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Fundamental Question of Classical Electrodynamics

2 / XXX

A specified distribution of elementary charges is in a state of arbitrary

(but known) motion. At certain time we pick one of them and ask what

is the force acting on it.

Rather difficult question – will not be fully answered
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Elementary Charge
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Coulomb

191.602176634 10 Ce −= ⋅

smallest known 

amount of charge

As far as we know, all charges in nature have values ,Ne N± ∈ ℤ
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Charge conservation

4 / XXX

Amount of charge is conserved in every frame (even non-inertial).

Neutrality of atoms has been verified to 20 digits
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Continuous approximation of charge distribution
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( ) ( ) ( )d d d
V S l

Q V S lρ σ τ= = =∫ ∫ ∫r r r

Net charge

Continuous approximation allows for using powerful mathematics 

Volumetric 

density of 

charge

3C m− ⋅  

C   

Surface 

density of 

charge

2C m− ⋅  

Line

density of 

charge

1C m− ⋅  
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Fundamental Question of Electrostatics

There exist a specified distribution of static elementary charges. We

pick one of them and ask what is the force acting on it.

This will be answered in full details

6 / XXX
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Coulomb(’s) Law

( ) ( )
3

0
4

qq

πε

′ ′−
=

′−

r r
F r

r r

Measuring 

charge

C   

Source 

charge

C   

Radius vector of 

the measuring 

charge

0

12 1

0 2

0 0
1

6 1

0

1
8.8541878128 F m

299792458 m s

1.25663706212

0

10 H m

1
c

c

ε
µ

µ

−

−

− −

−= = ⋅

=

⋅

⋅

= ⋅ ⋅

Radius vector 

of the source 

charge

Permittivity of 

vacuum

Permeability 

of vacuum

Speed of light

Farad

Henry

m   
m   

Force on

measuring 

charge

N   
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Coulomb(’s) Law + Superposition Principle

( ) ( )
3

0
4

n n

n
n

qq

πε

′ ′−
=

′−
∑

r r
F r

r r

Entire electrostatics can be deduced from this formula 
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Electric Field

( ) ( )
3

0

1

4

n n

n
n

q

πε

′ ′−
=

′−
∑

r r
E r

r r

Force is represented by field – entity generated by charges and permeating the space 

( ) ( )q=F r E r
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Intensity of 

electric field

1V m− ⋅  
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Continuous Distribution of Charge

( ) ( )( )
3

0

1
d

4
V

V
ρ

πε ′

′ ′−
′=

′−
∫

r r r
E r

r r

Continuous description of charge allows for using powerful mathematics 

( ) ( )
3

0

1

4

n n

n
n

q

πε

′ ′−
=

′−
∑

r r
E r

r r
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Continuous Description of a Point Charge

( ) ( )n n
n

qρ δ= −∑r r r ( ) ( ) ( )d
n n

V

Vδ= −∫F r F r r r
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Dirac’s delta 

“function”
Defining property of

Dirac’s delta “function”
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Gauss(’) Law

( ) ( )
0

ρ

ε
∇⋅ =

r
E r ( )

0 0

1
d d

S V

Q
Vρ

ε ε
⋅ = =∫ ∫E S r�

Total charge 

enclosed by 

the surface

C   

Differential law

(local)

Integral law 

(global)

Mind the 

orientation of 

the surface
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Rotation of Electric Field

d 0
l

⋅ =∫ E l�

Differential law

(local)

Integral law 

(global)

0∇× =E
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Various Views on Electrostatics

The physics content is the same, the formalism is different.

Differential laws of 

electrostatics

Integral laws of 

electrostatics

0∇× =E

( ) ( )
0

ρ

ε
∇⋅ =

r
E r

d 0
l

⋅ =∫ E l�

0

d
S

Q

ε
⋅ =∫ E S�

( ) ( )( )
3

0

1
d

4
V

V
ρ

πε ′

′ ′−
′=

′−
∫

r r r
E r

r r

Coulomb’s law
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Electric potential

( ) ( )ϕ= −∇E r r

Scalar description of electrostatic field 

0∇× =E
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( ) ( )
0

1
d

4
V

V K
ρ

ϕ
πε ′

′
′= +

′−∫
r

r
r r

Electric potential

Defined up to 

arbitrary constant
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Voltage

B

A

W d qU   F l

Voltage represents connection of abstract field theory with experiments

   
B

A

d B A U     E l
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Work necessary to 

take charge q from 

point A to point B

Voltage

V   

Potential 

difference is a 

unique number
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Electrostatic Energy

Be careful with point charges (self-energy)

Energy is 

carried by 

charges

( )
2

0

1
d

2
V

W Vε= ∫ E r( ) ( )
,0

0

1

8

1
d d

8

i j

i j
i j

j i

V V

q q
W

W V V

πε

ρ ρ

πε

≠

′

=
−

′
′=

′−

∑

∫ ∫

r r

r r

r r

Energy is carried 

by charges and 

fields
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Energy is carried 

by fields

( ) ( )1
d

2
V

W Vρ ϕ= ∫ r r
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Electrostatic Energy vs Force

Electrostatic forces are always acting so as to minimize energy of the system

Energy of a 

system of point 

charges

,0

1

8

i j

i j
i j

j i

q q
W

πε
≠

=
−

∑
r r
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( ) ( )
3

0
4

j

j
j

jj

q
W q

ξξ

ξ ξ

ξξ

πε
≠

−
= −∇ =

−
∑

r r
F r

r r

Coulomb’s law
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Electric Stress Tensor

All the information on the volumetric Coulomb‘s force is contained at the boundary

Total electric 

force acting in 

a volume

( ) ( ) 0
d d

V S

Vρ ε= = ⋅∫ ∫F r E r T S�
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21

2
= −T EE I E

Stress tensor
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Ideal Conductor – classical description

Generally, free charges in conductors move so as to minimize the energy

In 1D and 2D 

it is not so

20 / XXX

Ideal conductor contains unlimited amount of free charges which

under action of external electric field rearrange so as to annihilate

electric field inside the conductor.

In 3D, the free charge always resides on the external bounding

surface of the conductor.
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Ideal Conductor – quantum description

Long-range transport of charge does not truly happen in a solid conductor 

21 / XXX

In an ideal conductor, wave functions of electrons in outer shells

perceive flat potential background. In reaction to an external electric

field, these wave functions are slightly modified so as to provide zero

average charge density inside the conductor. Due to flat potential

background, there is no counter interaction.
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Boundary Conditions on Ideal Conductor
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 Inside conductor

 ( ) ( )0 const.ϕ= ⇔ =E r r

 Just outside conductor





( ) ( ) ( )0 const.ϕ× = ⇔ =n r E r r

( ) ( ) ( )
0 0

n

ϕσ σ

ε ε

∂
⋅ = ⇔ = −

∂

r
n r E r

Outward 

normal to the 

conductor

Surface charge 

residing on the 

outer surface of 

the conductor

Normal 

derivative

Potential is 

continuous 

across the 

boundary
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Capacitance of a System of N conductors

Electrostatic system is fully characterized by capacitances (we know the energy)

Self and mutual 

capacitances

i ij j
j

Q C ϕ= ∑

23 / XXX

,

1

2 ij j i
i j

W C ϕ ϕ= ∑

Electrostatic 

energy

Capacitances 

depend solely 

on geometry 

and position of 

conductors
F   
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Capacitance of a System of two conductors

Capacitance

Q CU=

24 / XXX

21

2
W CU=

Potential 

difference 

between 

conductors

Charge on 

positively 

charged 

conductor
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Poisson(’s) equation

( ) ( )
0

ρ
ϕ

ε
∆ = −

r
r
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The solution to Poisson’s equation is unique in a given volume once the potential is known on its

bounding surface and the charge density is known throughout the volume.



CTU-FEE in Prague, Department of Electromagnetic Field

Electromagnetic Field Theory 1ELECTROSTATICS

Laplace(’s) equation

( ) 0ϕ∆ =r

26 / XXX

The solution to Laplace’s equation is unique in a given volume once the potential is known on its

bounding surface.
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Mean Value Theorem

( ) ( )center 2

sphere

1
d

4
S

R
ϕ ϕ

π
= ∫r r�
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The solution to Laplace’s equation posses neither maxima nor minima inside the solved volume.

Only for spheres 

containing no charge

Radius of the sphere

Center of the sphere
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Mind that the solution to Laplace’s equation posses neither maxima nor minima inside the solved

volume. This means that charged particle will always travel towards the boundary.

Consequence of 

mean value theorem

A charged particle cannot be held in stable equilibrium by

electrostatic forces alone.

Earnshaw(’s) Theorem
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Image method always works with planes and spheres.

When solving field generated by charges in the presence of

conductors, it is sometimes possible to remove the conductor and

mimic its boundary conditions by adding extra charges to the exterior

of the solution volume. The uniqueness theorem claims that this is a

correct solution.

Image Method
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Semi-analytical method for canonical problems

Separation of Variables

( ) 0ϕ∆ =r ( ) ( ) ( ) ( )ijk i j k
X x Y y Z zϕ =r ( ) ( )ijk ijk

ijk

Cϕ ϕ= ∑r r

Constants 

determined by 

boundary conditions
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Powerful numerical method for closed problems

Finite Differences

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1

2 2 2

2 2 2
ijk ijk ijki jk i jk i j k i j k ij k ij k

h h h

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ
ϕ

+ − + − + −
− + − + − +

∆ ≈ + +r

( ) 0ϕ∆ =r

Approximation by a 

system of linear 

algebraic equations

( ) ( )1
, ,

i jk
x h y zϕ ϕ

+
+ →

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1

6

i jk i jk i j k i j k ij k ij k

ijk

ϕ ϕ ϕ ϕ ϕ ϕ
ϕ

+ − + − + −
+ + + + +

=

Mind the mean 

value theorem
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Powerful numerical method for open problems

Integral Equation & Method of Moments

Approximation by a 

system of linear 

algebraic equations

Known

( ) ( )
0

1
d

4
V

V
ρ

ϕ
πε ′

′
′=

′−∫
r

r
r r

( ) ( )n n
n

ρ α ρ≈ ∑r r

Simple functions for 

which the potential 

integral can be 

easily evaluated

( ) ( ) ( ) ( )
0

1
d d d

4

m n

m n
nV V V

V V V
ρ ρ

ρ ϕ α
πε ′

′
′=

′−
∑∫ ∫ ∫

r r
r r

r r

Assumed to be 

known in volume 

where the charge 

resides

Distribution 

of charge is 

unknown

Known
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Dielectrics
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 Material in which charges cannot move freely

 Charges are forming clusters (atoms, molecules)

 Under influence of electric field the clusters change shape or rotate

 Electric field induces electric dipoles with density ( ) 2C m− ⋅  P r

Number of dipoles 

in unitary volume

Clusters are 

electrically neutral
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Electric Field of a Dipole

Electric dipole 

moment

center 1 2
− −r r r r≫

Two opposite charges 

very close to each other

( ) ( )1 2
d

V

q Vρ= − = ∫p r r r r

( ) ( )center

3

0 0 01 2
center

1 1 1

4 4 4

q q
ϕ

πε πε πε

⋅ −
= − ≈

− − −

p r r
r

r r r r r r

General formula

Formula for two 

opposite charges

C m ⋅  
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Field Produced by Polarized Matter

Only apply at infinitely 

sharp boundary 

(unrealistic)

( ) ( ) ( ) ( ) ( )
3

0 0 0

1 1 1
d d d

4 4 4
V S V

V Vϕ
πε πε πε′ ′ ′

′ ′ ′ ′ ′⋅ − ∇ ⋅
′ ′ ′= = ⋅ −

′ ′− −′−
∫ ∫ ∫
P r r r P r P r

r S
r r r rr r
�

Potential of volumetric 

charge density

This formula holds very well outside the matter and, curiously, it also well approximates the field inside
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Electric Displacement

Only free charge

(compare to divergence 

of electric field)

( ) ( )ρ∇⋅ =D r r

Electric displacement

( ) ( ) ( )0
ε= +D r E r P r

2C m− ⋅  

( )d d
S V

V Qρ⋅ = =∫ ∫D S r�
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Linear Isotropic Dielectrics

( ) ( ) ( )0 e
ε χ=P r r E r ( ) ( ) ( ) ( ) ( )0 r

ε ε ε= =D r r E r r E r

( ) ( )r e
1ε χ= +r r

Relative permittivity

Permittivity

1F m− ⋅  

Electric susceptibility

 
  

 
  

All the complicated structure of matter reduces to a simple scalar quantity
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Fields in Presence of Dielectrics 1/2

Analogy with electric field in vacuum can only be used when entire

space is homogeneously filled with dielectric.

( ) ( ) ( ) 0ε ∇× = ∇× ≠  D r r E r

Inequality is due to 

boundaries

Analogy with vacuum can only be used when space is homogeneously filled with dielectric
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Fields in Presence of Dielectrics 2/2

( ) ( ) ( )0 ϕ∇× = ⇔ = −∇E r E r r

Poisson’s equation holds only when permittivity does not depend on coordinates

( ) ( ) ( )ε ϕ ρ ∇ ⋅ ∇ = −  r r r

( ) ( )ρ
ϕ

ε
∆ = −

r
r

Not a function of 

coordinates
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Dielectric Boundaries
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( ) ( ) ( ) ( ) ( ) ( ) ( )1 2

1 1 2 2 1 2n n

ϕ ϕ
ε ε σ ε ε σ

∂ ∂ ⋅ − = ⇔ − = −   ∂ ∂

r r
n r E r E r r r

Normal 

pointing to 

region (1)

( ) ( ) ( ) ( ) ( )1 2 1 2
0 0ϕ ϕ × − = ⇔ − =  n r E r E r r r

Both conditions are needed for unique solution
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Electrostatic Energy in Dielectrics

( ) ( )1
d

2
V

W V= ⋅∫ E r D r

41 / XXX

( )
2

0

1
d

2
V

W Vε= ∫ E r
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Forces on Dielectrics

( ) ( )1
d

2
V

W V= ⋅∫ E r D r
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2
21 1

2 2

Q
W CU

C
= =

This only 

holds when 

charge is held 

constant

( ) W
ξ ξ

= −∇F r
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Electric Current

43 / XXX

( ) ( )( ) ( )
1

,
N

k k k
k

t q t tδ
=

= −∑J r r r v

3m− 
  

Current 

density

2A m− ⋅  

Charge

C   

Velocity of 

charge

1m s− ⋅  

Volumetric density 

represented by 

Dirac delta

Charges in motion are represented by current density
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Local Charge Conservation
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( ) ( )( ) ( )
1

,
,

N

k k
k

t
t q t

t t

ρ
δ

=

∂∂
∇⋅ = − − = −

∂ ∂∑
r

J r r r

Charge is conserved locally at every space-time point



CTU-FEE in Prague, Department of Electromagnetic Field

Electromagnetic Field Theory 1CURRENT

Global Charge Conservation
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Charge can neither be created nor destroyed. It can only be displaced.

( ) ( )
,

S

Q t
t d

t

∂
⋅ = −

∂∫ J r S�

When charge leaves a given volume, it is always 

accompanied by a current through the bounding envelope



CTU-FEE in Prague, Department of Electromagnetic Field

Electromagnetic Field Theory 1CURRENT

Stationary Current
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There is no charge accumulation in stationary flow

( ) 0
S

d⋅ =∫ J r S�( ) 0∇⋅ =J r

When charge enters a volume, another must leave it 

without any delay
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Ohm(’s) Law
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This simple linear relation holds for enormous interval of electric field strengths

( ) ( ) ( )σ=J r r E r

Conductivity

1S m− ⋅  
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Electromotive Force
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Stationary flow of charges cannot be caused by electrostatic field. The

motion forces are non-conservative, are called electromotive forces,

and are commonly of chemical, magnetic or photoelectric origin.

( ) 0
l

d⋅ ≠∫ E r l�

For curves passing 

through sources of 

electromotive force

( ) 0
l

d⋅ =∫ E r l�

For curves not crossing 

sources of electromotive force
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Boundary Conditions for Stationary Current
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Charge conservation forces the continuity of current across the boundary

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2

1 1 2 2 1 2n n

ϕ ϕ
ε ε σ ε ε σ

∂ ∂ ⋅ − = ⇔ − = −   ∂ ∂

r r
n r E r E r r r

( ) ( ) ( ) ( ) ( )1 2 1 2
0 0ϕ ϕ × − = ⇔ − =  n r E r E r r r

( ) ( ) ( ) ( ) ( )1 2

1 1 2 2 1 2
0 0

n n

ϕ ϕ
σ σ σ σ

∂ ∂ ⋅ − = ⇔ − =   ∂ ∂

r r
n r E r E r
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Electric Current
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Existence of high contrast in conductivity between conductors and dielectrics allows for well

defined current paths.

( )
S

I d= ⋅∫ J r S

Current

A   

Cross-section of 

current path

2m 
  
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Resistance (Conductance)
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U RI=

Potential 

difference

(voltage)
Current

A   

Resistance

 Ω  

I GU=

Conductance

S   

1 L
R

G Sσ
= =

Resistance of a cylinder 

homogeneous cylinder of 

conductive material

Length along 

current path

m   Cross-section of 

current path

2m 
  

V   
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Resistive Circuits and Kirchhoff(’s) Laws
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Kirchhoff’s laws are a consequence of electrostatics and law’s of stationary current flow 

i i i
U RI=electromotivei

i

U U=∑ 0
i

i

I =∑

In a loop At a junctionOn a resistor
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Joule(’s) Heat
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Electric field within conducting material produces heat

( ) ( ) ( ) ( )
2

d d
V V

P V Vσ= ⋅ =∫ ∫E r J r r E r

Power lost via 

conduction

2
2 U

P UI RI
R

= = =

Power lost on 

resistor

W   W   
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Fundamental Question of Magnetostatics
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There exist a specified distribution of stationary current. We pick a

differential volume of it and ask what is the force acting on it.
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Biot-Savart(’s) Law
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( )
( ) ( ) ( )

0

3

d d

4

V Vµ

π

 ′ ′ ′× × −  = ⋅
′−

J r J r r r
F r

r r

Measuring 

current 

element

A   

Source 

current 

element

A   

Radius vector 

of the source 

current

Permeability 

of vacuum

m   

Force on

measuring 

current

N   

6 1

0
1.25663706212 10 H mµ − −= ⋅ ⋅

Radius vector of 

the measuring 

current

m   
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Biot-Savart(’s) Law + Superposition Principle
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( ) ( ) ( ) ( )
0

3
d d

4
V

V V
µ

π ′

′ ′× −
′= ×

′−
∫
J r r r

F r J r

r r

Entire magnetostatics can be deduced from this formula 
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Magnetic Field
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( ) ( ) ( )
0

3
d

4
V

V
µ

π ′

′ ′× −
′=

′−
∫
J r r r

B r

r r

Magnetic field 

(Magnetic induction)

T   

( ) ( ) ( )dV= ×F r J r B r
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Divergence of Magnetic Field
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( ) 0∇⋅ =B r ( ) d 0
S

⋅ =∫ B r S�

There are no point sources of magnetostatic field 
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Curl of Magnetic Field – Ampere(’s) Law
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( ) ( )0
µ∇× =B r J r

Total current 

captured within 

the curve

A   

( ) 0
d

l

Iµ⋅ =∫ B r l�



CTU-FEE in Prague, Department of Electromagnetic Field

Electromagnetic Field Theory 1MAGNETOSTATICS

Magnetic Vector Potential
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( ) ( )= ∇×B r A r

Reduced description of magnetostatic field 

0∇⋅ =B ( ) ( ) ( )0 d
4

V

V
µ

ψ
π ′

′
′= + ∇

′−∫
J r

A r r
r r

Magnetic vector 

potential

Defined up to 

arbitrary scalar 

function
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Poisson(’s) equation
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( ) ( )0
µ∆ = −A r J r

The solution to Poisson’s equation is unique in a given volume once the potential is known on its

bounding surface and the current density is known through out the volume.
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Boundary Conditions
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( ) ( ) ( )1 2
0 ⋅ − =  n r B r B r

Normal 

pointing to 

region (1)

( ) ( ) ( ) ( )1 2 0
µ × − =  n r B r B r K r

Surface 

current on the 

boundary

( ) ( )1 2
0− =A r A r
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Magnetostatic Energy
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For now it is just a formula that works – it must be derived with the help of time varying fields

( )
2

0

1
d

2
V

W V
µ

= ∫ B r( ) ( )1
d

2
V

W V= ⋅∫ A r J r
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Magnetostatic Energy – Current Circuits
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( ) ( )
0 d d

4
j i

j j i i

ij ji i j

i j V V j i

M M V V
I I

µ

π ′

′⋅
′= =

′−∫ ∫
J r J r

r r

2

1

1 1

2 2

N

i i ij i j
i i j

W LI M I I
= ≠

= +∑ ∑

Self-Inductance

( ) ( )
0

2
d d

4
i i

i i i i

i i i

V Vi i i

L V V
I

µ

π ′

′⋅
′=

′−∫ ∫
J r J r

r r

H   

Mutual-Inductance H   
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Mutual Inductance – Thin Current Loop
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ji

ij

i

M
I

Φ
=

Magnetic flux induced by i-th

current through j-th current

Wb   

( ) d

j

ji i j j

S

Φ = ⋅∫ B r S
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Magnetic Materials
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 Material response is due to magnetic dipole moments

 Magnetic moment comes from spin or orbital motion of an electron

 Magnetic field tends to align magnetic moments

 Magnetic field induces magnetic dipoles with density ( ) 1A m− ⋅  M r

Number of dipoles 

in unitary volume
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Magnetic Field of a Dipole
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Magnetic dipole 

moment

( )1
d

2
V

V= ×∫m r J r

( ) 0

34 r

µ

π

×
= ⋅

m r
A r

2A m ⋅  

( ) ( )
0

5 3

3

4 r r

µ

π

 ⋅ = − 
  

r r m m
B r

0≠r

Magnetic dipole approximates infinitesimally small current loop

Dipole is assumed at 

the origin
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Field Produced by Magnetized Matter

68 / XXX

Only applies at infinitely 

sharp boundary 

(unrealistic)

( ) ( ) ( ) ( ) ( )
0 0 0

3

d
d d

4 4 4
V S V

V V
µ µ µ

π π π′ ′ ′

′ ′ ′ ′ ′ ′× − × ∇ ×
′ ′= = +

′ ′− −′−
∫ ∫ ∫
M r r r M r S M r

A r
r r r rr r

�

Potential of volumetric 

current density

This formula holds very well outside the matter and, curiously, it also well approximates the field inside
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Magnetic Intensity
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Only free current

( ) ( )∇× =H r J r

Magnetic Intensity

( ) ( ) ( )( )0
µ= +B r H r M r

1A m− ⋅  

( ) d
l

I⋅ =∫ H r l�
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Linear Isotropic Magnetic Materials
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( ) ( ) ( )m
χ=M r r H r ( ) ( ) ( ) ( ) ( )0 r

µ µ µ= =B r r H r r H r

( ) ( )r m
1µ χ= +r r

Relative permeability

Permeability

1H m− ⋅  

Magnetic susceptibility

 
  

 
  

All the complicated structure of matter reduces to a simple scalar quantity
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Fields in Presence of Magnetic Material
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( ) ( ) ( )0∇⋅ = ⇔ = ∇×B r B r A r

Poisson’s equation holds only when permittivity does not depend on coordinates

( ) ( ) ( )1

µ

 
 ∇× ∇× = 
  

A r J r
r

( ) ( )µ∆ = −A r J r

Not a function of 

coordinates

( ) 0∇⋅ =A r

Coulomb(’s) gauge
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Magnetic Material Boundaries
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( ) ( ) ( )1 1 2 2
0µ µ ⋅ − =  n r H r H r

Normal 

pointing to 

region (1)

( ) ( ) ( ) ( )1 2
 × − =  n r H r H r K r

Both conditions are needed for unique solution
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Magnetostatic Energy in Magnetic Material
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( ) ( )1
d

2
V

W V= ⋅∫ H r B r( )
2

0

1
d

2
V

W V
µ

= ∫ B r
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Magnetic Materials
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 Paramagnetic – small positive susceptibility 

(small attraction – linear)

 Diamagnetic – small negative susceptibility

(small repulsion – linear)

 Ferromagnetic – “large positive susceptibility”

(large attraction – nonlinear)
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Ferromagnetic Materials
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 Spins are ordered within domains

 Magnetization is a non-linear function of field intensity

 Magnetization curve – Hysteresis, Remanence

 Susceptibility can only be defined as local approximation

 Above Curie(‘s) temperature ferromagnetism disappears

Exact calculations are very difficult – use simplified models (soft material, permanent magnet)
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Faraday(’s) Law
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( ) ( ), d , d
l S

t t
t

∂
⋅ = − ⋅

∂∫ ∫E r l B r S�

t

∂Φ
−

∂

( ) ( ),
,

t
t

t

∂
∇× = −

∂

B r
E r

Time variation in magnetic field produces electric field that tries to counter the change in 

magnetic flux (electromotive force)

Time variation of 

magnetic flux
Minus sign is called 

Lenz(‘s) law
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Lenz(’s) Law
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The current created by time variation of magnetic flux is directed so

as to oppose the flux creating it.
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Time Varying RL Circuits
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( ) ( ) ( )1 2

1 11 12

I t I t
U t L M

t t

∂ ∂
= +

∂ ∂
( ) ( )i i i

U t R I t=

( ) ( )electromotivei
i

U t U t=∑ ( ) 0
i

i

I t =∑

In a loop At a junction

On a resistor

Circuit laws are valid as long as time variations are not too fast

On an 

inductor
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Time Varying Potentials
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( ) ( )

( ) ( ) ( )
, ,

,
, ,

t t

t
t t

t
ϕ

= ∇×

∂
= −∇ −

∂

B r A r

A r
E r r

In time varying fields scalar potential becomes redundant

( ) ( ), ,t tσµϕ∇⋅ = −A r r

Potential 

calibration
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Source and Induced Currents
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( ) ( ) ( ) ( ) ( )source induced source
, , , , ,t t t t tσ∇× = + = +H r J r J r J r E r

Those are fixed, not 

reacting to fields
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Diffusion Equation
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

source

source

source

source

,
, ,

,
, ,

, ,1
, ,

t
t t

t

t
t t

t

t t
t t

t t

σµ µ

σµ

σµ ρ µ
ε

∂
∆ − = −

∂

∂
∆ − = −∇×

∂

∂ ∂
∆ − = ∇ +

∂ ∂

A r
A r J r

H r
H r J r

E r J r
E r r

Material parameters are assumed 

independent of coordinates
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Maxwell(’s)-Lorentz(’s) Equations
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( ) ( ) ( )
( ) ( ) ( )( )

0

0

, , ,

, , ,

t t t

t t t

ε

µ

= +

= +

D r E r P r

B r H r M r

Absolute majority of things happening around you is described by these equations

( ) ( ) ( )

( ) ( )

( )
( ) ( )

,
, ,

,
,

, 0

, ,

t
t t

t
t

t
t

t

t tρ

∂
∇× = +

∂
∂

∇× = −
∂

∇⋅ =

∇⋅ =

D r
H r J r

B r
E r

B r

D r r

( ) ( ) ( ) ( ) ( ), , , , ,t t t t tρ= + ×f r r E r J r B r

Equations of motion

for fields

Equation of motion

for particles

Interaction with materials
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Boundary Conditions
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Normal 

pointing to 

region (1)

( ) ( ) ( )1 2
, , 0t t ⋅ − =  n r B r B r

( ) ( ) ( ) ( )1 2
, , ,t t t × − =  n r H r H r K r

( ) ( ) ( ) ( )1 2
, , ,t t tσ ⋅ − =  n r D r D r r

( ) ( ) ( )1 2
, , 0t t × − =  n r E r E r
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Electromagnetic Potentials
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( ) ( )

( ) ( ) ( )
, ,

,
, ,

t t

t
t t

t
ϕ

= ∇×

∂
= −∇ −

∂

B r A r

A r
E r r

( ) ( ) ( ),
, ,

t
t t

t

ϕ
σµϕ εµ

∂
∇⋅ = − −

∂

r
A r r

Lorentz(‘s) 

calibration
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Wave Equation
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( ) ( ) ( ) ( )
2

source2

, ,
, ,

t t
t t

t t
σµ εµ µ

∂ ∂
∆ − − = −

∂ ∂

A r A r
A r J r

Material parameters are assumed 

independent of coordinates
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Poynting(’s)-Umov(’s) Theorem
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Power supplied 

by sources

( ) 2 2 2

source

1
d d d d

2
V S V V

V V V
t

σ ε µ
∂  − ⋅ = × ⋅ + + +   ∂∫ ∫ ∫ ∫E J E H S E E H�

Energy balance in an electromagnetic system

Power passing the 

bounding envelope

Heat losses

Energy storage
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Linear Momentum Carried by Fields
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( )
2

0

1
d

V

V
c

= ×∫p E H

Volume integration considerably change 

the meaning of Poynting(’s) vector

This formula is only valid in vacuum. In material media things are more tricky.
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Angular Momentum Carried by Fields
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( )
2

0

1
d

V

V
c

= × ×∫L r E H

This formula is only valid in vacuum. In material media things are more tricky.
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Frequency Domain
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( ) ( ) j1 ˆ, , e
2

tt dωω ω
π

∞

−∞

= ∫F r F r

Time derivatives reduce to 

algebraic multiplication

( ) ( ) jˆ , , e tt dtωω

∞
−

−∞

= ∫F r F r

Frequency domain helps us to remove explicit time derivatives

( ) ( )

( ) ( )

,
ˆj ,

ˆ, ,

t

t

t

r r
ξ ξ

ω ω

ω

∂
↔

∂

∂ ∂
↔

∂ ∂

F r
F r

F r F r

Spatial derivatives are 

untouched

( ),t ∈F r ℝ ( )ˆ ,ω ∈F r ℂ
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Phasors
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( ) ( )*ˆ ˆ, ,ω ω− =F r F r

Reduced frequency domain representation

( ) ( ) j

0

1 ˆ, Re , e tt dωω ω
π

∞

 =   ∫F r F r
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Maxwell(’s) Equations – Frequency Domain
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We assume linearity of material relations

( ) ( ) ( )

( ) ( )

( )

( ) ( )

ˆ ˆ ˆ, , j ,

ˆ ˆ, j ,

ˆ , 0

ˆ ,
ˆ ,

ω ω ωε ω

ω ωµ ω

ω

ρ ω
ω

ε

∇× = +

∇× = −

∇⋅ =

∇⋅ =

H r J r E r

E r H r

H r

r
E r
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Wave Equation – Frequency Domain
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( ) ( ) ( ) ( )source
ˆ ˆ ˆ, j j , ,ω ωµ σ ωε ω µ ω∆ − + = −A r A r J r

Helmholtz(‘s) equation
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Heat Balance in Time-Harmonic Steady State
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Cycle mean

2

source

2
* *

source

d d d

1 1 1ˆ ˆ ˆ ˆ ˆRe d Re d d
2 2 2

V S V

V S V

V V

V V

σ

σ

− ⋅ = × ⋅ +

   − ⋅ = × ⋅ +      

∫ ∫ ∫

∫ ∫ ∫

E J E H S E

E J E H S E

�

�

Valid for general periodic steady state

Valid for time-harmonic steady state
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Plane Wave
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The simplest wave solution of Maxwell(‘s) equations

( ) ( )

( ) ( )

( )

( )

( )

j

0

j

0

0

0

2

ˆ , e

ˆ , e

0

0

j j

k

kk

k

ω ω

ω ω
ωµ

ω

ω

ωµ σ ωε

− ⋅

− ⋅

=

 = ×  

⋅ =

⋅ =

= − +

n r

n r

E r E

H r n E

n E

n H

Wave-number

Unitary vector representing

the direction of propagation

Electric and magnetic fields 

are mutually orthogonal

Electric and magnetic fields 

are orthogonal to 

propagation direction
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Plane Wave Characteristics
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General  isotropic

material

( )

f

j j

Re 0; Im 0

2

Re

Re

1

Im

k

k k

k

v
k

Z
k

k

ωµ σ ωε

π
λ

ω

ωµ

δ

= − +

   > <      

=
   

=
   

=

= −
   

0

0

f 0

0

0 0

0

Re 0; Im 0

377

k
c

k k

c

f

v c

Z c

ω

λ

µ
µ

ε

δ

=

   > =      

=

=

= = ≈ Ω

→ ∞

Vacuum
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Cycle Mean Power Density of a Plane Wave
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( ) ( ) ( )
2 2 Im

0

Re1
, , e

2

k
k

t t ω
ωµ

  ⋅  
   × = n r

E r H r E n

Power propagation coincides with 

phase propagation
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