Lecture 3: Element-wise Operations, Indexing A8B17CAS

Miloslav Čapek

Department of Electromagnetic Field
Czech Technical University in Prague Czech Republic
miloslav.capek@fel.cvut.cz
October 10
Winter semester 2023/24

Outline

1. Element-wise Operations
2. Indexing

Warm Up: Complex Power Delivered To a Circuit

Consider the impedance matrix \mathbf{Z} and feeding voltage vector \mathbf{V} are known.
Evaluate:

- Current:

$$
\mathbf{I}=\mathbf{Z}^{-1} \mathbf{V}
$$

- Total power delivered to the system:

$$
\mathbf{Z}=Z_{0}\left[\begin{array}{ccc}
1+1 \mathrm{j} & 0 & 2 \\
0 & 2-1 \mathrm{j} & -1 \mathrm{j} \\
2 & -1 \mathrm{j} & 3
\end{array}\right], \quad \mathbf{V}=\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right]
$$

$$
P=\frac{1}{2} \mathbf{I}^{\mathrm{H}} \mathbf{V} .
$$

- Is the circuit, represented by \mathbf{Z}, active or passive? Judge from the real part of $P \ldots$

Vector and Matrix Operations

- Remember that matrix multiplication is not commutative, i.e. $\mathbf{A B} \neq \mathbf{B A}$.
- Remember that vector-vector multiplication results in

$$
\underset{\text { ๙フ }}{\mathbf{v}_{1, M} \mathbf{u}_{M, 1}=\mathbf{w}_{1,1}}
$$

	u_{11}
v_{11}	u_{12}
v_{21}	w_{11} w_{12} v_{31} w_{21} w_{31} w_{22} w_{32}

... pay attention to the dimensions of matrices!

Element-by-element Vector Product

- It is possible to multiply arrays of the same size in the element-by-element manner in Matlab.
- Result of the operation is an array.
- Size of all arrays are the same, e.g., in the case of 1×3 vectors:

$$
\mathbf{a}=\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3}
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{lll}
b_{1} & b_{2} & b_{3}
\end{array}\right]
$$

\square

a_{1}	a_{2}	a_{3}
\star	b_{1} b_{2} $b_{3}$$\rightarrow$ Error using *	
(Inner matrix dimensions must agree.)		

>> a.*b

$$
\begin{array}{|lll}
\hline a_{1} & a_{2} & a_{3} \\
\hline
\end{array} \star \begin{array}{|lll}
b_{1} & b_{2} & b_{3} \\
\hline a_{1} b_{1} & a_{2} b_{2} & a_{3} b_{3} \\
\hline
\end{array}=\left[\begin{array}{l}
\left.a_{i} b_{i}\right]
\end{array}\right.
$$

Element-by-element Matrix Product

- If element-by-element multiplication of two matrices of the same size is needed, use the . * operator.
- It is so called Hadamard product/element-wise product/Schur product: A $\circ \mathbf{B}$.
- These two cases of multiplication are distinguished:

```
>>A*B
```

| A_{11} A_{12}
 A_{21} A_{22} |
| :--- | :--- |
| B_{11} B_{12}
 B_{21} B_{22} |\rightarrow| $A_{11} B_{11}+A_{12} B_{21}$ | $A_{11} B_{12}+A_{12} B_{22}$ |
| :--- | :--- |
| $A_{21} B_{11}+A_{22} B_{21}$ | $A_{21} B_{12}+A_{22} B_{22}$ |

$$
\gg \mathrm{A} \cdot * \mathrm{~B}
$$

$$
\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array} \cdot \begin{array}{|ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array} \rightarrow \begin{aligned}
& A_{11} B_{11} \\
& A_{12} B_{12} \\
& A_{21} B_{21}
\end{aligned} A_{22} B_{22}
$$

Compatible Array Size

- Since Matlab version R2016b most two-input (binary) operators support arrays that have compatible sizes.
- Variables have compatible sizes if their sizes are either the same or one of them is 1 (for all dimensions).
- Examples:
- \circ represents arbitrary two-input element-wise operator $(+,-, \ldots, . /, \&,<,==, \ldots)$.

$$
\begin{aligned}
& {[3 \times 1] \quad[1 \times 2] \quad[3 \times 2]} \\
& \square \\
& \hline
\end{aligned}{ }^{[} \quad \square \quad \begin{array}{|l|l|}
\hline & \\
\hline & \\
\hline & \\
\hline
\end{array}
$$

$$
[4 \times 3 \times 1]
$$

$$
[1 \times 3 \times 3]
$$

$$
[4 \times 3 \times 3]
$$

Element-wise Operations I.

- Elements-wise operations can be applied to vectors as well in Matlab. Element-wise operations can be usefully combined with vector functions.
- It is possible, quite often, to eliminate 1 or even 2 for-loops!!!
- These operations are extremely efficient \rightarrow allow use of so called vectorization (see later).

$$
f(x)=\frac{10}{(x+1)} \tan (x), \quad x \in\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]
$$

```
x = -pi/4:pi/100:pi/4;
fx = 10 ./ (1 + x) .* tan(x);
plot(x, fx)
grid on
```


Element-wise Operations II.

- Evaluate functions of the variable $x \in[0,2 \pi]$:
- Evaluate the functions in evenly spaced points of the interval, the spacing is $\Delta x=\pi / 20$.
- For verification use:

$$
\mathrm{plot}(x, f 1, x, f 2, x, f 3)
$$

$$
\begin{aligned}
& f_{1}(x)=\sin (x) \\
& f_{2}(x)=\cos ^{2}(x) \\
& f_{3}(x)=f_{1}(x)+f_{2}(x)
\end{aligned}
$$

Element-wise Operations III.

- Depict graphically following functional dependency in the interval $x \in[0,5 \pi]$.
- Plot the result using the following function:
- Explain the difference in the way of multiplication of matrices of the same size.
\square
$\gg A * B$ \square
\gg A.*B \square

$$
f_{4}(x)=\frac{-\cos (3 x)}{\cos (x) \sin \left(x-\frac{\pi}{5}\right)-\pi}
$$

$$
\text { plot }(x, f 4)
$$

What Element-wise Operation is Correct?

- Consider the operation a1^a2. Is this operation applicable to the following cases?

$$
\begin{array}{ll}
\text { a1 - matrix } & \text { a } 2-\text { scalar } \\
\text { a1 - matrix } & \text { a2 - matrix } \\
\text { a1 - matrix } & \text { a2 - vector } \\
\text { a1 - scalar } & \text { a2- scalar } \\
\text { a1 - scalar } & \text { a2 - matrix } \\
\text { a1, a2-matrix } & \text { a1.^a2 }
\end{array}
$$

You can always create the matrices a1, a2 and make a test ...

Indexing in Matlab

- Mastering indexing is crucial for efficient work with Matlab.
- Up to now, we have been working with entire matrices, quite often we need, however, to access individual elements of arrays.
- Two ways of accessing matrices/vectors are distinguished.
- Access using round brackets "()".
- Matrix indexing: refers to position of elements in a matrix.
- Access using square brackets "[]".
- Matrix concatenation: refers to element's order in a matrix.

Indexing in Matlab I.

- Let's consider following triplet of matrices.
- Execute individual commands and find out their meaning.
- Start from inner part of the commands.
- Note the meaning of the pointer end.

$$
\text { N1 }=(-5: 5: 5)^{\prime} ; \quad N 2=[1: 5 ; 2: 2: 10 ; \operatorname{primes}(11)] ; \quad N 3=(1: 4)^{\prime} \star(11: 14) ;
$$

```
N1 (1:3)
N1([ll 2 3])
N1 (3:-1:1)
N1([1 3])
N1([[1 3].')
N1([[1 3]).'
N1([1; 3])
N1([1 3],1)
```

```
N2 (1, 3)
N2 (3, 1)
N2 (1, end)
N2 (end, end)
N2 (1, :)
N2 (1, :).'
N2(:, 2)
N2 (:, 3:end)
```

```
N3(2:3, [1 1 1]) % like repmat
N3 (2:3, ones (1,3))
N3 (2:3, ones (3,1))
N3([N2(2,1:2)/2 4], [2 3])
N3([1 end], [1:4 1:2:end])
N3(:, :, 2) = magic(4)
N3 ([1 3], 3:4, 3) = ...
    [1/2 -1/2; pi*ones(1, 2)]
```


Indexing in Matlab II.

- Remember the meaning of end and the application of colon operator ":".
- Flip the elements of the vector \mathbf{N}_{1} without use of fliplr/flipud functions.

- Select 2nd, 4th and 5th column of 2nd row of \mathbf{N}_{2}.
- Select only the even columns of \mathbf{N}_{2}.
- Select only the odd rows of \mathbf{N}_{3}.

- Create matrix A of size 4×3 containing numbers 1 to 12 (row-wise, from left to right).

Indexing in Matlab III.

- Which one of the following returns corner elements of a matrix $\mathbf{A}(10 \times 10)$?

```
A([1, 1], [end, end])
A({[1, 1], [1, end], [end, 1], [end, end]})
A([1, end], [1, end])
A(1:end, 1:end)
```


Deleting and Replacing Elements of a Matrix

Empty matrix is a crucial concept in deleting elements of a matrix.

$$
T=[] ;
$$

We want to:

- Remove 2nd row of a matrix \mathbf{A}.

$$
A(2,:)=[]
$$

- Remove 1st, 2nd and 5th column of a matrix \mathbf{A}.

$$
A\left(:,\left[\begin{array}{lll}
1 & 2 & 5
\end{array}\right]\right)=[]
$$

- Replace 3 rd column of a matrix \mathbf{A} (of size $M \times N$) by a vector \boldsymbol{x} (length M).

$$
A(:, 3)=x
$$

- Replace 2nd, 4th and 5th row of a matrix \mathbf{A} by three rows of a matrix \mathbf{B} (number of columns of both \mathbf{A} and \mathbf{B} is the same).

$$
A\left(\left[\begin{array}{lll}
2 & 4 & 5
\end{array}\right],:\right)=B(1: 3,:)
$$

Deleting, Adding and Replacing Matrices

- Which of the following deletes the first and the last column of matrix $\mathbf{A}(6 \times 6)$?
- Create your own matrix and give it a try.

```
A[1, end] = 0
A(:, 1, end) = []
A(:, [1:end]) = []
A(:, [1 end]) = []
```

- Replace 2nd, 3rd and 5th row of matrix A by first row of matrix \mathbf{B}.
- Assume the number of columns of matrices \mathbf{A} and \mathbf{B} is the same.
- Consider the case where \mathbf{B} has more columns than A.
- What happens if \mathbf{B} has less columns than \mathbf{A} ?

Linear Indexing

- Elements of an array of arbitrary number of dimensions and arbitrary size can be referred using simple index.
- Indexing takes place along the main dimension (column-wise) then along the secondary dimension (row-wise) etc.

$$
A=\operatorname{magic}(3)
$$


```
A([ll
\begin{tabular}{|l|l|l|}
\hline 8 & 1 & 6 \\
\hline 3 & 5 & 7 \\
\hline 4 & 9 & 2 \\
\hline
\end{tabular}
\[
A\left(\left[\begin{array}{ll}
1 & 5
\end{array}\right],:\right)
\]
\[
\text { Index in position } 1
\]
exceeds array bounds
(must not exceed 3).
```


Questions?

A8B17CAS
miloslav.capek@fel.cvut.cz

October 10
Winter semester 2023/24

This document has been created as a part of A8B17CAS course.
Apart from educational purposes at CTU in Prague, this document may be reproduced, stored, or transmitted only with the prior permission of the authors.

