Optimalizace

Použití lineární úlohy nejmenších čtverců (a podobných)

Tomáš Werner
FEL ČVUT

Mnoho aplikací úlohy

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2}
$$

je v knize (zdarma ke stažení i se slajdy):

(Slides in this lecture are compiled from various courses taught by S.Boyd and L.Vanderberghe.)

Interpretations of $y=A x$

- y is measurement or observation; x is unknown to be determined
- x is 'input' or 'action'; y is 'output' or 'result'
- $y=A x$ defines a function or transformation that maps $x \in \mathbf{R}^{n}$ into $y \in \mathbf{R}^{m}$

Linear elastic structure

- x_{j} is external force applied at some node, in some fixed direction
- y_{i} is (small) deflection of some node, in some fixed direction

(provided x, y are small) we have $y \approx A x$
- A is called the compliance matrix
- $a_{i j}$ gives deflection i per unit force at j (in m / N)

Total force/torque on rigid body

- x_{j} is external force/torque applied at some point/direction/axis
- $y \in \mathbf{R}^{6}$ is resulting total force \& torque on body (y_{1}, y_{2}, y_{3} are $\mathbf{x}-, \mathbf{y}$-, \mathbf{z} - components of total force, y_{4}, y_{5}, y_{6} are $\mathbf{x}-, \mathbf{y}-, \mathbf{z}$ - components of total torque)
- we have $y=A x$
- A depends on geometry (of applied forces and torques with respect to center of gravity CG)
- j th column gives resulting force \& torque for unit force/torque j

Linear static circuit

interconnection of resistors, linear dependent (controlled) sources, and independent sources

- x_{j} is value of independent source j
- y_{i} is some circuit variable (voltage, current)
- we have $y=A x$
- if x_{j} are currents and y_{i} are voltages, A is called the impedance or resistance matrix

Final position/velocity of mass due to applied forces

- unit mass, zero position/velocity at $t=0$, subject to force $f(t)$ for $0 \leq t \leq n$
- $f(t)=x_{j}$ for $j-1 \leq t<j, j=1, \ldots, n$
(x is the sequence of applied forces, constant in each interval)
- y_{1}, y_{2} are final position and velocity (i.e., at $t=n$)
- we have $y=A x$
- $a_{1 j}$ gives influence of applied force during $j-1 \leq t<j$ on final position
- $a_{2 j}$ gives influence of applied force during $j-1 \leq t<j$ on final velocity

Gravimeter prospecting

- $x_{j}=\rho_{j}-\rho_{\text {avg }}$ is (excess) mass density of earth in voxel j;
- y_{i} is measured gravity anomaly at location i, i.e., some component (typically vertical) of $g_{i}-g_{\text {avg }}$
- $y=A x$
- A comes from physics and geometry
- j th column of A shows sensor readings caused by unit density anomaly at voxel j
- i th row of A shows sensitivity pattern of sensor i

Thermal system

- x_{j} is power of j th heating element or heat source
- y_{i} is change in steady-state temperature at location i
- thermal transport via conduction
- $y=A x$
- $a_{i j}$ gives influence of heater j at location $i\left(\right.$ in ${ }^{\circ} \mathrm{C} / \mathrm{W}$)
- j th column of A gives pattern of steady-state temperature rise due to 1 W at heater j
- i th row shows how heaters affect location i

Illumination with multiple lamps

- n lamps illuminating m (small, flat) patches, no shadows
- x_{j} is power of j th lamp; y_{i} is illumination level of patch i
- $y=A x$, where $a_{i j}=r_{i j}^{-2} \max \left\{\cos \theta_{i j}, 0\right\}$
$\left(\cos \theta_{i j}<0\right.$ means patch i is shaded from lamp j)
- j th column of A shows illumination pattern from lamp j

Broad categories of applications

linear model or function $y=A x$
some broad categories of applications:

- estimation or inversion
- control or design
- mapping or transformation
(this list is not exclusive; can have combinations . . .)

Estimation or inversion

$$
y=A x
$$

- y_{i} is i th measurement or sensor reading (which we know)
- x_{j} is j th parameter to be estimated or determined
- $a_{i j}$ is sensitivity of i th sensor to j th parameter
sample problems:
- find x, given y
- find all x 's that result in y (i.e., all x 's consistent with measurements)
- if there is no x such that $y=A x$, find x s.t. $y \approx A x$ (i.e., if the sensor readings are inconsistent, find x which is almost consistent)

Control or design

$$
y=A x
$$

- x is vector of design parameters or inputs (which we can choose)
- y is vector of results, or outcomes
- A describes how input choices affect results
sample problems:
- find x so that $y=y_{\text {des }}$
- find all x 's that result in $y=y_{\text {des }}$ (i.e., find all designs that meet specifications)
- among x 's that satisfy $y=y_{\text {des }}$, find a small one (i.e., find a small or efficient x that meets specifications)

Mapping or transformation

- x is mapped or transformed to y by linear function $y=A x$
sample problems:
- determine if there is an x that maps to a given y
- (if possible) find an x that maps to y
- find all x 's that map to a given y
- if there is only one x that maps to y, find it (i.e., decode or undo the mapping)

Example: illumination

- n lamps at given positions above an area divided in m regions
- $A_{i j}$ is illumination in region i if lamp j is on with power 1 and other lamps are off
- x_{j} is power of lamp j
- $(A x)_{i}$ is illumination level at region i
- b_{i} is target illumination level at region i

Example: $m=25^{2}, n=10$; figure shows position and height of each lamp

Example: illumination

- left: illumination pattern for equal lamp powers ($x=\mathbf{1}$)
- right: illumination pattern for least squares solution \hat{x}, with $b=\mathbf{1}$

Linear-in-parameters model

we choose the model $\hat{f}(x)$ from a family of models

$$
\hat{f}(x)=\theta_{1} f_{1}(x)+\theta_{2} f_{2}(x)+\cdots+\theta_{p} f_{p}(x)
$$

- the functions f_{i} are scalar valued basis functions (chosen by us)
- the basis functions often include a constant function (typically, $f_{1}(x)=1$)
- the coefficients $\theta_{1}, \ldots, \theta_{p}$ are the model parameters
- the model $\hat{f}(x)$ is linear in the parameters θ_{i}
- if $f_{1}(x)=1$, this can be interpreted as a regression model

$$
\hat{y}=\beta^{T} \tilde{x}+v
$$

with parameters $v=\theta_{1}, \beta=\theta_{2: p}$ and new features \tilde{x} generated from x :

$$
\tilde{x}_{1}=f_{2}(x), \quad \ldots, \quad \tilde{x}_{p}=f_{p}(x)
$$

Least squares model fitting

- fit linear-in-parameters model to data set $\left(x^{(1)}, y^{(1)}\right), \ldots,\left(x^{(N)}, y^{(N)}\right)$
- residual for data sample i is

$$
r^{(i)}=y^{(i)}-\hat{f}\left(x^{(i)}\right)=y^{(i)}-\theta_{1} f_{1}\left(x^{(i)}\right)-\cdots-\theta_{p} f_{p}\left(x^{(i)}\right)
$$

- least squares model fitting: choose parameters θ by minimizing MSE

$$
\frac{1}{N}\left(\left(r^{(1)}\right)^{2}+\left(r^{(2)}\right)^{2}+\cdots+\left(r^{(N)}\right)^{2}\right)
$$

- this is a least squares problem: minimize $\left\|A \theta-y^{\mathrm{d}}\right\|^{2}$ with

$$
A=\left[\begin{array}{ccc}
f_{1}\left(x^{(1)}\right) & \cdots & f_{p}\left(x^{(1)}\right) \\
f_{1}\left(x^{(2)}\right) & \cdots & f_{p}\left(x^{(2)}\right) \\
\vdots & & \vdots \\
f_{1}\left(x^{(N)}\right) & \cdots & f_{p}\left(x^{(N)}\right)
\end{array}\right], \quad \theta=\left[\begin{array}{c}
\theta_{1} \\
\theta_{2} \\
\vdots \\
\theta_{p}
\end{array}\right], \quad y^{\mathrm{d}}=\left[\begin{array}{c}
y^{(1)} \\
y^{(2)} \\
\vdots \\
y^{(N)}
\end{array}\right]
$$

Example: polynomial approximation

$$
\hat{f}(x)=\theta_{1}+\theta_{2} x+\theta_{3} x^{2}+\cdots+\theta_{p} x^{p-1}
$$

- a linear-in-parameters model with basis functions $1, x, \ldots, x^{p-1}$
- least squares model fitting: choose parameters θ by minimizing MSE

$$
\frac{1}{N}\left(\left(y^{(1)}-\hat{f}\left(x^{(1)}\right)\right)^{2}+\left(y^{(2)}-\hat{f}\left(x^{(2)}\right)\right)^{2}+\cdots+\left(y^{(N)}-\hat{f}\left(x^{(N)}\right)\right)^{2}\right)
$$

- in matrix notation: minimize $\left\|A \theta-y^{\mathrm{d}}\right\|^{2}$ with

$$
A=\left[\begin{array}{ccccc}
1 & x^{(1)} & \left(x^{(1)}\right)^{2} & \cdots & \left(x^{(1)}\right)^{p-1} \\
1 & x^{(2)} & \left(x^{(2)}\right)^{2} & \cdots & \left(x^{(2)}\right)^{p-1} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & x^{(N)} & \left(x^{(N)}\right)^{2} & \cdots & \left(x^{(N)}\right)^{p-1}
\end{array}\right], \quad y^{\mathrm{d}}=\left[\begin{array}{c}
y^{(1)} \\
y^{(2)} \\
\vdots \\
y^{(N)}
\end{array}\right]
$$

Example

data set of 100 examples

Piecewise-affine function

- define knot points $a_{1}<a_{2}<\cdots<a_{k}$ on the real axis
- piecewise-affine function is continuous, and affine on each interval [a_{k}, a_{k+1}]
- piecewise-affine function with knot points a_{1}, \ldots, a_{k} can be written as

$$
\hat{f}(x)=\theta_{1}+\theta_{2} x+\theta_{3}\left(x-a_{1}\right)_{+}+\cdots+\theta_{2+k}\left(x-a_{k}\right)_{+}
$$

where $u_{+}=\max \{u, 0\}$

Piecewise-affine function fitting

piecewise-affine model is in linear in the parameters θ, with basis functions

$$
f_{1}(x)=1, \quad f_{2}(x)=x, \quad f_{3}(x)=\left(x-a_{1}\right)_{+}, \quad \ldots, \quad f_{k+2}(x)=\left(x-a_{k}\right)_{+}
$$

Example: fit piecewise-affine function with knots $a_{1}=-1, a_{2}=1$ to 100 points

Auto-regressive (AR) time series model

$$
\hat{z}_{t+1}=\beta_{1} z_{t}+\cdots+\beta_{M} z_{t-M+1}, \quad t=M, M+1, \ldots
$$

- z_{1}, z_{2}, \ldots is a time series
- \hat{z}_{t+1} is a prediction of z_{t+1}, made at time t
- prediction \hat{z}_{t+1} is a linear function of previous M values z_{t}, \ldots, z_{t-M+1}
- M is the memory of the model

Least squares fitting of AR model: given oberved data z_{1}, \ldots, z_{T}, minimize

$$
\left(z_{M+1}-\hat{z}_{M+1}\right)^{2}+\left(z_{M+2}-\hat{z}_{M+2}\right)^{2}+\cdots+\left(z_{T}-\hat{z}_{T}\right)^{2}
$$

this is a least squares problem: minimize $\left\|A \beta-y^{\mathrm{d}}\right\|^{2}$ with

$$
A=\left[\begin{array}{cccc}
z_{M} & z_{M-1} & \cdots & z_{1} \\
z_{M+1} & z_{M} & \cdots & z_{2} \\
\vdots & \vdots & & \vdots \\
z_{T-1} & z_{T-2} & \cdots & z_{T-M}
\end{array}\right], \quad \beta=\left[\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{M}
\end{array}\right], \quad y^{\mathrm{d}}=\left[\begin{array}{c}
z_{M+1} \\
z_{M+2} \\
\vdots \\
z_{T}
\end{array}\right]
$$

Example: hourly temperature at LAX

- blue line shows prediction by AR model of memory $M=8$
- model was fit on time series of length $T=744$ (May 1-31, 2016)
- plot shows first five days

Generalization and validation

Generalization ability: ability of model to predict outcomes for new, unseen data

Model validation: to assess generalization ability,

- divide data in two sets: training set and test (or validation) set
- use training set to fit model
- use test set to get an idea of generalization ability
- this is also called out-of-sample validation

Over-fit model

- model with low prediction error on training set, bad generalization ability
- prediction error on training set is much smaller than on test set

Example: polynomial fitting

- training set is data set of 100 points used on page 9.11
- test set is a similar set of 100 points
- plot suggests using degree 6

Over-fitting

polynomial of degree 20 on training and test set

over-fitting is evident at the left end of the interval

