FSM Learning

Radek Mařík

Czech Technical University Faculty of Electrical Engineering Department of Telecommunication Engineering Prague CZ

December 13, 2023

Radek Mařík (radek.marik@fel.cvut.cz)

FSM Learning

December 13, 2023

Outline

I FSM Learning

- FSM Learning Overview
- Angluin's Algorithm
- Example

2 Hidden Markov Model

A Brief Overview

3 Markov Decision Process

- Introduction
- Utility Function, Policy
- Value Iteration
- Policy Iteration
- Conclusions

Outline

1 FSM Learning

- FSM Learning Overview
- Angluin's Algorithm
- Example

Hidden Markov Model A Brief Overview

3 Markov Decision Process

- Introduction
- Utility Function, Policy
- Value Iteration
- Policy Iteration
- Conclusions

Finite State Machine

A finite-state machine is a sextuple $(S, \Sigma, \Gamma, s_0, \delta, \lambda)$, where

- S is a finite nonempty set of states,
- Σ is an input alphabet (a finite nonempty set of symbols),
- Γ is an output alphabet (a finite nonempty set of symbols),
- s_0 is an initial state, $s_0 \in S$,
- δ is a state-transition function: $\delta: S \times \Sigma \to S$,
- λ is an output function: $\lambda : S \times \Sigma_{\epsilon} \to \Gamma_{\epsilon}$.

Additional designations:

- Σ^* is the set of all strings (words) over the input alphabet,
- Γ^* is the set of all strings (words) over the output alphabet,
- Alphabet X^* always contains ϵ and $\forall x \in X^* : \epsilon \cdot x = x = x \cdot \epsilon$.
- Thus X* is always nonempty and it is also countable because X is countable.

Goal

- A system trying to figure out the effects its actions have on its environment...
 - It performs actions.
 - It gets observations.
 - It tries to make an internal model of what is happening.
- Let's model the world as a DFA.

Applications

- Communication protocol learning,
- Hidden process learning,
- WWW application learning,
- Black box proprietary behavior identification,
- Software implementation identification.

Learning a Language

- Inferring finite automata is analogous to learning a language
- There is no way to distinguish between two automata that recognize the same language, without examining the state structure.
- We focus on finding the minimum equivalent automata.
- It has been shown that the only classes of languages that can be learned from **positive data only** are classes which include no infinite language.

Active Learning [Hon13]

- Passive learning a set X is given and we cannot modify it.
 - NP problem
- Active learning a set X can be selected and it can be modified during a learning process.
 - P problem

Outline

1 FSM Learning

- FSM Learning Overview
- Angluin's Algorithm
- Example

Hidden Markov Model A Brief Overview

3 Markov Decision Process

- Introduction
- Utility Function, Policy
- Value Iteration
- Policy Iteration
- Conclusions

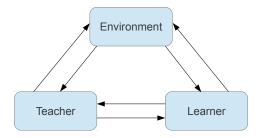
Teacher [Hon13]

The teacher has to be able to answer two kinds of queries

- Membership query Yes/No.
 - $\bullet\,$ In a membership query the learner selects a word $w\in\Sigma^*$ and
 - the teacher gives the answer whether or not $w \in L$.
- Equivalence query (counterexamples) Yes/a counterexample string.
 - In an equivalence query the learner selects a hypothesis automaton \mathcal{H} , and the teacher answers whether or not L is the language of \mathcal{H} .
 - If yes, then the algorithm terminates.
 - If no, then the teacher gives a counterexample, i.e., a word in which L differs from the language of H.

An issue of whether or not we have a **reset** button.

Active Learning with a Teacher [Hon13]



A learning architecture with a minimally adequate teacher.

An architecture with a degraded teacher working as an interface.

Angluin's Algorithm - Top Level View

- Iteratively, the algorithm builds a DFA using membership queries, then presents the teacher with the DFA as a solution.
- If the DFA is accepted, the algorithm is finished. Otherwise, the teacher responds with a counter-example, a string that the DFA presented would either accept or reject incorrectly.
- The algorithm uses the counter-example to refine the DFA, going back to the first step.

Angluin's Algorithm - Control Structures

States and Experiments

The algorithm uses two sets,

- S for states,
 - $\bullet \ S$. . . access sequences to states
 - $S \bullet A \ldots$ sequences to exercise all transitions
- E for experiments (distinguishing sequences), and
- \bullet one observation table, T, where
 - $\bullet\,$ elements of $S\cup S\bullet A$ form rows, and
 - elements of E form columns the values of each cell is the outcome of a membership test for the concatenation of the row and column strings.

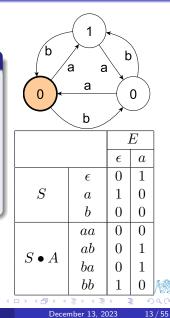
[Ang86, Sha08, Hon13] Observation Table

Definition 1.1

Let $\mathcal{E} = (A, \operatorname{accept})$ be an accepting environment.

Observation table of environment \mathcal{E} is an ordered triple OT = (S, E, T), where

- $S \subseteq A^*$, $S \neq \emptyset$, S finite, S is prefix closed.
- $E \subseteq A^*$, $E \neq \emptyset$, E finite, E is suffix closed.
- T is a function $(S \cup S \bullet A) \times E \to \{0, 1\}.$
- The set S is called *input set*.
- E is a distinguishing set.



Initial Observation Table [Hon13]

- L^* algorithm initialization:
 - Init the observation table OT = (S, E, T), where $S = \{\epsilon\}$, $E = \{\epsilon\}$.
 - Create a queue of membership queries: all pairs $s \cdot e$, where $s \in S \cup S \cdot A$ and $e \in E$.
 - Get the answers from the set of $\{0,1\}$ provided by the teacher, if $s\cdot e$ belongs to the learned language. Insert the answer value to the place $\mathrm{T}(s,e)$ in the observation table.
 - Different rows in the section S of the table define states of the a possible automaton.

		E
		ϵ
S	ϵ	1
$S \cdot A$	a	0
J · A	b	0

[Hon13] Observation Table - Closeness, Consistency

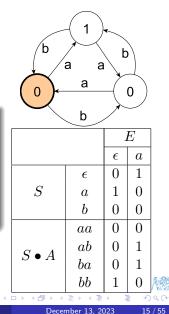
$$\begin{aligned} &(s_1, s_2 \in S) \\ &(s_1 \stackrel{E}{\sim} s_2) \iff (\forall e \in E) (\lambda(s_1, e) = \lambda(s_2, e)) \end{aligned}$$

Definition 1.2

An observation table OT = (S, E, T) is closed, if $(\forall t \in S \cdot A) (\exists s \in S) (s \stackrel{E}{\sim} t)$.

The table is consistent, if $(\forall s, t \in S, s \stackrel{E}{\sim} t) \implies (\forall a \in A)(s \cdot a \stackrel{E}{\sim} t \cdot a).$

• The closeness and consistency checking is performed when the queue of queries becomes empty.



Radek Mařík (radek.marik@fel.cvut.cz)

Observation Table - Modifications [Hon13]

• If OT = (S, E, T) is not closed, then

- Search for $t \in S \cdot A$, so that $s \not\simeq t$ for all $s \in S$.
- 2 This t is added to the set S and the queue of membership queries is extended with $t \cdot a \cdot e$ for all $a \in A$ and $e \in E$.

• If OT is not consistent,

- Search for $s, t \in S$, $e \in E$ and $a \in A$, so that $s \stackrel{E}{\sim} t$, but $T(s \cdot a, e) \neq T(t \cdot a, e)$.
- 2 The word $a \cdot e$ is added to the distiguishing set E.
- Solution The queue of membership queries is extended with s' ⋅ e for all s' ∈ S ∪ S ⋅ A.
- **(**) It is obvious that $s \stackrel{E}{\sim} t$ is not satisfied in the new observation table.

L^* algorithm [Ang86, Sha08, Hon13]

- Init the observation table OT = (S, E, T).
- I Fill the observation table using the membership query queue.
- Solution Check if *OT* is closed and consistent:
 - If OT is not closed, extend the set S with t ∈ S · A, so that s ^E/₂ t for all s ∈ S. Extend the queue of membership queries and continue to 2.
 - If OT is not consistent, extend the set E with the word a ⋅ e, e ∈ E, and a ∈ A so that there are s, t ∈ S, that s ~ t, but T(s ⋅ a, e) ≠ T(t ⋅ a, e). Extend the queue of membership queries and continue to 2.
- **④** Make the conjecture \mathcal{A} and ask the teacher for its correctness.
- If the teacher returns a counterexample c ∈ A⁺, delete the conjecture A, add all elements of the set pref(c) to the set S, extend the queue of membership queries and continue to 2.
- Accept the conjecture A as the automaton modeling the environment E.

FSM Conjecture Example [Ang86, Ang87]

• An acceptor $M(S, E, T)$	
 over the alphabet A, 	
 with state set Q, 	
• initial state q_0 ,	
 accepting states F, and 	
• transition function δ :	
$Q = \{row(s) : s \in S\},$	(1)
$q_0 = row(\epsilon),$	(2)
$F = \{row(s) : s \in S$	
and $T(s) = T(s \bullet \epsilon) = 1\},$	(3)
$\delta(row(s), a) = row(s \bullet a).$	(4)

•
$$S = \{\epsilon, a, b, bb\}, E = \{\epsilon, a\}$$

T_4		E	
14	14		a
	ϵ	1	0
S	a	0	1
5	b	0	0
	bb	1	0
	aa	1	0
	ab	0	0
$S \bullet A$	ba	0	0
	bba	0	1
	bbb	0	0
	bbb	0	0

M_2/δ	a	b
q_0	q_1	q_2
q_1	q_0	q_2
q_2	q_2	q_0
	È► < 3	È≯ -

Outline

FSM Learning

- FSM Learning Overview
- Angluin's Algorithm
- Example

2 Hidden Markov Model

A Brief Overview

3 Markov Decision Process

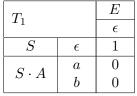
- Introduction
- Utility Function, Policy
- Value Iteration
- Policy Iteration
- Conclusions

L^{\ast} Algorithm - Example I $^{\scriptscriptstyle [Ang87]}$

Example 1

The unknown regular automaton accepts the set of all strings over $\{a, b\}$ with an even number of a's and an even number of b's.

The initial observation table, $S=E=\{\epsilon\}$



- The observation table T_1 is consistent, but not closed, since row(a) is distinct from $row(\epsilon)$.
- L^* chooses to move the string a to the set S and then queries the strings aa and ab to construct the observation table T_2 .

L^* Algorithm - Example II [Ang87]

Example 2

The unknown regular automaton accepts the set of all strings over $\{a, b\}$ with an even number of a's and an even number of b's.

$$S = \{\epsilon, a\}, E = \{\epsilon\}$$

$$T_2$$

$$F_2$$

M_1/δ	a	b
q_0	q_1	q_1
q_1	q_0	q_1

- The observation table T_2 is consistent and closed.
- L^* makes a conjecture of the acceptor M_1 .
- The initial state of M_1 is q_0 and the final state is also q_0 .
- The teacher selects a counterexample bb (rejected by M_1).

FSM Learning E

Example

L^* Algorithm - Example III [Ang87]

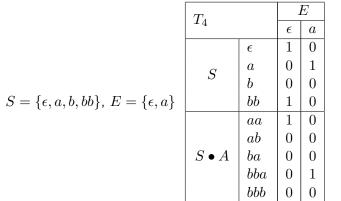
	T_3		E
	13		ϵ
		ϵ	1
	S	a	0
	5	b	0
$S = \{\epsilon, a, b, bb\}, E = \{\epsilon\}$		bb	1
		aa	1
		ab	0
	$S \bullet A$	ba	0
		bba	0
		bbb	0

- The observation table T₃ is closed, but not consistent, since row(a) = row(b) but row(aa) ≠ row(ba).
- L^* adds the string a to E and queries the strings aaa, aba, baa, bbaa, and bbba to construct the table T_4 .

FSM Learning Exa

Example

$|L^*$ Algorithm - Example IV [Ang87]



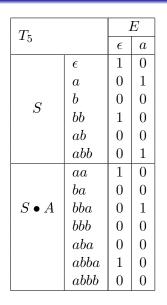
M_2/δ	a	b
q_0	q_1	q_2
q_1	q_0	q_2
q_2	q_2	q_0

- The observation table T_2 is consistent and closed.
- L^* makes a conjecture of the acceptor M_2 .
- The initial state of M_2 is q_0 and the final state is also q_0 .
- The teacher selects a counterexample *abb* (accepted by *M*₁, but not in *U*).

FSM Learning Ex

Example

L^* Algorithm - Example V [Ang87]



$$S = \{\epsilon, a, b, bb, ab, abb\}$$
$$E = \{\epsilon, a\}$$

- The observation table T_5 is closed but not consistent since row(b) = row(ab)but $row(bb) \neq row(abb)$.
- L* adds the string b to E and queries the strings aab, bab, bbab, bbbb, abab, abbab, and abbbb to construct the table T₆.

FSM Learning Example

L^* Algorithm - Example VI ^[Ang87]

T	E			
T_6		ϵ	a	b
	ϵ	1	0	0
	a	0	1	0
S	b	0	0	1
3	bb	1	0	0
	ab	0	0	0
	abb	0	1	0
	aa	1	0	0
	ba	0	0	0
$S \bullet A$	bba	0	1	0
	bbb	0	0	1
	aba	0	0	1
	abba	1	0	0
	abbb	0	0	0

$S = \{\epsilon, a, b, bb, ab, abb\}$					
$E = \{\epsilon, a, b\}$					
	M_3/δ	a	b		
	q_0	q_1	q_2		
	q_1	q_0	q_3		
	q_2	q_3	q_0		
	q_3	q_2	q_1		

- The observation table T_2 is consistent and closed.
- L^* makes a conjecture of the acceptor M_2 .
- The initial state of M_3 is q_0 and the final state is also q_0 .
- The teacher replies to this conjecture with *yes*.
 - M_3 is a correct acceptor for the language

L^* Algorithm Performance

- The example:
 - # MQ: 25
 - # EQ: 3
- Real protocols

Protocol	States	Letters	MQ	EQ
Abp-lossy	3	3	22	2
Buff3	9	3	202	5
Dekker-2	2	3	7	1
Sched2	13	6	691	7
VMnew	11	4	513	7

Synthetic data

States	Letters	MQ	EQ
100	25	40000	15

• At present up to 1000 states.

Outline

FSM Learning

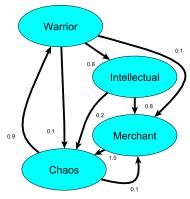
- FSM Learning Overview
- Angluin's Algorithm
- Example
- Hidden Markov Model
 A Brief Overview

3 Markov Decision Process

- Introduction
- Utility Function, Policy
- Value Iteration
- Policy Iteration
- Conclusions

Hidden Markov Model A Brief Overview

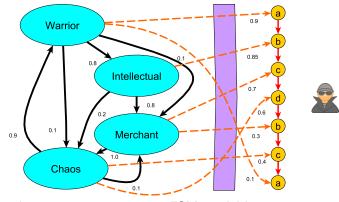
Hidden Markov Model (HMM) - Overview



- Many observation sequences \rightarrow FSM model learning
 - Iterative Baum-Welch algorithm [BP66] Expectation-Maximization (EM)
- SM Model + an observation sequence
 - \rightarrow the probability of the state sequence
 - The Viterbi algorithm
- $\textbf{ SM Model} + a \text{ sequence part} \rightarrow the most probable states }$

Hidden Markov Model A Brief Overview

Hidden Markov Model (HMM) - Overview



● Many observation sequences → FSM model learning

- Iterative Baum-Welch algorithm ^[BP66] Expectation-Maximization (EM)
- SM Model + an observation sequence
 - \rightarrow the probability of the state sequence
 - The Viterbi algorithm
- **③** FSM Model + a sequence part \rightarrow the most probable states

Outline

FSM Learning

- FSM Learning Overview
- Angluin's Algorithm
- Example
- 2 Hidden Markov Model• A Brief Overview

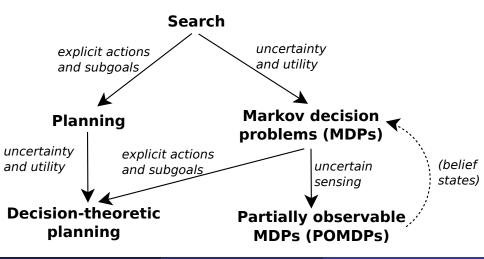
3 Markov Decision Process

- Introduction
- Utility Function, Policy
- Value Iteration
- Policy Iteration
- Conclusions

Sequential Decisions [RN10]

- Achieving agent's objectives often requires multiple steps.
- A rational agent does not make a multi-step decision and carry it out without considering revising it based on future information.
 - Subsequent actions can depend on what is observed
 - What is observed depends on previous actions
- Agent wants to maximize reward accumulated along its course of action
- What should the agent do if environment is non-deterministic?
 - Classical planning will not work
 - Focus on state sequences instead of action sequences

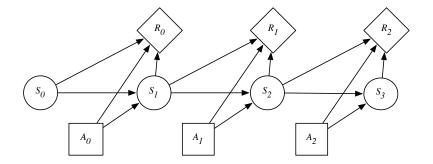
Sequential Decision Problems [Jak10]



Markov Decision Process

Introduction

Markov Decision Process [PM10]



æ

Markov Decision Process [PM10]

Definition (Markov Decision Process)

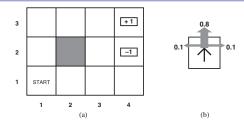
- A Markov Decision Process (MDP) is a 5-tuple (S, A, T, R, s_0) where
 - S is a set of states
 - A is a set of actions
 - T(S, A, S') is the transition model
 - R(S) is the reward function
 - s_0 is the initial state
 - Transitions are Markovian

$$P(S_n|A, S_{n-1}) = P(S_n|A, S_{n-1}, S_{n-2}, \dots, S_0) = T(S_{n-1}, A, S_n)$$

Markov Decision Process

Introduction

Example: Simple Grid World [RN10]



Simple 4x3 environment

- States $S = \{(i, j) | 1 \le i \le 4 \land 1 \le j \le 3\}$
- Actions $A = \{up, down, left, rigth\}$
- Reward function

 $R(s) = \begin{cases} -0.04 & \text{(small penalty) for nonterminal states} \\ \pm 1 & \text{for terminal states} \end{cases}$

 \bullet Transition model $T((i,j),a,(i^\prime,j^\prime))$ given by (b)

Outline

1 FSM Learning

- FSM Learning Overview
- Angluin's Algorithm
- Example
- 2 Hidden Markov Model
 A Brief Overview

3 Markov Decision Process

- Introduction
- Utility Function, Policy
- Value Iteration
- Policy Iteration
- Conclusions

Utility Function [RN10, Jak10]

- Utility function captures agent's preferences
 - In sequential decison-making, utility is a function over sequences of states
- Utility function accumulates rewards:
 - Additive rewards (special case):

$$U_h([s_0, s_1, s_2, \dots]) = R(s_0) + R(s_1) + R(s_2) + \dots$$

Discounted rewards

$$U_h([s_0, s_1, s_2, \dots]) = R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \dots$$

where $\gamma \in [0,1]$ is the discount factor

- Discounted rewards for $\gamma < 1$ finite even for infinite horizons (see next slide)
- No other way of assigning utilities to state sequences is possible assuming stationary preferences between state sequences

Radek Mařík (radek.marik@fel.cvut.cz)

FSM Learning

• A stationary policy is a function

$$\pi: S \to A$$

• Optimal policy is a function maximizing expected utility

$$\pi^{\star} = \operatorname*{arg\,max}_{\pi} E[U([s_0, s_1, s_2, \dots])|\pi]$$

• For an MDP with stationary dynamics and rewards with infinite horizon, there always exists an optimal stationary policy

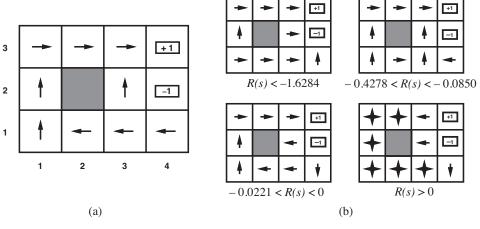
• no benefit to randomize even if environment is random

Policy [RN10, Jak10]

Markov Decision Process Utility F

Utility Function, Policy

Example: Optimal Policies in the Grid World [RN10, Jak10]



- (a) Optimal policy for state penalty $R(s)=-0.04\,$
- (b) Dependence on penalty

Decision-making Horizon [RN10, Jak10]

- A finite horizon means that there is a finite deadline N after which nothing matters (the game is over)
 - $\forall k \ge 1$ $U_h([s_0, s_1, \dots, s_{N+k}]) = U_h([s_0, s_1, \dots, s_N])$
 - The optimal policy is non-stationary, i.e., it could change over time as the deadline approaches.
- An infinite horizon means that there is no deadline
 - The optimal policy is stationary \Leftarrow there is no reason to behave differently in the same state at different times
 - Easier than the finite horizon case
- terminate / absorbing states agents stay there forever receiving zero reward at each step

Outline

FSM Learning

- FSM Learning Overview
- Angluin's Algorithm
- Example
- 2 Hidden Markov Model
 A Brief Overview

3 Markov Decision Process

- Introduction
- Utility Function, Policy
- Value Iteration
- Policy Iteration
- Conclusions

Solving MDPs [RN10, Jak10]

- How do we find the optimum policy π^* ?
- Two basic techniques:
 - **1** value iteration compute utility U(s) for each state and use is for selecting best action
 - 2 policy iteration represent policy explicitly and update it in parallel to the utility function

Utility of State [RN10, Jak10]

• Utility of a state under a given policy π :

$$U^{\pi}(s) = E\left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}) | \pi, s_{0} = s\right]$$

• True utility U(s) of a state is the utility assuming optimum policy π^*

$$U(s) := U^{\pi^*}(s)$$

- Reward R(s) is "short-term" reward for being in s; utility U(s) is a "long-term" total reward from s onwards
- Selecting the optimum action according to the MEU (Maximum Expected Utility) principle

$$\pi^*(s) = \arg\max_{a} \sum_{s'} T(s, a, s') U(s')$$

Bellman Equation [RN10, Jak10]

- Definition of utility of states leads to a simple relationship among utilities of neighboring states
- The utility of a state is the immediate reward for the state plus the expected discounted utility of the next state, assuming the agent chooses the optimal action

Definition (Bellman equation (1957))

$$U(s) = R(s) + \gamma \max_{a} \sum_{s'} T(s, a, s') U(s') \quad \forall s \in S$$

• One equation per state $\Rightarrow n$ non-linear equations for n unknowns

• The solution is unique

Iterative Solution [RN10, Jak10]

• Analytical solution is not possible \Rightarrow iterative approach

Definition (Bellman update)

$$U_{i+1}(s) = R(s) + \gamma \max_{a} \sum_{s'} T(s, a, s') U_i(s') \quad \forall s \in S$$

- Dynamic programming: given an estimate of the k-step lookahead value function, determine the k + 1-step lookahead utility function.
- If applied infinitely often, guaranteed to reach an equilibrium and the final utility values are the solutions to the Bellman equations
- Value iteration propagates information through the state space by means of local updates.

Value Iteration Algorithm [RN10, Jak10]

Input: mdp, a MDP with states S, transition model T, reward function R, discount γ

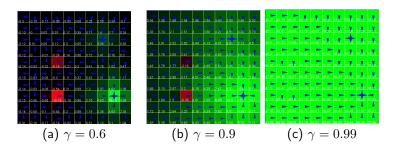
Input: ϵ , the maximum error allowed in the utility of a state **Local variables:** U, U', vectors of utilities for states in S, initially zero **Local variables:** δ , the maximum change in the utility of any state in an iteration

repeat

$$\begin{array}{|c|c|c|c|c|} U \leftarrow U'; \delta \leftarrow 0 ; \\ \text{foreach state } s \in S \text{ do} \\ & & U'[s] \leftarrow R[s] + \gamma \max_a \sum_{S'} T(s, a, s') U[s'] ; \\ & \text{if } |U'[s] - U[s]| > \delta \text{ then} \\ & & |\delta \leftarrow |U'[s] - U[s]|; \\ & \text{end} \\ & \text{end} \\ \text{until } \delta < \epsilon(1 - \gamma)/\gamma; \\ \text{return } U \end{array}$$

Markov Decision Process Value Iteration

Value Iteration Example [RN10, PM10, Jak10]



- 4 movement actions; 0.7 chance of moving in the desired direction, 0.1 in the others
- R = -1 for bumping into walls; four special rewarding states
 - +10 (at position (9,8); 9 across and 8 down),
 - one worth +3 (at position (8,3)),
 - one worth -5 (at position (4,5)) and
 - one -10 (at position (4,8))

Outline

FSM Learning

- FSM Learning Overview
- Angluin's Algorithm
- Example
- 2 Hidden Markov Model
 A Brief Overview

3 Markov Decision Process

- Introduction
- Utility Function, Policy
- Value Iteration
- Policy Iteration
- Conclusions

Policy Iteration [RN10, Jak10]

- Search for optimal policy and utility values simultaneously
- Alternates between two steps:
 - policy evaluation recalculates values of states $U_i = U^{\pi_i}$ given the current policy π_i
 - **2** policy improvement/iteration calculates a new MEU policy π_{i+1} using one-step look-ahead based on U_i
- Terminates when the policy improvement step yields no change in the utilities.

Policy Iteration Algorithm [RN10, Jak10]

Input: mdp, a MDP with states S, transition model T**Local variables:** U, a vector of utilities for states in S, initially zero **Local variables:** π , a policy vector indexed by state, initially random repeat

```
\begin{array}{l} U \leftarrow \texttt{Policy-Evaluation}(\pi, U, mdp) \ ; \\ unchanged? \leftarrow \mathsf{true}; \\ \textbf{foreach state } s \in S \ \textbf{do} \\ & \left| \begin{array}{c} \textbf{if } \max_a \sum_{S'} T(s, a, s') U[s'] > \sum_{S'} T(s, \pi(s), s') U[s'] \ \textbf{then} \\ & \left| \begin{array}{c} \pi(s) \leftarrow \arg\max_a \sum_{S'} T(s, a, s') U[s']; \\ unchanged? \leftarrow \mathsf{false}; \\ \textbf{end} \\ \textbf{end} \end{array} \right| \\ \textbf{end} \end{array}
```

```
until unchanged?;
```

return π

Policy Evaluation [RN10, Jak10]

• Simplified Bellman equations:

$$U_i(s) = R(s) + \gamma \sum_{S'} T(s, \pi_i(s), s') U_i(s') \quad \forall s \in S$$

• The equations are now linear \Rightarrow can be solved in ${\cal O}(n^3)$

Modified Policy Iteration [RN10, Jak10]

- Policy iteration often converges in few iterations but each iteration is expensive
 - $\bullet \ \leftarrow \ \text{has to solve large systems of linear equations}$
- Main idea: use iterative approximate policy evaluation
 - Simplified Bellman update:

$$U_{i+1}(s) \leftarrow R(s) + \gamma \sum_{S'} T(s, \pi_i(s), s') U_i(s') \quad \forall s \in S$$

- Use a few steps of value iteration (with π fixed)
- Start from the value function produced in the last iteration
- Often converges much faster than pure value iteration or policy iteration (combines the strength of both approaches)
- Enables much more general asynchronous algorithms
 - e.g. Prioritized sweeping

Policy Iteration

Choosing the Right Technique [RN10, Jak10]

- Many actions? \Rightarrow policy iteration •
- Already got a fair policy? ⇒ policy iteration
- Few actions, acyclic? \Rightarrow value iteration
- Modified policy iteration typically the best

Outline

FSM Learning

- FSM Learning Overview
- Angluin's Algorithm
- Example
- 2 Hidden Markov Model
 A Brief Overview

3 Markov Decision Process

- Introduction
- Utility Function, Policy
- Value Iteration
- Policy Iteration
- Conclusions

Conclusions [RN10, Jak10]

- MDPs generalize deterministic state space search to stochastic environments
 - At the expense of computational complexity
- An optimum policy associates an optimal action with every state
- Iterative techniques used to calculate optimum policies
 - basic: value iteration and policy iteration
 - improved: modified policy iteration, asynchronous policy iteration
- Further issues
 - large state spaces use state space approximation
 - partial observability (POMDPs) need to consider information gathering; can be mapped to MDPs over continous belief space

Literatura I

- [Ang86] Dana Angluin. Learning regular sets from queries and counter-examples. Technical Report YALEU/DCS/TR-464, Yale University, Department of Computer Science, March 1986.
- [Ang87] Dana Angluin. Learning regular sets from queries and counterexamples. Information and Computation, 75(2):87–106, 1987.
- [BP66] Leonard E. Baum and Ted Petrie. Statistical inference for probabilistic functions of finite state markov chains. The Annals of Mathematical Statistics, 37(6):1554–1563, 1966.
- [Hon13] Marek Honzírek. Aktivní učení a automaty. Master's thesis, Katedra matematiky, Fakulta jaderná a fyzikálně inženýrská, ČVUT, Praha, 2013.
- [Jak10] Michal Jakob. A3M33UI decision theory essentials, lecture notes. http://cw.felk.cvut.cz/doku.php/courses/a3m33ui/prednasky, February 2010.
- [PM10] David Poole and Alan Mackworth. Artificial intelligence, foundations of computational agents. http://artint.info/slides/slides.html, 2010.
- [RN10] Stuart J. Russell and Peter Norvig. Artificial Intelligence, A Modern Approach. Pre, third edition, 2010.
- [Sha08] Muzammil Muhammad Shahbaz. Reverse Engineering Enhanced State Models of Black Box Software Components to support Integration Testing. PhD thesis, Institut Polytechnique de Grenoble, 2008.

55 / 55

イロト イヨト イヨト