Homework 1 (A8B17CAS)

Problem Set 1

October 17, 2023

1 Assignment

For all the following problems, consider N as a positive integer. Please, do not use the for/while cycle and/or if/switch branching.

Problem 1-A Create a matrix $\mathbf{A} \in \mathbb{R}^{N \times 5}$:

$$
\mathbf{A}=\left[\begin{array}{ccccc}
0 & 1 & 1 & 1 & 0 /(N-1) \tag{1}\\
0 & 1 & 1 & 2 & 1 /(N-1) \\
0 & 1 & 1 & 3 & 2 /(N-1) \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 1 & 1 & N & (N-1) /(N-1)
\end{array}\right]
$$

Do not enter the numbers element-wise, use the MATLAB functions instead.
(1 point)
Problem 1-B Calculate the norm of the vectors arranged one below the other in matrix $\mathbf{B} \in \mathbb{R}^{N \times 3}$ and normalize them to unitary size. To solve the problem and to verify the solution, use the following matrix:

```
B = reshape((1:3*N), 3, []).'
```

(1 point)
Problem 1-C Find all the elements in the general matrix $\mathbf{C} \in \mathbb{R}^{N \times N}$ greater than or equal to $x=N / 2$, return them to vector \mathbf{u} and replace these values in the original matrix \mathbf{C} by 0 . The following matrix \mathbf{C} is used to validate the solution:
$\mathrm{C}=\operatorname{magic}(\mathrm{N})$
(2 points)
Problem 1-D Create a matrix $\mathbf{D} \in \mathbb{R}^{N \times N}$ defined as

$$
\begin{equation*}
D_{m n}=2 N+1-(m+n), \tag{2}
\end{equation*}
$$

where N denotes the size of matrix \mathbf{D}, m denotes the row index, and n denotes the column index. Try to find as simple solution as possible.
(2 points)
Problem 1-E Create a matrix $\mathbf{E} \in \mathbb{C}^{2(N+1) \times 2(N+1)}$:

$$
\mathbf{E}=\left[\begin{array}{ccccc}
\mathbf{e}+\mathbf{0} & \mathbf{e}-\mathbf{1} & \mathbf{e}-\mathbf{2} & \cdots & \mathbf{e}-\mathbf{N} \tag{3}\\
\mathbf{e}+\mathbf{1} & \mathbf{e}+\mathbf{0} & \mathbf{e}-\mathbf{1} & \cdots & \mathbf{e}-\mathbf{N}+\mathbf{1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\mathbf{e}+\mathbf{N} & \mathbf{e}+\mathbf{N}-\mathbf{1} & \mathbf{e}+\mathbf{N}-\mathbf{2} & \cdots & \mathbf{e}+\mathbf{0}
\end{array}\right]
$$

such that matrix $\mathbf{e} \in \mathbb{C}^{2 \times 2}$ is a complex matrix

$$
\mathbf{e}=\left[\begin{array}{cc}
1 & -\mathrm{j} \tag{4}\\
\mathrm{e} & \pi
\end{array}\right],
$$

and the remaining matrices are as follows:

$$
\mathbf{0}=0\left[\begin{array}{ll}
1 & 1 \tag{5}\\
1 & 1
\end{array}\right]
$$

up to

$$
\mathbf{N}=N\left[\begin{array}{ll}
1 & 1 \tag{6}\\
1 & 1
\end{array}\right] .
$$

A hint: Take a look at MATLAB function repelem. Remember from the class how to set the Euler's Number $\mathrm{e}=\exp (1)$.
(2 points)
Problem 1-F Evaluate matrix F, which is so-called Kronecker tensor product

$$
\begin{equation*}
\mathbf{F}=\mathbf{f} \otimes \mathbf{p} \tag{7}
\end{equation*}
$$

of matrices \mathbf{f} and \mathbf{p}, respectively, where

$$
\mathbf{f}=\left[\begin{array}{ccccccc}
1 & 0 & 1 & 0 & \cdots & 1 & 0 \tag{8}\\
0 & 1 & 0 & 1 & \cdots & 0 & 1 \\
1 & 0 & 1 & 0 & \cdots & 1 & 0 \\
0 & 1 & 0 & 1 & \cdots & 0 & 1 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
1 & 0 & 1 & 0 & \cdots & 1 & 0 \\
0 & 1 & 0 & 1 & \cdots & 0 & 1
\end{array}\right] \in \mathbb{R}^{2 N \times 2 N},
$$

and

$$
\mathbf{p}=\left[\begin{array}{cc}
1 & -1 \tag{9}\\
-1 & 1
\end{array}\right]
$$

so that

$$
\mathbf{F}=\left[\begin{array}{ccccccccc}
1 & -1 & 0 & 0 & \cdots & 1 & -1 & 0 & 0 \tag{10}\\
-1 & 1 & 0 & 0 & \cdots & -1 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 & \cdots & 0 & 0 & 1 & -1 \\
0 & 0 & -1 & 1 & \cdots & 0 & 0 & -1 & 1 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
1 & -1 & 0 & 0 & \cdots & 1 & -1 & 0 & 0 \\
-1 & 1 & 0 & 0 & \cdots & -1 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 & \cdots & 0 & 0 & 1 & -1 \\
0 & 0 & -1 & 1 & \cdots & 0 & 0 & -1 & 1
\end{array}\right] \in \mathbb{R}^{4 N \times 4 N} .
$$

A hint: Take a look at MATLAB function kron.
(2 points)

2 Instructions

The deadline for all assignments is

- November 13, 23:59.

Write your solutions into m-file called homework1. Each problem is solved within one of the MATLAB code "cell"s (use syntax: \%\%). Alternatively, you can solve each problem (A-F) individually in one m-file. They are called homework1A-F then. Upload all files via BRUTE system. When uploading more files, add them to a ZIP archive.

