Electromagnetic Field Theory 1
 (fundamental relations and definitions)

Lukas Jelinek

lukas.jelinek@fel.cvut.cz
Department of Electromagnetic Field
Czech Technical University in Prague
Czech Republic

Fundamental Question of Classical Electrodynamics

A specified distribution of elementary charges is in a state of arbitrary (but known) motion. At certain time we pick one of them and ask what is the force acting on it.

Rather difficult question - will not be fully answered

Elementary Charge

As far as we know, all charges in nature have values $\quad \pm N e, N \in \mathbb{Z}$

Charge conservation

Amount of charge is conserved in every frame (even non-inertial).

Neutrality of atoms has been verified to 20 digits

Continuous approximation of charge distribution

Continuous approximation allows for using powerful mathematics

Fundamental Question of Electrostatics

There exist a specified distribution of static elementary charges. We pick one of them and ask what is the force acting on it.

This will be answered in full details

Coulomb('s) Law

Coulomb('s) Law + Superposition Principle

$$
\boldsymbol{F}(\boldsymbol{r})=\frac{q}{4 \pi \varepsilon_{0}} \sum_{n} \frac{q_{n}^{\prime}\left(\boldsymbol{r}-\boldsymbol{r}_{n}^{\prime}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}_{n}^{\prime}\right|^{3}}
$$

Entire electrostatics can be deduced from this formula

Electric Field

$$
\boldsymbol{F}(\boldsymbol{r})=q \boldsymbol{E}(\boldsymbol{r}) \quad \boldsymbol{E}(\boldsymbol{r})=\frac{1}{4 \pi \varepsilon_{0}} \sum_{n} \frac{q_{n}^{\prime}\left(\boldsymbol{r}-\boldsymbol{r}_{n}^{\prime}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}_{n}^{\prime}\right|^{3}}
$$

Force is represented by field - entity generated by charges and permeating the space

Continuous Distribution of Charge

$$
\boldsymbol{E}(\boldsymbol{r})=\frac{1}{4 \pi \varepsilon_{0}} \sum_{n} \frac{q_{n}^{\prime}\left(\boldsymbol{r}-\boldsymbol{r}_{n}^{\prime}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}_{n}^{\prime}\right|^{3}} \quad \boldsymbol{E}(\boldsymbol{r})=\frac{1}{4 \pi \varepsilon_{0}} \int_{V^{\prime}} \frac{\rho\left(\boldsymbol{r}^{\prime}\right)\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|^{3}} \mathrm{~d} V^{\prime}
$$

Continuous description of charge allows for using powerful mathematics

Continuous Description of a Point Charge

Gauss(') Law

Rotation of Electric Field

$\nabla \times \boldsymbol{E}=0$

Differential law (local)
$\oint_{l} \boldsymbol{E} \cdot \mathrm{~d} \boldsymbol{l}=0$

Integral law (global)

Various Views on Electrostatics

Integral laws of electrostatics
 electrostatics

Coulomb's law

$$
\begin{array}{ll}
\oint_{S} \boldsymbol{E} \cdot \mathrm{~d} \boldsymbol{S}=\frac{Q}{\varepsilon_{0}}
\end{array} \Longleftrightarrow \begin{aligned}
& \nabla \cdot \boldsymbol{E}(\boldsymbol{r})=\frac{\rho(\boldsymbol{r})}{\varepsilon_{0}} \\
& \oint_{l} \boldsymbol{E} \cdot \mathrm{~d} \boldsymbol{l}=0
\end{aligned} \Longleftrightarrow \boldsymbol{E}(\boldsymbol{r})=\frac{1}{4 \pi \varepsilon_{0}} \int_{V^{\prime}} \frac{\rho\left(\boldsymbol{r}^{\prime}\right)\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|^{3}} \mathrm{~d} V^{\prime}
$$

The physics content is the same, the formalism is different.

Electric potential

$$
\nabla \times \boldsymbol{E}=0 \quad 2 \boldsymbol{E}(\boldsymbol{r})=-\nabla \varphi(\boldsymbol{r}) \quad \longrightarrow \quad \varphi(\boldsymbol{r})=\frac{1}{4 \pi \varepsilon_{0}} \int_{V^{\prime}} \frac{\rho\left(\boldsymbol{r}^{\prime}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|} \mathrm{d} V^{\prime}+K
$$

Scalar description of electrostatic field

Voltage

Voltage represents connection of abstract field theory with experiments

Electrostatic Energy

Electrostatic Energy vs Force

$$
\begin{aligned}
& \begin{array}{l}
\text { Energy of a } \\
\text { system of point } \\
\text { charges }
\end{array} \\
& W=\frac{1}{8 \pi \varepsilon_{0}} \sum_{\substack{i, j \\
j \neq i}} \frac{q_{i} q_{j}}{\left|\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right|} \quad \text { Coulomb's law }
\end{aligned}
$$

Electrostatic forces are always acting so as to minimize energy of the system

Electric Stress Tensor

Total electric
force acting in
a volume
Stress tensor

$$
\boldsymbol{F}=\int_{V} \rho(\boldsymbol{r}) \boldsymbol{E}(\boldsymbol{r}) \mathrm{d} V=\varepsilon_{0} \oint_{S} \overline{\overline{\boldsymbol{T}}} \cdot \mathrm{~d} \boldsymbol{S} \quad \boldsymbol{\overline { \boldsymbol { T } }}=\boldsymbol{E} \boldsymbol{E}-\frac{1}{2} \overline{\overline{\boldsymbol{I}}}|\boldsymbol{E}|^{2}
$$

All the information on the volumetric Coulomb's force is contained at the boundary

Ideal Conductor - classical description

Ideal conductor contains unlimited amount of free charges which under action of external electric field rearrange so as to annihilate electric field inside the conductor.

In 3D, the free charge always resides on the external bounding surface of the conductor.

```
In 1D and 2D
```

 it is not so
 Generally, free charges in conductors move so as to minimize the energy

Ideal Conductor - quantum description

In an ideal conductor, wave functions of electrons in outer shells perceive flat potential background. In reaction to an external electric field, these wave functions are slightly modified so as to provide zero average charge density inside the conductor. Due to flat potential background, there is no counter interaction.

Long-range transport of charge does not truly happen in a solid conductor

Boundary Conditions on Ideal Conductor

- Inside conductor

$$
\text { - } \boldsymbol{E}(\boldsymbol{r})=0 \Leftrightarrow \varphi(\boldsymbol{r})=\text { const. }
$$

- Just outside conductor
- $\boldsymbol{n}(\boldsymbol{r}) \times \boldsymbol{E}(\boldsymbol{r})=0 \Leftrightarrow \varphi(\boldsymbol{r})=$ const.

Potential is
continuous
across the
boundary

Surface charge residing on the outer surface of the conductor

Outward normal to the conductor

Capacitance of a System of N conductors

Electrostatic system is fully characterized by capacitances (we know the energy)

Capacitance of a System of two conductors

Poisson('s) equation

$$
\Delta x(t)=\frac{-(t)}{5}
$$

The solution to Poisson's equation is unique in a given volume once the potential is known on its bounding surface and the charge density is known throughout the volume.

Laplace('s) equation

$$
\Delta \varphi(\boldsymbol{r})=0
$$

The solution to Laplace's equation is unique in a given volume once the potential is known on its bounding surface.

Mean Value Theorem

The solution to Laplace's equation posses neither maxima nor minima inside the solved volume.

Earnshaw('s) Theorem

Consequence of mean value theorem

A charged particle cannot be held in stable equilibrium by electrostatic forces alone.

Mind that the solution to Laplace's equation posses neither maxima nor minima inside the solved volume. This means that charged particle will always travel towards the boundary.

Image Method

When solving field generated by charges in the presence of conductors, it is sometimes possible to remove the conductor and mimic its boundary conditions by adding extra charges to the exterior of the solution volume. The uniqueness theorem claims that this is a correct solution.

Image method always works with planes and spheres.

Separation of Variables

$$
\begin{gathered}
\begin{array}{c}
\text { Constants } \\
\text { determined by } \\
\text { boundary conditions }
\end{array} \\
\Delta \varphi(\boldsymbol{r})=0 \quad \varphi_{i j k}(\boldsymbol{r})=X_{i}(x) Y_{j}(y) Z_{k}(z) \quad \Longleftrightarrow
\end{gathered}
$$

Semi-analytical method for canonical problems

Finite Differences

$$
\begin{aligned}
& \varphi(x+h, y, z) \rightarrow \varphi_{(i+1) j k} \\
& \Delta \varphi(\boldsymbol{r}) \approx \frac{\varphi_{(i+1) j k}-2 \varphi_{i j k}+\varphi_{(i-1) j k}}{h^{2}}+\frac{\varphi_{i(j+1) k}-2 \varphi_{i j k}+\varphi_{i(j-1) k}}{h^{2}}+\frac{\varphi_{i j(k+1)}-2 \varphi_{i j k}+\varphi_{i j(k-1)}}{h^{2}}
\end{aligned}
$$

Powerful numerical method for closed problems

Integral Equation \& Method of Moments

Assumed to be known in volume where the charge resides

Distribution of charge is unknown

$$
\varphi(\boldsymbol{r})=\frac{1}{4 \pi \varepsilon_{0}} \int_{V^{\prime}} \frac{\rho\left(\boldsymbol{r}^{\prime}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|} \mathrm{d} V^{\prime}
$$

Simple functions for
which the potential integral can be easily evaluated

$$
\rho(\boldsymbol{r}) \approx \sum_{n} \alpha_{n} \rho_{n}(\boldsymbol{r})
$$

$$
\int_{V} \rho_{m}(\boldsymbol{r}) \varphi(\boldsymbol{r}) \mathrm{d} V=\sum_{n} \alpha_{n} \frac{1}{4 \pi \varepsilon_{0}} \int_{V} \int_{V^{\prime}} \frac{\rho_{m}(\boldsymbol{r}) \rho_{n}\left(\boldsymbol{r}^{\prime}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|} \mathrm{d} V^{\prime} \mathrm{d} V
$$

Powerful numerical method for open problems

Dielectrics

- Material in which charges cannot move freely
- Charges are forming clusters (atoms, molecules)
- Under influence of electric field the clusters change shape or rotate
- Electric field induces electric dipoles with density $\boldsymbol{P}(\boldsymbol{r}) \quad\left[\mathrm{C} \cdot \mathrm{m}^{-2}\right]$

Electric Field of a Dipole

Two opposite charges
very close to each other

$$
\left|\boldsymbol{r}-\boldsymbol{r}_{\text {center }}\right| \gg\left|\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right|
$$

$$
\varphi(\boldsymbol{r})=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{\left|\boldsymbol{r}-\boldsymbol{r}_{1}\right|}-\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{\left|\boldsymbol{r}-\boldsymbol{r}_{2}\right|} \approx \frac{1}{4 \pi \varepsilon_{0}} \frac{\boldsymbol{p} \cdot\left(\boldsymbol{r}-\boldsymbol{r}_{\text {center }}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}_{\text {center }}\right|^{3}}
$$

Field Produced by Polarized Matter

$$
\varphi(\boldsymbol{r})=\frac{1}{4 \pi \varepsilon_{0}} \int_{V^{\prime}} \frac{\boldsymbol{P}\left(\boldsymbol{r}^{\prime}\right) \cdot\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|^{3}} \mathrm{~d} V^{\prime}=\frac{1}{4 \pi \varepsilon_{0}} \oint_{S^{\prime}} \frac{\boldsymbol{P}\left(\boldsymbol{r}^{\prime}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|} \cdot \mathrm{d} \boldsymbol{S}^{\prime}-\frac{1}{4 \pi \varepsilon_{0}} \int_{V^{\prime}} \frac{\nabla^{\prime} \cdot \boldsymbol{P}\left(\boldsymbol{r}^{\prime}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|} \mathrm{d} V^{\prime}
$$

This formula holds very well outside the matter and, curiously, it also well approximates the field inside

Electric Displacement

Electric displacement $\left[\mathrm{C} \cdot \mathrm{m}^{-2}\right]$

$$
\nabla \cdot \boldsymbol{D}(\boldsymbol{r})=\rho(\boldsymbol{r})
$$

$\boldsymbol{D}(\boldsymbol{r})=\varepsilon_{0} \boldsymbol{E}(\boldsymbol{r})+\boldsymbol{P}(\boldsymbol{r})$

$$
\oint_{S} \boldsymbol{D} \cdot \mathrm{~d} \boldsymbol{S}=\int_{V} \rho(\boldsymbol{r}) \mathrm{d} V=Q
$$

Only free charge
(compare to divergence of electric field)

Linear Isotropic Dielectrics

All the complicated structure of matter reduces to a simple scalar quantity

Fields in Presence of Dielectrics 1/2

Analogy with electric field in vacuum can only be used when entire space is homogeneously filled with dielectric.

$$
\nabla \times \boldsymbol{D}(\boldsymbol{r})=\nabla \times[\varepsilon(\boldsymbol{r}) \boldsymbol{E}(\boldsymbol{r})] \neq 0
$$

Analogy with vacuum can only be used when space is homogeneously filled with dielectric

Fields in Presence of Dielectrics 2/2

$$
\nabla \times \boldsymbol{E}(\boldsymbol{r})=0 \Leftrightarrow \boldsymbol{E}(\boldsymbol{r})=-\nabla \varphi(\boldsymbol{r}) \quad \Rightarrow \quad \nabla \cdot[\varepsilon(\boldsymbol{r}) \nabla \varphi(\boldsymbol{r})]=-\rho(\boldsymbol{r})
$$

$$
\Delta \varphi(\boldsymbol{r})=-\frac{\rho(\boldsymbol{r})}{\varepsilon}
$$

Poisson's equation holds only when permittivity does not depend on coordinates

Dielectric Boundaries

$$
\begin{aligned}
& \qquad \boldsymbol{n}(\boldsymbol{r}) \times\left[\boldsymbol{E}_{1}(\boldsymbol{r})-\boldsymbol{E}_{2}(\boldsymbol{r})\right]=0 \quad \Leftrightarrow \quad \varphi_{1}(\boldsymbol{r})-\varphi_{2}(\boldsymbol{r})=0 \\
& \boldsymbol{n}(\boldsymbol{r}) \cdot\left[\varepsilon_{1} \boldsymbol{E}_{1}(\boldsymbol{r})-\varepsilon_{2} \boldsymbol{E}_{2}(\boldsymbol{r})\right]=\sigma(\boldsymbol{r}) \quad \Leftrightarrow \quad \varepsilon_{1} \frac{\partial \varphi_{1}(\boldsymbol{r})}{\partial n}-\varepsilon_{2} \frac{\partial \varphi_{2}(\boldsymbol{r})}{\partial n}=-\sigma(\boldsymbol{r}) \\
& \text { Normal } \\
& \text { pointing to } \\
& \text { region (1) }
\end{aligned}
$$

Both conditions are needed for unique solution

Electrostatic Energy in Dielectrics

$$
W=\frac{1}{2} \varepsilon_{0} \int_{V}|\boldsymbol{E}(\boldsymbol{r})|^{2} \mathrm{~d} V \quad \quad \quad \quad \quad W=\frac{1}{2} \int_{V} \boldsymbol{E}(\boldsymbol{r}) \cdot \boldsymbol{D}(\boldsymbol{r}) \mathrm{d} V
$$

Forces on Dielectrics

This only holds when charge is held constant

$$
\begin{aligned}
W & =\frac{1}{2} C U^{2}=\frac{1}{2} \frac{Q^{2}}{C} \\
W & =\frac{1}{2} \int_{V} \boldsymbol{E}(\boldsymbol{r}) \cdot \boldsymbol{D}(\boldsymbol{r}) \mathrm{d} V
\end{aligned}
$$

Electric Current

Charges in motion are represented by current density

Local Charge Conservation

$$
\nabla \cdot \boldsymbol{J}(\boldsymbol{r}, t)=-\frac{\partial}{\partial t} \sum_{k=1}^{N} q_{k} \delta\left(\boldsymbol{r}-\boldsymbol{r}_{k}(t)\right)=-\frac{\partial \rho(\boldsymbol{r}, t)}{\partial t}
$$

Charge is conserved locally at every space-time point

Global Charge Conservation

When charge leaves a given volume, it is always accompanied by a current through the bounding envelope

$$
\oint_{S} \boldsymbol{J}(\boldsymbol{r}, t) \cdot d \boldsymbol{S}=-\frac{\partial Q(t)}{\partial t}
$$

Charge can neither be created nor destroyed. It can only be displaced.
CURRENT
$45 /$ XXX

Stationary Current

When charge enters a volume, another must leave it without any delay

$$
\nabla \cdot \boldsymbol{J}(\boldsymbol{r})=0
$$

$$
\oint_{S} \boldsymbol{J}(\boldsymbol{r}) \cdot d \boldsymbol{S}=0
$$

There is no charge accumulation in stationary flow

Ohm('s) Law

Conductivity
$\left[\mathrm{S} \cdot \mathrm{m}^{-1}\right]$

$$
\boldsymbol{J}(\boldsymbol{r})=\sigma(\boldsymbol{r}) \boldsymbol{E}(\boldsymbol{r})
$$

This simple linear relation holds for enormous interval of electric field strengths

CURRENT	
47 I XXX Electromagnetic Field Theory 1	CTU-FEE in Prague, Department of Electromagnetic Field

Electromotive Force

Stationary flow of charges cannot be caused by electrostatic field. The motion forces are non-conservative, are called electromotive forces, and are commonly of chemical, magnetic or photoelectric origin.

For curves passing through sources of electromotive force

For curves not crossing sources of electromotive force

Boundary Conditions for Stationary Current

$$
\begin{aligned}
\boldsymbol{n}(\boldsymbol{r}) \times\left[\boldsymbol{E}_{1}(\boldsymbol{r})-\boldsymbol{E}_{2}(\boldsymbol{r})\right]=0 & \Leftrightarrow \varphi_{1}(\boldsymbol{r})-\varphi_{2}(\boldsymbol{r})=0 \\
\boldsymbol{n}(\boldsymbol{r}) \cdot\left[\varepsilon_{1} \boldsymbol{E}_{1}(\boldsymbol{r})-\varepsilon_{2} \boldsymbol{E}_{2}(\boldsymbol{r})\right]=\sigma(\boldsymbol{r}) & \Leftrightarrow \varepsilon_{1} \frac{\partial \varphi_{1}(\boldsymbol{r})}{\partial n}-\varepsilon_{2} \frac{\partial \varphi_{2}(\boldsymbol{r})}{\partial n}=-\sigma(\boldsymbol{r}) \\
\boldsymbol{n}(\boldsymbol{r}) \cdot\left[\sigma_{1} \boldsymbol{E}_{1}(\boldsymbol{r})-\sigma_{2} \boldsymbol{E}_{2}(\boldsymbol{r})\right]=0 & \Leftrightarrow \sigma_{1} \frac{\partial \varphi_{1}(\boldsymbol{r})}{\partial n}-\sigma_{2} \frac{\partial \varphi_{2}(\boldsymbol{r})}{\partial n}=0
\end{aligned}
$$

Charge conservation forces the continuity of current across the boundary

Electric Current

Resistance (Conductance)

Resistive Circuits and Kirchhoff('s) Laws

Kirchhoff's laws are a consequence of electrostatics and law's of stationary current flow

CURRENT	Electromagnetic Field Theory 1
$52 /$ XXX CTU-FEE in Prague, Department of Electromagnetic Field	

Joule('s) Heat

Electric field within conducting material produces heat

Fundamental Question of Magnetostatics

There exist a specified distribution of stationary current. We pick a differential volume of it and ask what is the force acting on it.

Biot-Savart('s) Law

Biot-Savart('s) Law + Superposition Principle

$$
\boldsymbol{F}(\boldsymbol{r})=\boldsymbol{J}(\boldsymbol{r}) \mathrm{d} V \times \frac{\mu_{0}}{4 \pi} \int_{V^{\prime}} \frac{\boldsymbol{J}\left(\boldsymbol{r}^{\prime}\right) \times\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|^{3}} \mathrm{~d} V^{\prime}
$$

Entire magnetostatics can be deduced from this formula

Magnetic Field

$$
\boldsymbol{F}(\boldsymbol{r})=\boldsymbol{J}(\boldsymbol{r}) \mathrm{d} V \times \boldsymbol{B}(\boldsymbol{r}) \quad \boldsymbol{B}(\boldsymbol{r})=\frac{\mu_{0}}{4 \pi} \int_{V^{\prime}} \frac{\boldsymbol{J}\left(\boldsymbol{r}^{\prime}\right) \times\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|^{3}} \mathrm{~d} V^{\prime}
$$

Magnetic field
(Magnetic induction)

Divergence of Magnetic Field

$$
\nabla \cdot \boldsymbol{B}(\boldsymbol{r})=0 \quad \oint_{S} \boldsymbol{B}(\boldsymbol{r}) \cdot \mathrm{d} \boldsymbol{S}=0
$$

There are no point sources of magnetostatic field

Curl of Magnetic Field - Ampere('s) Law

$$
\nabla \times \boldsymbol{B}(\boldsymbol{r})=\mu_{0} \boldsymbol{J}(\boldsymbol{r})
$$

$\oint_{l} \boldsymbol{B}(\boldsymbol{r}) \cdot \mathrm{d} \boldsymbol{l}=\mu_{0} I$
Total current captured within the curve

Magnetic Vector Potential

$$
\begin{gathered}
\text { Magnetic vector } \\
\text { potential }
\end{gathered} \begin{gathered}
\begin{array}{c}
\text { Defined up to } \\
\text { arbitrary scalar } \\
\text { function }
\end{array} \\
\nabla \cdot \boldsymbol{B}=0 \longmapsto \boldsymbol{B}(\boldsymbol{r})=\nabla \times \boldsymbol{A}(\boldsymbol{r}) \Longrightarrow \boldsymbol{A}(\boldsymbol{r})=\frac{\mu_{0}}{4 \pi} \int_{V^{\prime}} \frac{\boldsymbol{J}\left(\boldsymbol{r}^{\prime}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|} \mathrm{d} V^{\prime}+\nabla \psi(\boldsymbol{r}),
\end{gathered}
$$

Reduced description of magnetostatic field

Poisson('s) equation

$$
\Delta A(r)=-\mu_{0} J(r)
$$

The solution to Poisson's equation is unique in a given volume once the potential is known on its bounding surface and the current density is known through out the volume.

Boundary Conditions

$$
\begin{gathered}
n(\boldsymbol{r}) \cdot\left[\boldsymbol{B}_{1}(\boldsymbol{r})-\boldsymbol{B}_{2}(\boldsymbol{r})\right]=0 \\
\boldsymbol{A}_{1}(\boldsymbol{r})-\boldsymbol{A}_{2}(\boldsymbol{r})=0
\end{gathered}
$$

Magnetostatic Energy

$$
W=\frac{1}{2} \int_{V} \boldsymbol{A}(\boldsymbol{r}) \cdot \boldsymbol{J}(\boldsymbol{r}) \mathrm{d} V \quad \quad \quad \quad \quad \int_{V}=\frac{1}{2 \mu_{0}} \int_{V}|\boldsymbol{B}(\boldsymbol{r})|^{2} \mathrm{~d} V
$$

For now it is just a formula that works - it must be derived with the help of time varying fields

Magnetostatic Energy - Current Circuits

$$
\begin{aligned}
M_{i j}=M_{j i}= & \frac{\mu_{0}}{4 \pi I_{i} I_{j}} \int_{V_{j}} \int_{V_{i}^{\prime}} \frac{\boldsymbol{J}_{j}\left(\boldsymbol{r}_{j}\right) \cdot \boldsymbol{J}_{i}\left(\boldsymbol{r}_{i}^{\prime}\right)}{\left|\boldsymbol{r}_{j}-\boldsymbol{r}_{i}^{\prime}\right|} \mathrm{d} V_{i}^{\prime} \mathrm{d} V_{j} \\
& \text { Mutual-Inductance }[\mathrm{H}]
\end{aligned}
$$

Mutual Inductance - Thin Current Loop

Magnetic Materials

- Material response is due to magnetic dipole moments
- Magnetic moment comes from spin or orbital motion of an electron
- Magnetic field tends to align magnetic moments
- Magnetic field induces magnetic dipoles with density $M(r) \quad\left[\mathrm{A} \cdot \mathrm{m}^{-1}\right]$

Number of dipoles
in unitary volume

Magnetic Field of a Dipole

Magnetic dipole approximates infinitesimally small current loop

Field Produced by Magnetized Matter

$$
\boldsymbol{A}(\boldsymbol{r})=\frac{\mu_{0}}{4 \pi} \int_{V^{\prime}} \frac{\boldsymbol{M}\left(\boldsymbol{r}^{\prime}\right) \times\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|^{3}} \mathrm{~d} V^{\prime}=\frac{\mu_{0}}{4 \pi} \oint_{S^{\prime}} \frac{\boldsymbol{M}\left(\boldsymbol{r}^{\prime}\right) \times \mathrm{d} \boldsymbol{S}^{\prime}}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}+\frac{\mu_{0}}{4 \pi} \int_{V^{\prime}} \frac{\nabla^{\prime} \times \boldsymbol{M}\left(\boldsymbol{r}^{\prime}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|} \mathrm{d} V^{\prime}
$$

This formula holds very well outside the matter and, curiously, it also well approximates the field inside

Magnetic Intensity

Linear Isotropic Magnetic Materials

All the complicated structure of matter reduces to a simple scalar quantity

Fields in Presence of Magnetic Material

$$
\nabla \cdot \boldsymbol{B}(\boldsymbol{r})=0 \Leftrightarrow \boldsymbol{B}(\boldsymbol{r})=\nabla \times \boldsymbol{A}(\boldsymbol{r}) \quad \boldsymbol{\nabla} \times\left[\frac{1}{\mu(\boldsymbol{r})} \nabla \times \boldsymbol{A}(\boldsymbol{r})\right]=\boldsymbol{J}(\boldsymbol{r})
$$

Poisson's equation holds only when permittivity does not depend on coordinates

Magnetic Material Boundaries

$$
\begin{aligned}
& \boldsymbol{n}(\boldsymbol{r}) \times\left[\boldsymbol{H}_{1}(\boldsymbol{r})-\boldsymbol{H}_{2}(\boldsymbol{r})\right]=\boldsymbol{K}(\boldsymbol{r}) \\
& \boldsymbol{n}(\boldsymbol{r}) \cdot\left[\mu_{1} \boldsymbol{H}_{1}(\boldsymbol{r})-\mu_{2} \boldsymbol{H}_{2}(\boldsymbol{r})\right]=0
\end{aligned}
$$

Normal
pointing to region (1)

Both conditions are needed for unique solution

Magnetostatic Energy in Magnetic Material

$$
W=\frac{1}{2 \mu_{0}} \int_{V}|\boldsymbol{B}(\boldsymbol{r})|^{2} \mathrm{~d} V \quad \quad \quad \quad \quad \quad=\frac{1}{2} \int_{V} \boldsymbol{H}(\boldsymbol{r}) \cdot \boldsymbol{B}(\boldsymbol{r}) \mathrm{d} V
$$

Magnetic Materials

- Paramagnetic - small positive susceptibility (small attraction - linear)
- Diamagnetic - small negative susceptibility (small repulsion - linear)
- Ferromagnetic - "large positive susceptibility" (large attraction - nonlinear)

Ferromagnetic Materials

- Spins are ordered within domains
- Magnetization is a non-linear function of field intensity
- Magnetization curve - Hysteresis, Remanence
- Susceptibility can only be defined as local approximation
- Above Curie('s) temperature ferromagnetism disappears

Exact calculations are very difficult - use simplified models (soft material, permanent magnet)

Faraday('s) Law

Time variation in magnetic field produces electric field that tries to counter the change in magnetic flux (electromotive force)

Lenz('s) Law

The current created by time variation of magnetic flux is directed so as to oppose the flux creating it.

Time Varying RL Circuits

Time Varying Potentials

$$
\begin{gathered}
\begin{array}{c}
\text { Potential } \\
\text { calibration }
\end{array} \\
\nabla \cdot \boldsymbol{A}(\boldsymbol{r}, t)=-\sigma \mu \varphi(\boldsymbol{r}, t) \\
\boldsymbol{B}(\boldsymbol{r}, t)=\nabla \times \boldsymbol{A}(\boldsymbol{r}, t) \\
\boldsymbol{E}(\boldsymbol{r}, t)=-\nabla \varphi(\boldsymbol{r}, t)-\frac{\partial \boldsymbol{A}(\boldsymbol{r}, t)}{\partial t}
\end{gathered}
$$

In time varying fields scalar potential becomes redundant

Source and Induced Currents

Those are fixed, not reacting to fields

$$
\nabla \times \boldsymbol{H}(\boldsymbol{r}, t)=\boldsymbol{J}_{\text {source }}(\boldsymbol{r}, t)+\boldsymbol{J}_{\text {inducued }}(\boldsymbol{r}, t)=\boldsymbol{J}_{\text {sourre }}(\boldsymbol{r}, t)+\sigma \boldsymbol{E}(\boldsymbol{r}, t)
$$

Diffusion Equation

$$
\begin{aligned}
& \Delta \boldsymbol{A}(\boldsymbol{r}, t)-\sigma \mu \frac{\partial \boldsymbol{A}(\boldsymbol{r}, t)}{\partial t}=-\mu \boldsymbol{J}_{\text {source }}(\boldsymbol{r}, t) \\
& \Delta \boldsymbol{H}(\boldsymbol{r}, t)-\sigma \mu \frac{\partial \boldsymbol{H}(\boldsymbol{r}, t)}{\partial t}=-\nabla \times \boldsymbol{J}_{\text {source }}(\boldsymbol{r}, t) \\
& \Delta \boldsymbol{E}(\boldsymbol{r}, t)-\sigma \mu \frac{\partial \boldsymbol{E}(\boldsymbol{r}, t)}{\partial t}=\frac{1}{\varepsilon} \nabla \rho_{\text {source }}(\boldsymbol{r}, t)+\mu \frac{\partial \boldsymbol{J}_{\text {source }}(\boldsymbol{r}, t)}{\partial t} \\
& \begin{array}{c}
\text { Material parameters are assumed } \\
\text { independent of coordinates }
\end{array}
\end{aligned}
$$

Maxwell('s)-Lorentz('s) Equations

$$
\begin{aligned}
& \nabla \times \boldsymbol{H}(\boldsymbol{r}, t)=\boldsymbol{J}(\boldsymbol{r}, t)+\frac{\partial \boldsymbol{D}(\boldsymbol{r}, t)}{\partial t} \\
& \nabla \times \boldsymbol{E}(\boldsymbol{r}, t)=-\frac{\partial \boldsymbol{B}(\boldsymbol{r}, t)}{\partial t} \\
& \nabla \cdot \boldsymbol{B}(\boldsymbol{r}, t)=0 \\
& \nabla \cdot \boldsymbol{D}(\boldsymbol{r}, t)=\rho(\boldsymbol{r}, t)
\end{aligned}
$$

Equations of motion for fields

$$
\boldsymbol{f}(\boldsymbol{r}, t)=\rho(\boldsymbol{r}, t) \boldsymbol{E}(\boldsymbol{r}, t)+\boldsymbol{J}(\boldsymbol{r}, t) \times \boldsymbol{B}(\boldsymbol{r}, t)
$$

Interaction with materials

Absolute majority of things happening around you is described by these equations

Boundary Conditions

$$
\begin{gathered}
\boldsymbol{n}(\boldsymbol{r}) \times\left[\boldsymbol{E}_{1}(\boldsymbol{r}, t)-\boldsymbol{E}_{2}(\boldsymbol{r}, t)\right]=0 \\
\boldsymbol{n}(\boldsymbol{r}) \times\left[\boldsymbol{H}_{1}(\boldsymbol{r}, t)-\boldsymbol{H}_{2}(\boldsymbol{r}, t)\right]=\boldsymbol{K}(\boldsymbol{r}, t) \\
\boldsymbol{n}(\boldsymbol{r}) \cdot\left[\boldsymbol{B}_{1}(\boldsymbol{r}, t)-\boldsymbol{B}_{2}(\boldsymbol{r}, t)\right]=0 \\
\boldsymbol{n}(\boldsymbol{r}) \cdot\left[\boldsymbol{D}_{1}(\boldsymbol{r}, t)-\boldsymbol{D}_{2}(\boldsymbol{r}, t)\right]=\sigma(\boldsymbol{r}, t)
\end{gathered}
$$

Normal pointing to region (1)

Electromagnetic Potentials

$$
\begin{gathered}
\nabla \cdot \boldsymbol{A}(\boldsymbol{r}, t)=-\sigma \mu \varphi(\boldsymbol{r}, t)-\varepsilon \mu \frac{\begin{array}{c}
\text { Lorentz('s) } \\
\text { calibration }
\end{array}}{\partial t} \\
\boldsymbol{B}(\boldsymbol{r}, t)=\nabla \times \boldsymbol{A}(\boldsymbol{r}, t) \\
\boldsymbol{E}(\boldsymbol{r}, t)=-\nabla \varphi(\boldsymbol{r}, t)-\frac{\partial \boldsymbol{A}(\boldsymbol{r}, t)}{\partial t}
\end{gathered}
$$

Wave Equation

$$
\Delta \boldsymbol{A}(\boldsymbol{r}, t)-\sigma \mu \frac{\partial \boldsymbol{A}(\boldsymbol{r}, t)}{\partial t}-\varepsilon \mu \frac{\partial^{2} \boldsymbol{A}(\boldsymbol{r}, t)}{\partial t^{2}}=-\mu \boldsymbol{J}_{\text {source }}(\boldsymbol{r}, t)
$$

Material parameters are assumed
independent of coordinates

Poynting('s)-Umov('s) Theorem

Energy balance in an electromagnetic system

Linear Momentum Carried by Fields

Volume integration considerably change the meaning of Poynting('s) vector

This formula is only valid in vacuum. In material media things are more tricky.

Angular Momentum Carried by Fields

$$
\boldsymbol{L}=\frac{1}{c_{0}^{2}} \int_{V} \boldsymbol{r} \times(\boldsymbol{E} \times \boldsymbol{H}) \mathrm{d} V
$$

This formula is only valid in vacuum. In material media things are more tricky.

ELECTRODYNAMICS	Electromagnetic Field Theory 1
$88 /$ XXX	CTU-FEE in Prague, Department of Electromagnetic Field

Frequency Domain

$$
\begin{aligned}
& \frac{\partial \boldsymbol{F}(\boldsymbol{r}, t)}{\partial t} \leftrightarrow j \omega \hat{\boldsymbol{F}}(\boldsymbol{r}, \omega) \\
& \text { es reduce to } \\
& \text { Itiplication }
\end{aligned} \frac{\partial \boldsymbol{F}(\boldsymbol{r}, t)}{\partial r_{\xi}} \leftrightarrow \frac{\partial \hat{\boldsymbol{F}}(\boldsymbol{r}, \omega)}{\partial r_{\xi}}
$$

Time derivatives reduce to algebraic multiplication

Spatial derivatives are untouched

Frequency domain helps us to remove explicit time derivatives

Phasors

$$
\hat{\boldsymbol{F}}(\boldsymbol{r},-\omega)=\hat{\boldsymbol{F}}^{*}(\boldsymbol{r}, \omega) \quad \boldsymbol{F}(\boldsymbol{r}, t)=\frac{1}{\pi} \int_{0}^{\infty} \operatorname{Re}\left[\hat{\boldsymbol{F}}(\boldsymbol{r}, \omega) \mathrm{e}^{\mathrm{j} \omega t}\right] d \omega
$$

Reduced frequency domain representation

Maxwell('s) Equations - Frequency Domain

$$
\begin{aligned}
& \nabla \times \hat{\boldsymbol{H}}(\boldsymbol{r}, \omega)=\hat{\boldsymbol{J}}(\boldsymbol{r}, \omega)+\mathrm{j} \omega \varepsilon \hat{\boldsymbol{E}}(\boldsymbol{r}, \omega) \\
& \nabla \times \hat{\boldsymbol{E}}(\boldsymbol{r}, \omega)=-\mathrm{j} \omega \mu \hat{\boldsymbol{H}}(\boldsymbol{r}, \omega) \\
& \nabla \cdot \hat{\boldsymbol{H}}(\boldsymbol{r}, \omega)=0 \\
& \nabla \cdot \hat{\boldsymbol{E}}(\boldsymbol{r}, \omega)=\frac{\hat{\rho}(\boldsymbol{r}, \omega)}{\varepsilon}
\end{aligned}
$$

We assume linearity of material relations

Wave Equation - Frequency Domain

$$
\Delta \hat{\boldsymbol{A}}(\boldsymbol{r}, \omega)-\mathrm{j} \omega \mu(\sigma+\mathrm{j} \omega \varepsilon) \hat{\boldsymbol{A}}(\boldsymbol{r}, \omega)=-\mu \hat{\boldsymbol{J}}_{\text {sourre }}(\boldsymbol{r}, \omega)
$$

Helmholtz('s) equation

Heat Balance in Time-Harmonic Steady State

$$
\begin{aligned}
& \text { Valid for general periodic steady state } \\
& \left.-\int_{V}\left\langle\boldsymbol{E} \cdot \boldsymbol{J}_{\text {source }}\right\rangle \mathrm{d} V=\oint_{S}\langle\boldsymbol{E} \times \boldsymbol{H}\rangle \cdot \mathrm{d} \boldsymbol{S}+\left.\int_{V}\langle\sigma| \boldsymbol{E}\right|^{2}\right\rangle \mathrm{d} V \\
& -\frac{1}{2} \int_{V} \operatorname{Re}\left[\hat{\boldsymbol{E}} \cdot \hat{\boldsymbol{J}}_{\text {source }}^{*}\right] \mathrm{d} V=\frac{1}{2} \oint_{S} \operatorname{Re}\left[\hat{\boldsymbol{E}} \times \hat{\boldsymbol{H}}^{*}\right] \cdot \mathrm{d} \boldsymbol{S}+\frac{1}{2} \int_{V} \sigma|\hat{\boldsymbol{E}}|^{2} \mathrm{~d} V \\
& \text { Valid for time mean } \\
& \text { Charmonic steady state }
\end{aligned}
$$

Plane Wave

Electric and magnetic fields
are orthogonal to propagation direction

$$
\hat{\boldsymbol{H}}(\boldsymbol{r}, \omega)=\frac{k}{\omega \mu}\left[\boldsymbol{n} \times \boldsymbol{E}_{0}(\omega)\right] \mathrm{e}^{-\mathrm{j} k n \cdot \boldsymbol{r}}
$$

$$
\boldsymbol{n} \cdot \boldsymbol{E}_{0}(\omega)=0
$$

$$
\boldsymbol{n} \cdot \boldsymbol{H}_{0}(\omega)=0
$$

$$
k^{2}=-\mathrm{j} \omega \mu(\sigma+\mathrm{j} \omega \varepsilon)
$$

Wave-number

Unitary vector representing the direction of propagation

Electric and magnetic fields are mutually orthogonal

The simplest wave solution of Maxwell('s) equations

Plane Wave Characteristics

$$
\begin{aligned}
& k=\sqrt{-\mathrm{j} \omega \mu(\sigma+\mathrm{j} \omega \varepsilon)} \\
& \operatorname{Re}[k]>0 ; \operatorname{Im}[k]<0 \\
& \lambda=\frac{2 \pi}{\operatorname{Re}[k]} \\
& v_{\mathrm{f}}=\frac{\omega}{\operatorname{Re}[k]} \\
& Z=\frac{\omega \mu}{k} \\
& \delta=-\frac{1}{\operatorname{Im}[k]}
\end{aligned}
$$

Vacuum

$$
k=\frac{\omega}{c_{0}}
$$

$$
\operatorname{Re}[k]>0 ; \operatorname{Im}[k]=0
$$

$$
\lambda=\frac{c_{0}}{f}
$$

 material

$$
v_{\mathrm{f}}=c_{0}
$$

$$
Z=c_{0} \mu_{0}=\sqrt{\frac{\mu_{0}}{\varepsilon_{0}}} \approx 377 \Omega
$$

$$
\delta \rightarrow \infty
$$

Cycle Mean Power Density of a Plane Wave

Power propagation coincides with phase propagation

$$
\langle\boldsymbol{E}(\boldsymbol{r}, t) \times \boldsymbol{H}(\boldsymbol{r}, t)\rangle=\frac{1}{2} \frac{\operatorname{Re}[k]}{\omega \mu}\left|\boldsymbol{E}_{0}(\omega)\right|^{2} \mathrm{e}^{2 \operatorname{II}[k] n \cdot \boldsymbol{r}} \boldsymbol{n}
$$

Lukas Jelinek

lukas.jelinek@fel.cvut.cz

Department of Electromagnetic Field
Czech Technical University in Prague
Czech Republic

