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Mnoho aplikaćı úlohy

min
x∈Rn

∥Ax− b∥2

je v knize (zdarma ke stažeńı i se slajdy):

(Slides in this lecture are compiled from various courses taught by S.Boyd and L.Vanderberghe.)
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Interpretations of y = Ax

• y is measurement or observation; x is unknown to be determined

• x is ‘input’ or ‘action’; y is ‘output’ or ‘result’

• y = Ax defines a function or transformation that maps x ∈ Rn into
y ∈ Rm

Linear functions and examples 2–5



Linear elastic structure

• xj is external force applied at some node, in some fixed direction

• yi is (small) deflection of some node, in some fixed direction

x1

x2

x3

x4

(provided x, y are small) we have y ≈ Ax

• A is called the compliance matrix

• aij gives deflection i per unit force at j (in m/N)
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Total force/torque on rigid body
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CG

• xj is external force/torque applied at some point/direction/axis

• y ∈ R6 is resulting total force & torque on body
(y1, y2, y3 are x-, y-, z- components of total force,
y4, y5, y6 are x-, y-, z- components of total torque)

• we have y = Ax

• A depends on geometry
(of applied forces and torques with respect to center of gravity CG)

• jth column gives resulting force & torque for unit force/torque j

Linear functions and examples 2–9



Linear static circuit

interconnection of resistors, linear dependent (controlled) sources, and
independent sources

x1

x2

y1 y2

y3

ib

βib

• xj is value of independent source j

• yi is some circuit variable (voltage, current)

• we have y = Ax

• if xj are currents and yi are voltages, A is called the impedance or
resistance matrix

Linear functions and examples 2–10



Final position/velocity of mass due to applied forces

f

• unit mass, zero position/velocity at t = 0, subject to force f(t) for
0 ≤ t ≤ n

• f(t) = xj for j − 1 ≤ t < j, j = 1, . . . , n

(x is the sequence of applied forces, constant in each interval)

• y1, y2 are final position and velocity (i.e., at t = n)

• we have y = Ax

• a1j gives influence of applied force during j − 1 ≤ t < j on final position

• a2j gives influence of applied force during j − 1 ≤ t < j on final velocity
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Gravimeter prospecting

ρj

gi gavg

• xj = ρj − ρavg is (excess) mass density of earth in voxel j;

• yi is measured gravity anomaly at location i, i.e., some component
(typically vertical) of gi − gavg

• y = Ax

Linear functions and examples 2–12



• A comes from physics and geometry

• jth column of A shows sensor readings caused by unit density anomaly
at voxel j

• ith row of A shows sensitivity pattern of sensor i
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Thermal system

x1
x2
x3
x4
x5

location 4

heating element 5

• xj is power of jth heating element or heat source

• yi is change in steady-state temperature at location i

• thermal transport via conduction

• y = Ax
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• aij gives influence of heater j at location i (in ◦C/W)

• jth column of A gives pattern of steady-state temperature rise due to
1W at heater j

• ith row shows how heaters affect location i

Linear functions and examples 2–15



Illumination with multiple lamps

pwr. xj

illum. yi

rijθij

• n lamps illuminating m (small, flat) patches, no shadows

• xj is power of jth lamp; yi is illumination level of patch i

• y = Ax, where aij = r−2
ij max{cos θij, 0}

(cos θij < 0 means patch i is shaded from lamp j)

• jth column of A shows illumination pattern from lamp j
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Broad categories of applications

linear model or function y = Ax

some broad categories of applications:

• estimation or inversion

• control or design

• mapping or transformation

(this list is not exclusive; can have combinations . . . )

Linear functions and examples 2–25



Estimation or inversion

y = Ax

• yi is ith measurement or sensor reading (which we know)

• xj is jth parameter to be estimated or determined

• aij is sensitivity of ith sensor to jth parameter

sample problems:

• find x, given y

• find all x’s that result in y (i.e., all x’s consistent with measurements)

• if there is no x such that y = Ax, find x s.t. y ≈ Ax (i.e., if the sensor
readings are inconsistent, find x which is almost consistent)
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Control or design

y = Ax

• x is vector of design parameters or inputs (which we can choose)

• y is vector of results, or outcomes

• A describes how input choices affect results

sample problems:

• find x so that y = ydes

• find all x’s that result in y = ydes (i.e., find all designs that meet
specifications)

• among x’s that satisfy y = ydes, find a small one (i.e., find a small or
efficient x that meets specifications)
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Mapping or transformation

• x is mapped or transformed to y by linear function y = Ax

sample problems:

• determine if there is an x that maps to a given y

• (if possible) find an x that maps to y

• find all x’s that map to a given y

• if there is only one x that maps to y, find it (i.e., decode or undo the
mapping)

Linear functions and examples 2–28



Example: illumination

• n lamps at given positions above an area divided in m regions

• Ai j is illumination in region i if lamp j is on with power 1 and other lamps are off

• x j is power of lamp j

• (Ax)i is illumination level at region i

• bi is target illumination level at region i

Example: m = 252, n = 10; figure shows position and height of each lamp
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Example: illumination

• left: illumination pattern for equal lamp powers (x = 1)

• right: illumination pattern for least squares solution x̂, with b = 1
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Linear-in-parameters model

we choose the model f̂ (x) from a family of models

f̂ (x) = θ1 f1(x) + θ2 f2(x) + · · · + θp fp(x)

• the functions fi are scalar valued basis functions (chosen by us)

• the basis functions often include a constant function (typically, f1(x) = 1)

• the coefficients θ1, . . . , θp are the model parameters

• the model f̂ (x) is linear in the parameters θi

• if f1(x) = 1, this can be interpreted as a regression model

ŷ = βT x̃ + v

with parameters v = θ1, β = θ2:p and new features x̃ generated from x:

x̃1 = f2(x), . . . , x̃p = fp(x)

Least squares data fitting 9.9



Least squares model fitting

• fit linear-in-parameters model to data set (x(1), y(1)), . . . , (x(N), y(N))
• residual for data sample i is

r(i) = y(i) − f̂ (x(i)) = y(i) − θ1 f1(x(i)) − · · · − θp fp(x(i))

• least squares model fitting: choose parameters θ by minimizing MSE

1
N

(
(r(1))2 + (r(2))2 + · · · + (r(N))2

)
• this is a least squares problem: minimize ‖Aθ − yd‖2 with

A =


f1(x(1)) · · · fp(x(1))
f1(x(2)) · · · fp(x(2))
... ...

f1(x(N)) · · · fp(x(N))

 , θ =


θ1
θ2
...
θp

 , yd =


y(1)

y(2)
...

y(N)


Least squares data fitting 9.10



Example: polynomial approximation

f̂ (x) = θ1 + θ2x + θ3x2 + · · · + θpxp−1

• a linear-in-parameters model with basis functions 1, x, . . . , xp−1

• least squares model fitting: choose parameters θ by minimizing MSE

1
N

(
(y(1) − f̂ (x(1)))2 + (y(2) − f̂ (x(2)))2 + · · · + (y(N) − f̂ (x(N)))2

)
• in matrix notation: minimize ‖Aθ − yd‖2 with

A =


1 x(1) (x(1))2 · · · (x(1))p−1

1 x(2) (x(2))2 · · · (x(2))p−1
... ... ... ...

1 x(N) (x(N))2 · · · (x(N))p−1

 , yd =


y(1)

y(2)
...

y(N)


Least squares data fitting 9.11



Example

x

f̂ (x) degree 2 (p = 3)

x

f̂ (x) degree 6

x

f̂ (x) degree 10

x

f̂ (x) degree 15

data set of 100 examples
Least squares data fitting 9.12



Piecewise-affine function

• define knot points a1 < a2 < · · · < ak on the real axis

• piecewise-affine function is continuous, and affine on each interval [ak,ak+1]
• piecewise-affine function with knot points a1, . . . , ak can be written as

f̂ (x) = θ1 + θ2x + θ3(x − a1)+ + · · · + θ2+k(x − ak)+

where u+ = max {u,0}
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Piecewise-affine function fitting

piecewise-affine model is in linear in the parameters θ, with basis functions

f1(x) = 1, f2(x) = x, f3(x) = (x − a1)+, . . . , fk+2(x) = (x − ak)+

Example: fit piecewise-affine function with knots a1 = −1, a2 = 1 to 100 points

−2 −1 0 1 2
x

f̂ (x)

Least squares data fitting 9.14



Auto-regressive (AR) time series model

ẑt+1 = β1zt + · · · + βM zt−M+1, t = M,M + 1, . . .

• z1, z2, . . . is a time series

• ẑt+1 is a prediction of zt+1, made at time t

• prediction ẑt+1 is a linear function of previous M values zt, . . . , zt−M+1

• M is the memory of the model

Least squares fitting of AR model: given oberved data z1, . . . , zT , minimize

(zM+1 − ẑM+1)2 + (zM+2 − ẑM+2)2 + · · · + (zT − ẑT)2

this is a least squares problem: minimize ‖Aβ − yd‖2 with

A =


zM zM−1 · · · z1

zM+1 zM · · · z2
... ... ...

zT−1 zT−2 · · · zT−M

 , β =


β1
β2
...
βM

 , yd =


zM+1
zM+2
...

zT
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Example: hourly temperature at LAX
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• blue line shows prediction by AR model of memory M = 8

• model was fit on time series of length T = 744 (May 1–31, 2016)

• plot shows first five days
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Generalization and validation

Generalization ability: ability of model to predict outcomes for new, unseen data

Model validation: to assess generalization ability,

• divide data in two sets: training set and test (or validation) set

• use training set to fit model

• use test set to get an idea of generalization ability

• this is also called out-of-sample validation

Over-fit model

• model with low prediction error on training set, bad generalization ability

• prediction error on training set is much smaller than on test set

Least squares data fitting 9.21



Example: polynomial fitting
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• training set is data set of 100 points used on page 9.11

• test set is a similar set of 100 points

• plot suggests using degree 6
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Over-fitting

polynomial of degree 20 on training and test set

x

f̂ (x) training set

x

f̂ (x) test set

over-fitting is evident at the left end of the interval

Least squares data fitting 9.23


