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Prerequisites: Bayes theorem

pA,B) =p(A|B) - p(B) =p(B|A) - plA)

p(B|A)p(A)

A|B) =
p(A | B) B)

The same valid even if all probabilities conditioned by another event C

pA,B|C) =pA|B,C)-pB|C) =pB|A,C)-pA|C)

pB|A,C)p(A|C)
p(B|C)

p(A|B,C) =



Prerequisites: Independence

Bayes theorem: p(A,B) =p(A|B) - p(B) = p(B|A) - p(A)

f A and B independent: p(A,B) = p(A) - p(B)

Let’s put it together: p(A,B) = p(A) - p(B) = p(A|B) - p(B)

p(A) = p(A|B)
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Prerequisites: Mean and average
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Prerequisites: Mean and average

—=2 (x) - x=FEy[x] =021+ 0.1:2 + 0.7-3=25
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Prerequisites: Mean and average

f: ZP(X) f(X) — _XNp(X) [f(X)] = 27

X

where X; ~ p
p(X) Jix) =10

o p(x) = 0.7

J(X) =06

0.2
n(X)

(X
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Prerequisites: Mean and average

f=) p(x)-f(x) =E o [f®)] =02-10 + 0.1-6 + 0.7-3 =47

1 1
~— ) f(x) =—(10+10+6+3+3+3+ +3+3)=4.7
Nzi:f( ) =70 )

where X; ~ p
p(X) Jix) =10

J(X)

p(x) = 0.7




Prerequisites: Mean and average

_ |
f= Jp<x> ) dx = Ey i [f0] - 3 flx) - where x;~p

X

J(X)
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Prerequisites: KL-divergence

Dy, (p | )—E log— =02-1 '2+01 lo O°1+O7 lo )] 0.2
— ° — U.2 - 10 i YA =\ ®
k\P Il 4 pPi - 108 | g gO. g0.2 O

 Whatifg,=0andp,>07  What it ¢, = p, for k=1,2,3 7
o Is it symmetrical D, (p |l ¢) # Dgi(q |l p)?
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density

Prerequisites: KL-divergence

p(x) I

DKL(P(X) | Q(X)) = JP(X) - log )

X

DKL<p(X) | Q(X)) =0.2036

DKL(p(X) | Q(X)) =0.37064

https://gnarlyware.com/blog/kl-divergence-online-demo/
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https://gnarlyware.com/blog/kl-divergence-online-demo/

Prerequisites: argmin

x* = arg minf(x) = arg minlog(f(x))

X X
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Prerequisites: argmin

x* = arg minf(x) = arg minlog(f(x))

X X
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Prerequisites: argmin

x* = arg minf(x) = arg minlog(f(x))

X X

log(f(x))
log (/(x*)
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Where does the loss function come from?
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Lec O1: what can go wrong: inappropriate choice of loss function

What should | do instead of fitting a curve???
Search for probability distribution of y given X

outlier

1 % Y
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water S B
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. X
Sand , g e

vertical accelerations

|

terrain Y

https://rickandmorty.fandom.com/wiki/Evil_Morty
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Motivation example: estimation of a motion model

Y1

motion ¥ x .
, Jrobot —» < A,
engine torque x >
terrain X

D:{Xlayln-XN?yN}
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Motivation example: estimation of a motion model

Unknown distribution
with parameters w

motion ¥ x

enginetorque x @ @ \@ >
terrain \)

 \We search for parameters w of unknown distribution
given measurements D = {x1,y1...Xn, YN}
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Motivation example: estimation of a motion model

Unknown distribution
with parameters w

/
—mﬂcf y y(

enginetorque x ® © —

terrain X

 \We search for parameters w of unknown distribution
given measurements D = {x1,y1...Xn, YN}

How should we fit distribution into data?

19



How should we fit distribution into data?
* Many robotics tasks contain perception problems: given X estimate y

B road
| sideway

*‘.

B pedestrian
~ traffic sign
o trees

o sky
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Why should | minimize -log(p)?
* (x,y)-tuples live on unknown distribution p,...(x, y)
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Why should | minimize -log(p)?
* (x,y)-tuples live on unknown distribution p,...(x, y)

 We approximate it by p(x, y|w)
» We search for weigths w that makes p(x,y|w) close to p,..(x,y):

. . Pdata(X; Y)
W = al'g min DKL(pdata(Xa y) | p(X,y | W)> — dIg i1 { pdata(X’ y) - lOg o
W w p(X9 Y ‘ W)
— are min E llOg Pdata(X; Y)] — ar min(x_,y) [1 —log p(v|x W)M]
w  E) P aaa(X.Y) p(X,y| W) — dalg W XY) w SPLVTE,
] e
= arg min _(X,y)[ — ]()gp(y ‘ W, X)] ~ arg II;’IIIN Z [— lng(yi ‘ X, W)] KL JUStIfICathﬂ
W (X;5Y:) ~ Paa(X, )
Y .
pdata(Xa y) MLE .
— arg min — log [ | /%, W
W
(X;,);)

pXx,y|w)
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Why should | minimize -log(p)?
* (x,y)-tuples live on unknown distribution p,...(x, y)

 We approximate it by p(x, y|w)
» We search for weigths w that makes p(x,y|w) close to p,..(x,y):

. . Pdata(X; Y)
W = al'g min DKL(pdata(Xa y) | p(X,y | W)> — dIg i1 { pdata(X’ y) - lOg o
W w p(X9 Y ‘ W)
— are min E llOg Pdata(X; Y)] — ar min(x_,y) [1 —log p(v|x W)M]
w  E) P aaa(X.Y) p(X,y| W) & 1W (X,y) w SPLVTE,
= arg min _(X,y)[ — ]()gp(y ‘ W, X)] ~ arg II;’IIIN Z [— lng(yi ‘ X, W)] KL justification
W (X;5Y:) ~ Paa(X, )
Y .
pdata(Xa y) MLE .
= argmin — log [ | 0%, w)
v (X;,);)
p(X,y|w) = arg max H Py | X, W)
W

(Xiayi)
23



Why should | minimize -log(p)?
* (x,y)-tuples live on unknown distribution p,...(x, y)

 We approximate it by p(x, y|w)
» We search for weigths w that makes p(x,y|w) close to p,..(x,y):

. . Pdata(X; Y)
W = al'g min DKL(pdata(Xa y) | p(X,y | W)> — dIg i1 { pdata(X’ y) - lOg o
W w p(X9 Y ‘ W)
— are min E llOg Pdata(X; Y)] — ar min(x_,y) [1 —log p(v|x W)M]
w  E) P aaa(X.Y) p(X,y| W) — dalg W XY) w SPLVTE,
] e
= arg min _(X,y)[ — ]()gp(y ‘ W, X)] ~ arg II&IIN Z [— lng(yi ‘ X, W)] KL JUStIfICathﬂ
W (X;5Y:) ~ Paa(X, )
Y .
pdata(Xa y) MLE .
— arg min — log [ | /%, W
W
(X;,);)

= argmax H p(y; | X;; W)

(Xiayi)
24



ply|x,w) =

29
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wW* = arg max H N (i X, W), 0) = argmin Z(_— .)2
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* |n what sense is they_E and the LSQf{n‘ula’cions equivalent?

W = arg max 1705 fixiow,0) = argminy (f(xi, W) = i)?




What can go wrong: inappropriate choice of loss function

This Is the problem! outlier

engine torque X

vertical accelerations

|

RGRD sand———

Nature I1s evi| !

motion ¥

s O englne X ' '
terrain Y torque terrain

29
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Robust regression

yA

motion

X

X

. : >
engine torgue x
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Evil source of uniform noise
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0.4

0.35 -
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0.25 -

0.2

0.15 -

0.1

0.05

Robust regression

p(y|x,w)

(aussian

(Gaussian
_|_
- Uniform

Probabllity distributions

Z(w) = — log(p(y|x, w))
Corresponding losses

I I 14

12

10

°r | 2

dh Penalization of outliers
o saturated

.. Welsch

| | |
0 1 2 3 4 5 -5 -4

Can you guess where another problem appears”
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Robust regression

ZL(w) (p(ylx,w))

p \-{\ ’ 12 —
/ // ) \ k /\ |
L2 landscape g

-2
---------------

‘ |
A

60
40 |

20

A

Uniform noise modelled
=> GD-unfriendly landscape
 Non-convex: Large narrow
plateaus with zero gradient
e (Good initialization required 33

Uniform noise omitted

=> GD-friendly landscape
Gradient length encodes distance
Easy to optimize



Shape of robust regression functions [Barron CVPR 2019]
https://arxiv.org/abs/1701.03077

5 p(z, a, c)
o /o
o —2] (/)" -
4| | Plaac)="— ((|a—2\ | 1) 1)
3L . Trade-off:
Robustness to uniform noise (outliers)
i VS
~ Optimization-friendly landscape
. The best what you can do:
O \

-Gc-pc-4c-3c-2c -¢ 0 ¢ 2c 3¢ 4c pec be 34


https://arxiv.org/abs/1701.03077

What can go wrong: inappropriate choice of loss function

This Is the problem! outlier

engine torque X

vertical accelerations

|

RGRD sand———

Nature I1s evi| !

motion ¥

s O englne X ' '
terrain Y torque terrain

35
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What can go wrong: inappropriate choice of loss function

This Is the problem!

sang—=——=i ,
vertical accelerations

terrain Y

https://rickandmorty.fandom.com/wiki/Evil_Morty

outlier

engine torqué X
Nature Is evil !
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Work-around 1: discretize y-domain and treat the problem as classifcation

left/right steering

Can | use it always?

Tractable only for low-dimy

37
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Semantic map

What if y are images”?

33



Work-around 2: allow multiple hypothesis

]Cl(Xaw) ,'( =1
R o ¥
AW (>
x’:‘x ] =7 X

Semantic map

Multiple choice loss L(W) = min Hfl(x, W) — y”
[Microsoft, NIPS, 2012], [Koltun, ICCV, 2017] [
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Work-around 2: allow multiple hypothesis

X 7.
I
I

““
““
.

Semantic map
Problem 1: number of hypothesis may grow exponentially

Multiple choice loss Z(w) = min ||[f(x, w) — y||
[Microsoft, NIPS, 2012], [Koltun, ICCV, 2017] i “~ _

Problem 2: Measuring similarity of images 4



Work-around 3: use generative model

Semantic map

Generative models: GANs [Goodfellow 2016], VAE,
Diffusion models [Ho, NIPS 2020]

41
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Summary loss

* -log(p)-loss stems from fitting the network parameterized p(y|x,w) distr. into data
 Maximum Likelihood = Minimum KL-divergence = Minimum -log(p)-loss

o Different distributions suffer from optimization issues (zero gradients, sensitivity to
good Initialization, local optima, ...)

43



Where does the overfitting come from?

44



Where does the overfitting come from?

e
4

, ’ \\ // 0'60.8
% 04 o 020'4 d
X 0.8 |
10 0.0

2

45

W = arg mvgux Hp(yi‘xia w) | = arg m“i’n Z(wﬂ'? T W1 + Wo _.)
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Where does the overfitting come from?

p(y|[x,w)

s . 1.0 0.0

- 4 3 2
= arg min E (wax, + wzx; + wox; + wix; + Wy —
W

1

%)

46

w* = argmax | | [ plylx. w)
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Where does the overfitting come from?

_

W = arg max
W



Where does the overfitting come from?

William of Ockham leprechauns can be
(1287-1347) involved in any explanation

GSJ,%%

The space of possible
stories Is too wild

=> Use the simplest
(the most apriori probable)

https://en.wikipedia.org/wiki/Occam%2/s_razor 48



https://en.wikipedia.org/wiki/Occam's_razor

Where does the overfitting come from?

Phaistos disc

Many stories consistent
with sequence of
visual symbols

https://en.wikipedia.org/wiki/Phaistos_Disc

1
1
1

>

N

1
1

101D6
101D7
101D8

01D0
01D1
01D2
01D3
01D4

1D5

—n 22 WG [ aBy 230 =g F) TP

01D9
01DA ¢
01DB @

PHA
PHA
PHA

PHA
PHA
PHA

Unicode

STOSD
STOSD
STOSD
STOSD
STOS D
STOS D
STOSD
STOSD
STOS D
STOS D
STOSD
STOSD

SCS
SCS
SCS
SCS
SCS
SCS
SCS
SCS
SCS
SCS
SCS
SCS

GN PEDESTRIAN
GN PLUMED HEAD
GN TATTOOED HEAD
GN CAPTIVE

GN CHILD

GN WOMAN

GN HELMET

GN GAUNTLET

GN TIARA

GN ARROW

GN BOW

GN SHIELD

The space of possible

stories Is too wild
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Where does the overfitting come from?

» We fit p(X, y | w) into unknown distribution p...(X, y):
W* — alIg minDKL(pdata(X9 y) H p(Xay ‘ W))
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Where does the overfitting come from?

» We fit p(X, y | w) into unknown distribution p...(X, y):

W* — alIg minDKL(pdata(Xa y) ” p(Xay ‘ W))
W
* Dyara(X, V) is unknown => use samples (training set)

» Since the traning set is finite, we actually used different p;...(X, V)

51



Where does the overfitting come from?

» We fit p(X, y | w) into unknown distribution p...(X, y):

w* = argmin Dy; (g, (%, ) || p(x,y | w))
W
* Diata(X, V) is unknown => use samples (training set)

» Since the traning set is finite, we actually used different py,..(X, V)
w* = arg min Dy (py.(%.y) || p(x,y | W)) # argmin Dy (P, (%, ) || X,y [ W)
W W




Where does the overfitting come from?

» We fit p(X, y | w) into unknown distribution p...(X, y):
W* = arg min DKL<pdata(Xa Yl p(x, y| W))
* Diata(X, y)wis unknown => use samples (training set)
» Since the traning set is finite, we actually used different p...(X, y)
w* = arg mvin Dir (Paaa®.9) || p(x,y|W)) # arg mvin D (Paaa®:¥) Il p(X, | W))

ﬁ data(X9

P data(X’ Y )

pXx,y|w) px,y|w)

53



Where does the overfitting come from?

Take home message: Optimization # Mac!iine learning

Machine learning is optimization of' e do not have access to.
Therefore approximated criterion is optimized instead

Suppress 1) Use the right p(x, y| w) that generates only shapes similar to p,,..(x, y)
overfitting

ﬁ data(X’

P data(X’ Y )

pXx,y|w) pXx,y|w)




Where does the overfitting come from?

W W
Take home message: Optimization # Mac!iine learning

Machine learning is optimization of"we do not have access to.

Therefore approximated criterion is optimized instead

Suppress 1) Use the right p(x, y| w) that generates only shapes similar to p,,..(x, y)
overfitting  2) Which one is better???

loss 4 . ;
Dgp. (ﬁdata(xa ) |l p(x, ¥ W))

L J
4
uB
Emnmnnp®
-l“

B trndata :
B tstdata 5 135 w

flat minimum  sharp minimum 55



Where does the overfitting come from?

2) Which one is better???

loss 4 - i
D (Paaa: ) 1| X,y [ W))

.
4
W
Eemmnp®
l“‘

B trndata :
B istdata 5 135 w

flat minimum  sharp minimum

Good generalization Weak generalization => optimum prone to overfitting
Testing error remains small Testing error grows fast with a small trn/tst shift

Weaker learning methods are surprisingly better in generalization
[Dai, NIPS, 2018] https://arxiv.org/pdf/1812.00542.pdf 56



Where does the overfitting come from?
2) Avoid sharp minima of Dg; (Pyau(X. ) || p(X,y | W))

loss 4 - R
DKL (ﬁdata(xa y) H p(X9 Y ‘ W)) “\

.
4
W
Emmmnnp®
l“‘

B trn data

flat minimum  sharp minimum

Can you guess how to enforce flat minimum???

min max Lyqin(w + €)
w o |le]l2<p

|[Foret 2021]
https://arxiv.org/pdf/2106.01548.pdf

B istdata = J : W
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Where does the overfitting come from?

o
Take home message: Optimization # Mac!iine learning

Machine learning is optimization of' e do not have access to.
Therefore approximated criterion is optimized instead

Suppress 1) Use the right p(x, y| w) that generates only shapes similar to p,,..(x, y)
overfitting ~ 2) Avoid sharp minima of Dg; (P ga(x. ) || p(X,y|W))

3) Use close-to-infinite dataset

58



Where does the overfitting come from?

3) Use close-to-infinite dataset

Data augmentation

59



Where does the overfitting come from?

3) Use close-to-infinite dataset

Data augmentation

Which fake data can you generate???

Reasonable geometrical and histogram transtormations:
Mirroring, scaling, rotation, squeezing, contrast, brightness, ...
Or any generative model

60



Where does the overfitting come from?

o
Take home message: Optimization # Mac!iine learning

Machine learning is optimization of' e do not have access to.
Therefore approximated criterion is optimized instead

Suppress 1) Use the right p(x, y| w) that generates only shapes similar to p,,..(x, y)
overfitting ~ 2) Avoid sharp minima of Dg; (P ga(x. ) || p(X,y|W))

3) Use close-to-infinite dataset

61



1) Use the right p(x, y | w) that generates only shapes similar to p,..(x, v)

2D manipulator
HW1 IKT: (links + end_effector) => joints

7/ links

base




1) Use the right p(x, y | w) that generates only shapes similar to p,..(x, v)

2D manipulator
HW1 IKT: (links + end_effector) => joints

63



1) Use the right p(x, y | w) that generates only shapes similar to p,..(x, v)

model: p(yv|x, w)= 2?72

’/ links

base




1) Use the right p(x, y | w) that generates only shapes similar to p...(x, v)

model: p(y| x, w)= /V(yend; (X, w), 0)
What is the right f(x, w)”?
(a) linear function y,,, = f(joints; W) = W - joints (underfit)
(b) deep ConvNet y, 4 = f(joints; w) (overfit)
(c) DKT: y.,q = dkt(joints; w = links) (well-justified model)

joints

Yend c |

Yend

joints € |

65



1) Use the right p(x, y | w) that generates only shapes similar to p...(x, v)

& _goal

@ _goal

& _goal

@ _coal

& _goal

joints € |
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1) Use the right p(x, y | w) that generates only shapes similar to p...(x, v)

Take home message: Always use the right tool/model .

Embed prior knowledge (physics, geometry, biology)
about the problem into the network architecture

Examples:
* Projective transformation of pinhole cameras (for camera calibration or stereo)
 (Geometry of Euclidean motion (for point cloud alignment, direct kinematic tasks)
* Motion model of robots such Dubins car, flight, pendulum, ballistic trajectory
o Structure of animal cortex (for ConvNets)

If you cannot do it, at least penalize wild solutions

6/



1) Use the right p(x, y | w) that generates only shapes similar to p,..(x, v)

_

p(ylx, w) ~ Ny (f(x,w),0)

0.4
0.6
X

0.8

10 0.0

W' = arg max (HP(%X@’,W)> = arg m“',n Z(f(xi,w) — .)2

63



1) Use the right p(x, y| w) that generates only shapes similar to p,...(X, y)
What prior/regularizer should | use?

p(y\x, W) - Ny(f(X, W)7 0'2)
p(w) ~ N, (0, 02) A

]
"' !
!

]

0.0
0.2
0.4

X

0.6

W = arg mvgx (H p(y;|Xi, w)p(w)

\_/g
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1) Use the right p(x, y| w) that generates only shapes similar to p..(x, y)

Lp-norm: [lwl| = D lwil?
l

P

https://ekamperi.github.io/machine%20learning/2019/10/19/norms-in-machine-learning.html
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vvvvvvvvv

» (Gaussian prior p(w) =
o\ 21
't says: the smaller the better (the Ypore probable)

* Laplace prior p(w) =2—be( ) = |_1-regularization: |[w]|,

't says: the sparser the better (the more probable)

e | 2-regression with L1-regularization is known as Lasso

AAAAAAAAAAAAAAAAAAA
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summary
 Machine learning = optimization of the criterion, we do not have access to
(KL divergence between true distribution and model)

Optimization # Machine learning

* Avoid any “not-well justified leprechauns” in the model, => avoid overfitting
Always use the right (“leprechauns-free”) architecture

* Projective transformation of pinhole cameras (for camera calibration or stereo)
 (Geometry of Euclidean motion (point cloud alignment, direct kinematic tasks)
* Motion model of robots such Dubins car, pendulum, ODE ...

e Structure of animal cortex (for ConvNets)

Prefer simplier solutions (flat minima, lower weights, ...)
e | ess is sometimes more

Use close-to-infinite training data
 More is sometimes more ;-)

* Avoid oversimplifications of the model, => avoid underfitting 72



Golden grale:

Solve only “Pilcik-free” problems

Use "Morty-free” data (or at least correct noise model)

outlier

Avoid traps In learning

Lecture 1

Lecture 5

Lecture 4,8,10
ConvNets
VODE, Vargmin

Lecture 7
Optimizers



Competencies required for the test T1

* Derive MLE estimate for regression and classitfication for different noise models

* Derive L2/L1/cross-entropy/logistic losses,

 Understand connection between KL divergence, loss, optimization, machine
learning, underfitting, overfitting and model architecture.
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