Learning 101

Learning formulation and issues, regression, classification

Pre-requisites:

• linear algebra,

Karel Zimmermann
Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics

- What do I need to build a motion model?
- Algorithm that maps x on y (or prob distr of y)

- What do I need to build a motion model?
- Algorithm that maps x on y (or prob distr of y)
- This algorithm has some parameters => how to find them? => trn data+loss+opt

- What do I need to build a motion model?
- Algorithm that maps x on y (or prob distr of y)
- This algorithm has some parameters => how to find them? =>

, - NXXX WO motion yrobot engine torque x terrain \mathbf{X} trn data $\mathcal{D} = \{\mathbf{x}_1, y_1 \dots \mathbf{x}_N, y_N\}$

+loss+opt

Let's implement it!

$$loss = ???$$

• Let's implement it!

loss: $\underset{i}{\operatorname{arg\,min}} \sum_{i} (w_1 x_i + w_0 - y_i)^2$

What do I need to build a motion model?

SOLVED

- Algorithm that maps x on y (or prob distr of y)
- This algorithm has some parameters => how to find them? => loss+trn data+opt
- How to decide that the algorithm works well? => tst data
- What if the algorithm does not work well? What could go wrong?

What can go wrong: inputs x does not allow to predict y

What can go wrong: inputs x does not allow to predict y

A Deep Neural Network Model to Predict Criminality Using Image Processing https://medium.com/@CoalitionForCriticalTechnology/abolish-the-techtoprisonpipeline-9b5b14366b16

What can go wrong: trn/tst data distribution mismatch

[NVidia, CVPR, 2016]

Statistical consistency issues

Underfitting happens due to:

- oversimplified models
- inability to measure important features

linear function => underfitting

trn data: $\mathcal{D} = \{\mathbf{x}_1, y_1 \dots \mathbf{x}_N, y_N\}$

tst data:

log function => good fit

Good model provides:

 good generalization (less sensitive to trn/tst mismatch)

robot's motion × × engine torque x

trn data: $\mathcal{D} = \{\mathbf{x}_1, y_1 \dots \mathbf{x}_N, y_N\}$

tst data:

Overfitting happens due to:

- model complexity
- effort to interpret noise

 (in features that has no connection with the problem)

Do humans overfit?

complicated function=>overfitting

trn data:
$$\mathcal{D} = \{\mathbf{x}_1, y_1 \dots \mathbf{x}_N, y_N\}$$

Overfitting happens due to:

- model complexity
- bad features

Do humans overfit?

Apofenia=human overfitting

What can go wrong: **learning fails to find good model parameters** due to hyper-parameters, local optima, bad initialization ...

reasonable learning rate

too big learning rate

What can go wrong: inappropriate choice of loss function [Heess 2017] https://arxiv.org/abs/1707.02286

Can I treat problem as regression?

Motivation example: classification

- Suffers from:
 - bad optimization,
 - enforced ordering (loss for misclasifying mud-to-tarmac << mud-to-sand)
 - cannot model: "mud or sand but definitely not tarmac".

• 4 functions predicting class probabilities $p(y_1|x,w_1), p(y_2|x,w_2), \ldots$

- 4 functions predicting class probabilities $p(y_1|x,w_1), p(y_2|x,w_2), \dots$
- that sum up to one over classes for given x $\sum p(y_i|x,w) = 1$
- Loss pull blue function up for blue points, etc... what is a suitable shape?

Competencies required for the test T1

- Model (or Architecture/Program) with parameters => learning
- Learning = loss + trn data + optimization procedure
- Evaluation = measuring performance (not necessary loss) on tst data
- What could go wrong?
 - inputs x does not allow to predict y
 - trn/tst data distribution mismatch
 - model does not generalize well
 - learning fails to find good parameters
 - inappropriate choice of loss function
- Regression vs Classification
- Next lecture: Linear classification of RGB images