Homework (A8B17CAS)

Problem Set 2

1 Assignment

Problem 2-A Consider matrix $\mathbf{K} \in \mathbb{R}^{N \times 3}$, containing $\{x, y, z\}$ coordinates of N points. The matrix is generated as

```
c = 1:N;
r = 1:3;
K = toeplitz(c, r) - N/2;
```

where N can be chosen freely.
For a given matrix \mathbf{K}, calculate vector $\mathbf{n} \in \mathbb{R}^{N \times 1}$ containing 1st norms (called also Manhattan norm) of all radius vectors pointing from the center of the coordinate system $(x=0, y=0, z=0)$ to a corresponding point.

Figure A: Considering vector in this picture, the Manhattan norm is equal to 2.
Evaluate the ratio r between the biggest and the smallest value in the vector \mathbf{n}. (Check: for $N=6$, we have $r=\max \{\mathbf{n}\} / \min \{\mathbf{n}\}=3$.)
Implement the above-mentioned functionality into a function with the following header
function $[n, r]=$ problem2A(N)
(1 point)
Problem 2-B Calculate vector \mathbf{d} containing distances between all consecutive prime numbers starting from 3 to $N=10^{8}$ (notice that they are all even numbers). Determine the longest distance $d_{\max }=\max \{d\}$ and the associated prime numbers, p_{1} and p_{2}, for which it occurs. Finally, determine what distance value $d_{\text {most }}$ occurs most often in the vector \mathbf{d} (so-called the mode of a sample \mathbf{d}).
Implement the above-mentioned functionality into a function with the following header
function [dMax, p1, p2, dMost] = problem2B(N)
(2 points)
Problem 2-C Implement a function called problem2c, which evaluates Euclidean distances between two sets of points, finds a sphere with a center at the middle point between the two most distant points, and calculates its radius. Finally, verify if all points are inside this sphere.
Imagine two sets of points, $\boldsymbol{p}_{m} \in \mathcal{P}, m \in\{1, \ldots, M\}$ and $\boldsymbol{r}_{n} \in \mathcal{R}, n \in\{1, \ldots, N\}$. Two matrices represent them, $\mathbf{P} \in \mathbb{R}^{M \times 3}$ and $\mathbf{R} \in \mathbb{R}^{N \times 3}$, serving as the sole inputs

Figure C: An example of point set $\mathbf{P}=\mathbf{R}$ forming a unitary tetrahedron. The distances between all $m \neq n$ points is $d_{m n}=1$. The radius of a sphere touching the most distant points is $a=1 / 2$ and its center non-unique, position $\boldsymbol{c}=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$ shown here as red circle.
into the function. The function calculates Euclidean distance (2nd norm) between each pair of points, taken one by one from the sets \mathcal{P} and \mathcal{R}, as

$$
\begin{equation*}
d_{m n}=\left|\boldsymbol{p}_{m}-\boldsymbol{r}_{n}\right|, \quad \mathbf{D}=\left[d_{m n}\right] \in \mathbb{R}^{M \times N} \tag{1}
\end{equation*}
$$

The distance matrix \mathbf{D} is returned as the first output variable. Finally, the function evaluates the center \boldsymbol{c} of the sphere given as

$$
\begin{equation*}
\boldsymbol{c}=\frac{1}{2}\left(\boldsymbol{p}_{m_{c}}+\boldsymbol{r}_{n_{c}}\right) \tag{2}
\end{equation*}
$$

with boundary points $\boldsymbol{p}_{m_{c}}$ and $\boldsymbol{r}_{n_{c}}$ found such that

$$
\begin{equation*}
m_{c}, n_{c}: \quad a=\frac{1}{2} \max _{m, n}\{\mathbf{D}\}, \tag{3}
\end{equation*}
$$

i.e., two points with the largest distance between them. Check at the end if all points from both sets are within this sphere and return allptsin $=$ true if the answer is yes and allptsIn = false if contrary is the case. To recap, the header of the function problem2C reads
function [D, a, C, allPtsIn] = problem $2 C(P, R)$
For testing purposes, you may use an equilateral tetrahedron with unitary sides

$$
\mathbf{P}=\mathbf{R}=\left[\begin{array}{ccc}
-1 / 2 & 0 & 0 \tag{4}\\
1 / 2 & 0 & 0 \\
0 & \sqrt{3} / 2 & 0 \\
0 & \sqrt{3} / 6 & \sqrt{2 / 3}
\end{array}\right]
$$

with the results

$$
\mathbf{D}=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \tag{5}\\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right]
$$

$a=1 / 2$, and $\boldsymbol{c}=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$. Notice that the center point \boldsymbol{c} is, in general, not uniquely defined here; see Figure C. Any valid solution is therefore accepted.
A hint: Check out the function find(). You may use it with a syntax like
[iRow, iCol] = find(A, 1, 'first'); \% the first non-zero entry of A is found
(3 points)
Problem 2-D Create a function called problem2D which can find all Pythagorean triplets up to the number N and calculates how many of these triplets there are. The header of the function reads
where R is the matrix of Pythagorean triplets, described in details below, I is the number of triplets found, and N is the input variable described below. The function should be reasonably fast, i.e., to calculate all triplets up to $n_{I} \leq N=1000$ in terms of seconds. The output variable \mathbf{R} is a matrix $\mathbf{R} \in \mathbb{Z}^{I \times 4}$ with the following structure

$$
\mathbf{R}=\left[\begin{array}{cccc}
n_{1} & a_{1} & b_{1} & c_{1} \tag{6}\\
\vdots & \vdots & \vdots & \vdots \\
n_{i} & a_{i} & b_{i} & c_{i} \\
\vdots & \vdots & \vdots & \vdots \\
n_{I} & a_{I} & b_{I} & c_{I}
\end{array}\right],
$$

where

$$
\begin{equation*}
n_{i}=a_{i}+b_{i}+c_{i} . \tag{7}
\end{equation*}
$$

A Pythagorean triplet is a set of three natural numbers, $a_{i}<b_{i}<c_{i}$, for which,

$$
\begin{equation*}
c_{i}^{2}=a_{i}^{2}+b_{i}^{2} . \tag{8}
\end{equation*}
$$

A well-known example of a Pythagorean triplet is $a_{1}=3, b_{1}=4$, and $c_{1}=5$ with $n_{1}=12$. As a sanity check, see the first two correct lines of the output variable \mathbf{R}

$$
\mathbf{R}=\left[\begin{array}{cccc}
12 & 3 & 4 & 5 \tag{9}\\
24 & 6 & 8 & 10 \\
\vdots & \vdots & \vdots & \vdots
\end{array}\right]
$$

To illustrate how the variable N is used: in case that $N=15$, there is only one Pythagorean triplet for $n_{1}=12$, see (9), however, for $N=10$ there is no Pythagorean triplet at all. This problem is freely inspired by the Project Euler, Problem 9.
(4 points)

2 Instructions

Complete all the assignments till

- December 11, 23:59.

Write your solutions into m-files called Problem2\{A-D\}.m and upload them via the BRUTE system. When uploading more files, add them to a ZIP archive.

All the problems shall be solved by the students individually (notice the BRUTE system has a duplicity checker). Do not use functions from MATLAB Toolboxes.

