(\mathbf{Q}^{\mathsf{T}}\mathbf{K})\mathbf{V}^{\mathsf{T}}$ Values Keys Queries $|\mathbf{q}_i|$ $\mathbf{W}_k \mathbf{x}_i$ Positional encoding Word embedding

https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb

BertViz

Model assumes "she=nurse"

https://www.comet.com/site/blog/explainable-ai-for-transformers/

BertViz (GPT2 model)

Model assumes "she=nurse"

Model assumes "he=doctor"

Transformers and Attention in images

Attention modules [Woo et al,ECCV, 2018] https://arxiv.org/pdf/1807.06521v2.pdf

DETR: transformers for object detection https://arxiv.org/abs/2005.12872

- No anchors
- Output set of N bbs (ordering does not matter)
- Matching loss matches each predicted bb with ground truth bb, or enforces Ø

Attention in RL

Summary

- self-attention overfits (requires large dataset) => combining with hard explicit attention may work better
- memory is attention through time [Alex Graves 2020]
- pyTorch library: https://github.com/The-AI-Summer/self-attention-cvmodel = MultiHeadSelfAttention(dim=64)

Future?

- Most of predictions were wrong
 - 1954 IBM predicted that natural language processing will be solved in 3 years
 - 1965 Herbert Simon: machines will replace humans in all manual works
 - 1970 Marvin Minsky: machines will have general AI comparable with humans
 - 2014 Rei Kurzweil: the same for for 2029, now talks about 2045
- Rodney Brooks prediction score card: https://rodneybrooks.com/predictions-scorecard-2021-january-01/
- False generalization
 - Al is better in solving particular instances (image processing, stabilization)
 - Rather carefully isolated successes than exponentially growing general Al