Lecture 0: Introduction and Terminology A8B17CAS

Miloslav Čapek

Department of Electromagnetic Field Czech Technical University in Prague Czech Republic
miloslav.capek@fel.cvut.cz
September 26
Winter semester 2023/24

Outline

1. Programming and Numerical Computing Platforms
2. Why to Learn Matlab \& Mathematica?
3. Basic Terms and Terminology
4. Example: A System of Linear Equations

Programming and Numerical Computing Platforms. . .

...help us with numerical and data analysis, i.e., to find an exact or approximate solution to numerical problems, analyze, modify, and present data, and develop algorithms and codes.

Common characteristics

- high-level programming languages (4th generation),
- excellent for "fast prototyping".

What Platforms Do We Have?

- They are many.
- From free \& open-source to large \& expensive systems.
- Software classification (wiki)
$>$ List of numerical-analysis software (wiki)

What Platforms Do We Have?

- They are many.
- From free \& open-source to large \& expensive systems.
- Software classification (wiki)
- List of numerical-analysis software (wiki)
- We will focus on Matlab and Mathematica.

Why to learn Matlab \& Mathematica?

- They are worldwide standards.
- They are used by thousands of universities worldwide.
- License used by a plethora of corporations in aviation, biotechnology, electronics, cybernetics, mechanical engineering, finance, ...

Why to learn Matlab \& Mathematica?

- They are worldwide standards.
- They are used by thousands of universities worldwide.
- License used by a plethora of corporations in aviation, biotechnology, electronics, cybernetics, mechanical engineering, finance, ...

Where we can use them?

- Data processing and visualization during laboratory exercises.
- When elaborating diploma works.
- Seminar exercises (signals, algorithm development, ...).
- Theory verification (mathematics and physics classes, electromagnetic field, electronic circuits, ...).
- Studying aboard (Erasmus, Sokrates).
- In daily professional live.
- "everywhere" :)

Polynomial Roots (Problem Assignment)

Find polynomial roots x_{n} of

$$
x^{5}=1
$$

Roots x_{n} of polynomial $x^{5}=1$ depicted in the complex plane.

Polynomial Roots (Problem Assignment)

Find polynomial roots x_{n} of

$$
x^{5}=1
$$

- We are lucky! All roots lie on the unitary circle in a complex plane, i.e.,

$$
x_{n}=\exp \left\{\mathrm{j} \frac{2 \pi n}{5}\right\}=(-1)^{(n-1) / 5}, \quad i \in\{1, \ldots, 5\}
$$

Roots x_{n} of polynomial $x^{5}=1$ depicted in the complex plane.

Polynomial Roots (Problem Assignment)

Find polynomial roots x_{n} of

$$
x^{5}=1 .
$$

- We are lucky! All roots lie on the unitary circle in a complex plane, i.e.,

$$
x_{n}=\exp \left\{\mathrm{j} \frac{2 \pi n}{5}\right\}=(-1)^{(n-1) / 5}, \quad i \in\{1, \ldots, 5\}
$$

- However, in general, quintic and higher polynomials are unsolvable via radicals (Abel-Ruffini theorem). Try to solve $x^{5}-x-1=0 \ldots$ impossible!

Roots x_{n} of polynomial $x^{5}=1$ depicted in the complex plane.

Polynomial Roots (Problem Assignment)

Find polynomial roots x_{n} of

$$
x^{5}=1
$$

- We are lucky! All roots lie on the unitary circle in a complex plane, i.e.,

$$
x_{n}=\exp \left\{\mathrm{j} \frac{2 \pi n}{5}\right\}=(-1)^{(n-1) / 5}, \quad i \in\{1, \ldots, 5\}
$$

- However, in general, quintic and higher polynomials are unsolvable via radicals (Abel-Ruffini theorem). Try to solve $x^{5}-x-1=0 \ldots$ impossible!
- Consequently, a numerical solution is required!

Roots x_{n} of polynomial $x^{5}=1$ depicted in the complex plane.

Polynomial Roots (Problem Assignment)

Find polynomial roots x_{n} of

$$
x^{5}=1
$$

- We are lucky! All roots lie on the unitary circle in a complex plane, i.e.,

$$
x_{n}=\exp \left\{\mathrm{j} \frac{2 \pi n}{5}\right\}=(-1)^{(n-1) / 5}, \quad i \in\{1, \ldots, 5\}
$$

- However, in general, quintic and higher polynomials are unsolvable via radicals (Abel-Ruffini theorem). Try to solve $x^{5}-x-1=0 \ldots$ impossible!
- Consequently, a numerical solution is required!
- Workflow: set up the problem, visualize if needed,

Roots x_{n} of polynomial $x^{5}=1$ depicted in the complex plane. solve, check, and present the data (results).

Polynomial Roots (Problem Solution: MATLAB)


```
```

```
clear;
```

```
```

clear;

```
```

```
clear;
% Set up polynomial and find roots
% Set up polynomial and find roots
% Set up polynomial and find roots
p = [1 0 0 0 0 -1];
p = [1 0 0 0 0 -1];
p = [1 0 0 0 0 -1];
r = roots(p);
r = roots(p);
r = roots(p);
% Calculate data for visualisation
% Calculate data for visualisation
% Calculate data for visualisation
x = -1.1:1/100:1.1;
x = -1.1:1/100:1.1;
x = -1.1:1/100:1.1;
[Re, Im] = meshgrid(x, x.');
[Re, Im] = meshgrid(x, x.');
[Re, Im] = meshgrid(x, x.');
X = complex(Re, Im);
X = complex(Re, Im);
X = complex(Re, Im);
F = polyval (p, X);
F = polyval (p, X);
F = polyval (p, X);
% Plot the complex plane and the roots
% Plot the complex plane and the roots
% Plot the complex plane and the roots
contour(x, x, abs(F), 51);
contour(x, x, abs(F), 51);
contour(x, x, abs(F), 51);
hold on;
hold on;
hold on;
grid on;
grid on;
grid on;
plot(real(r), imag(r), 'rx', ...
plot(real(r), imag(r), 'rx', ...
plot(real(r), imag(r), 'rx', ...
    'MarkerSize', 15, 'LineWidth', 2);
    'MarkerSize', 15, 'LineWidth', 2);
    'MarkerSize', 15, 'LineWidth', 2);
% Analytical check
% Analytical check
% Analytical check
exp(1j*(0:(2*pi/5):(4*2*pi/5)))
```

```
```

exp(1j*(0:(2*pi/5):(4*2*pi/5)))

```
```

```
exp(1j*(0:(2*pi/5):(4*2*pi/5)))
```

```
```


Polynomial Roots (Problem Solution: Mathematica)

```
ln[1]:= p = x^5 - 1;
    r = Roots [p == 0, x]
Out[2]= X== 1 | X == (-1) 2/5 | | 
In[3]:= ComplexPlot[p, {x, -1.1-1.1 I, 1.1 + 1.1 I}, Mesh }->\mathrm{ 51,
    PlotLegends }->\mathrm{ Automatic, ColorFunction }->\mathrm{ "GlobalAbs"]
```


Analytical (Symbolic) \times Numerical Evaluation

- "Analytical" solution to a problem is exact and obtained by methods of symbolic manipulation, derived using analysis.
- When you do an "analytical solution" you answer to a whole set of problems, e.g., $2 a / a=2 \quad \forall a$.
- It provides generally valid results and often reveals the properties of the problem.

Analytical (Symbolic) \times Numerical Evaluation

- "Analytical" solution to a problem is exact and obtained by methods of symbolic manipulation, derived using analysis.
- When you do an "analytical solution" you answer to a whole set of problems, e.g., $2 a / a=2 \quad \forall a$.
- It provides generally valid results and often reveals the properties of the problem.
- "Numerical" solution to a problem usually indicates an approximate solution obtained by methods of numerical analysis.
- When you do a "numerical solution" you are generally only getting one answer, e.g., $4 / 2=2$.
- A particular solution that can be achieved for a large set of problems than the "analytical solution".

Analytical (Symbolic) \times Numerical Evaluation

- "Analytical" solution to a problem is exact and obtained by methods of symbolic manipulation, derived using analysis.
- When you do an "analytical solution" you answer to a whole set of problems, e.g., $2 a / a=2 \quad \forall a$.
- It provides generally valid results and often reveals the properties of the problem.
- "Numerical" solution to a problem usually indicates an approximate solution obtained by methods of numerical analysis.
- When you do a "numerical solution" you are generally only getting one answer, e.g., $4 / 2=2$.
- A particular solution that can be achieved for a large set of problems than the "analytical solution".

Example: The following doublets of Mathematica commands lead to different results: $2 / 4=1 / 2 \quad$ vs. $\quad \mathrm{N}[2 / 4]=0.5, \quad$ and $\quad \mathrm{Pi}=\pi \quad$ vs. $\quad \mathrm{N}[\mathrm{Pi}, 5]=3.1416$.

A Note on Difference Between Accuracy and Precision

Be accurate: You are as close to the chosen goal/result as possible.
Be precise: You can repeat the evaluation/experiment as similarly as possible.

Example: Archery

low accuracy

high accuracy

low precision

high precision

Compiled \times Interpreted Language

Compiled language

- After compilation, the code is expressed in the instructions of the target machine.
- Compilation takes some time, but the final code is generally faster than the interpreted code (with a good compiler).

Compiled \times Interpreted Language

Compiled language

- After compilation, the code is expressed in the instructions of the target machine.
- Compilation takes some time, but the final code is generally faster than the interpreted code (with a good compiler).

Interpreted language

- The code is executed line by line.
- Easier coding as compared to a compiled language.
- Allows execution of separate lines in arbitrary order (with easy on-fly modifications).
- All the debugging (and errors) occurs at run-time.

Compiled \times Interpreted Language

Compiled language

- After compilation, the code is expressed in the instructions of the target machine.
- Compilation takes some time, but the final code is generally faster than the interpreted code (with a good compiler).

Interpreted language

- The code is executed line by line.
- Easier coding as compared to a compiled language.
- Allows execution of separate lines in arbitrary order (with easy on-fly modifications).
- All the debugging (and errors) occurs at run-time.

There are advanced techniques sharing good properties of compiled and interpreted code.
e.g., JIT in Matlab

Type of Errors

In general, there are many types of errors:
Truncation finite numerical precision
Discretization continuous problem is solved point-wise, derivatives are replaced with differences, etc.
Modeling intentional simplification of the model
Empirical constant physical constants are used with a certain precision
Input typos, intentionally incorrect input data, inaccurate measurement

Floating Point Numbers I.

Continuous axis or real numbers:

- Infinite resolution cannot be stored in computers based on finite arithmetic.

Floating Point Numbers I.

Continuous axis or real numbers:

- Infinite resolution cannot be stored in computers based on finite arithmetic.
- IEEE 754 (Standard for Floating-Point Arithmetic)
- single precision (32 bits $=1$ bit sign +8 bits exponent +23 bit mantissa $)$
- double precision (64 bits $=1$ bit sign +11 bits exponent +52 bit mantissa)

Floating-point axis (in the vicinity of the number 1):

Floating Point Numbers II.

Decimal vs. sign-exponent-mantissa formats:

- $+2^{0}=1$
$=0011111111100$
- $+2^{0} \times\left(1+2^{-52}\right) \approx 1.0000000000000002$
$=0011111111110001$

Floating Point Numbers II.

Decimal vs. sign-exponent-mantissa formats:

- $+2^{0}=1$
$=0011111111100$
- $+2^{0} \times\left(1+2^{-52}\right) \approx 1.0000000000000002$
$=0011111111110001$
Be aware of finite-precision arithmetic:

```
>> cos(pi/2) = 6.123233995736766e-17
>> eps(1) = 2.220446049250313e-16
>> log2(eps(1)) = -52
```


Floating Point Numbers II.

Decimal vs. sign-exponent-mantissa formats:

- $+2^{0}=1$
$=0011111111100$
- $+2^{0} \times\left(1+2^{-52}\right) \approx 1.0000000000000002$
$=0011111111110001$
Be aware of finite-precision arithmetic:

```
>> cos(pi/2) = 6.123233995736766e-17
>> eps(1) = 2.220446049250313e-16
>> log2(eps(1)) = -52
```

See more at $>$ Floating Point Numbers (C. Moler) and $>$ Numerics and Error Analysis (Standford)

Nomenclature

Let us agree on some basic notation.

- Scalars a, vectors a, matrices A, arrays,
- equations \times expressions,
- algebraic, logical, relational, bit-wise, set (and other) operators.

Distinguish between mathematical notation and syntax in a given software!

- For example, a vector $\mathbf{v}=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]^{\mathrm{T}}$ is created in MatLab as $\mathrm{v}=\left[\begin{array}{ll}1 ; & 2 ;\end{array}\right]$.
- Notice that all PDF materials are made in $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ (Beamer) in Overleaf.
- Graphics (whenever possible) is made in $\mathrm{L}_{\mathrm{E}} \mathrm{T} \mathrm{X}$ package $\mathrm{Ti} k \mathrm{Z}$.

System of Linear Equations

Consider a generic system of linear equations of the form:

$$
\begin{align*}
& a_{11} x_{1}+a_{12} x_{2}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}=b_{2} \tag{1}
\end{align*}
$$

which can be written in algebraic form as

$$
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{2}
\end{equation*}
$$

where

$$
\mathbf{A}=\left[\begin{array}{cc}
a_{11} & a_{21} \\
a_{21} & a_{22}
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right] .
$$

System of Linear Equations

Consider a generic system of linear equations of the form:

$$
\begin{align*}
& a_{11} x_{1}+a_{12} x_{2}=b_{1}, \\
& a_{21} x_{1}+a_{22} x_{2}=b_{2} \tag{1}
\end{align*}
$$

which can be written in algebraic form as

$$
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{2}
\end{equation*}
$$

where

$$
\mathbf{A}=\left[\begin{array}{cc}
a_{11} & a_{21} \\
a_{21} & a_{22}
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2}
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right] .
$$

Considering the matrix \mathbf{A} is non-singular, the solution is found as

$$
\begin{equation*}
\mathbf{x}=\mathbf{A}^{-1} \mathbf{b} . \tag{3}
\end{equation*}
$$

System of Linear Equations - An Interpretation

Let us be more specific:

$$
\left[\begin{array}{cc}
1 & -1 \\
0.5 & 0.5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

Visual depiction by two lines, i.e.,

$$
\begin{array}{ll}
f_{1}: & x_{1}=x_{2}, \\
f_{2}: & x_{1}=2-x_{2} .
\end{array}
$$

System of Linear Equations - Well- and Ill-Conditioned Problems

Looks like a piece of cake, however, be always careful...

$$
\left[\begin{array}{cc}
1 & -1 \\
0.5 & 0.5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad \Rightarrow \quad \mathbf{x}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad\left[\begin{array}{cc}
1 & -1 \\
0.5 & -0.5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad \Rightarrow \quad \mathbf{x}=\left[\begin{array}{l}
? \\
?
\end{array}\right]
$$

System of Linear Equations - An Analysis of the Problem

- We will need: determinant, $\operatorname{det}(\mathbf{A})$, matrix inversion, \mathbf{A}^{-1}, dot product, $\mathbf{u} \cdot \mathbf{v}$, second norm of a vector, $\|\mathbf{u}\|$, condition number, cond (A).
- We have to investigate: how to approach the problem, the existence of a solution, accuracy of the results.
- We can try to find: a symbolic solution, extend the problem, and solve special cases.

System of Linear Equations - An Analysis of the Problem

- We will need: determinant, $\operatorname{det}(\mathbf{A})$, matrix inversion, \mathbf{A}^{-1}, dot product, $\mathbf{u} \cdot \mathbf{v}$, second norm of a vector, $\|\mathbf{u}\|$, condition number, cond (A).
- We have to investigate: how to approach the problem, the existence of a solution, accuracy of the results.
- We can try to find: a symbolic solution, extend the problem, and solve special cases.

$$
\begin{aligned}
\operatorname{det}(\mathbf{A})=a_{11} a_{22}-a_{12} a_{21} & \begin{array}{ll}
& \mathbf{A}^{-1}=\frac{1}{\operatorname{det}(\mathbf{A})}\left[\begin{array}{ll}
+a_{22} & -a_{12} \\
-a_{21} & +a_{11}
\end{array}\right]
\end{array} & \begin{array}{ll}
\gg \operatorname{inv}(\mathrm{A}) \\
\mathbf{u} \cdot \mathbf{v} & =\sum_{i} u_{i} v_{i} \\
\gg \operatorname{dot}(\mathrm{u}, \mathrm{v}) & \|\mathbf{u}\|=\sqrt{\mathbf{u} \cdot \mathbf{u}} \\
\operatorname{cond}(\mathbf{A})=\|\mathbf{A}\|\left\|\mathbf{A}^{-1}\right\| & \gg \operatorname{cond}(\mathrm{A}) \\
&
\end{array} &
\end{aligned}
$$

System of Linear Equations - Generalization \& Symbolic Solution

- Whenever possible, try to find a symbolic solution (good for verification and understanding of the problem's properties).

System of Linear Equations - Generalization \& Symbolic Solution

- Whenever possible, try to find a symbolic solution (good for verification and understanding of the problem's properties).

Let us consider the following generalization $\mathbf{A} \longrightarrow \mathbf{A}(\kappa)$

$$
\left[\begin{array}{cc}
1 & -1 \\
0.5 & 0.5-\kappa
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad \kappa \in[0,1],
$$

covering all cases from well-defined $(\kappa=0)$ to ill-defined $(\kappa=1)$.

System of Linear Equations - Generalization \& Symbolic Solution

- Whenever possible, try to find a symbolic solution (good for verification and understanding of the problem's properties).

Let us consider the following generalization $\mathbf{A} \longrightarrow \mathbf{A}(\kappa)$

$$
\left[\begin{array}{cc}
1 & -1 \\
0.5 & 0.5-\kappa
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad \kappa \in[0,1],
$$

covering all cases from well-defined $(\kappa=0)$ to ill-defined $(\kappa=1)$.

$$
\operatorname{det}(\mathbf{A})=1-\kappa, \quad \mathbf{x}=\mathbf{A}^{-1}(\kappa) \mathbf{b}=\frac{1}{1-\kappa}\left[\begin{array}{cc}
0.5-\kappa & 1 \\
-0.5 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\frac{1}{1-\kappa}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \Leftrightarrow \quad \kappa \neq 1
$$

System of Linear Equations - A Note on Angle Between f_{1} and f_{2}

- To study the finite-precision performance of Matlab depending on κ, let us express angle α between f_{1} and $f_{2}(\kappa)$.
- Two possibilities shown:

System of Linear Equations - A Note on Angle Between f_{1} and f_{2}

- To study the finite-precision performance of Matlab depending on κ, let us express angle α between f_{1} and $f_{2}(\kappa)$.
- Two possibilities shown:
I. Trigonometry and a slope of the line:

$$
f_{1}: \quad x_{2}=\frac{b_{1}-a_{11} x_{1}}{a_{12}} \text { and analogously for } f_{2}(\kappa)
$$

$f_{1}: \quad \frac{\mathrm{d} x_{2}}{\mathrm{~d} x_{1}}=-\frac{a_{11}}{a_{12}}=\tan \left(\alpha_{1}\right) \quad$ and analogously for $f_{2}(\kappa)$

$$
|\alpha|=\left|\alpha_{1}-\alpha_{2}\right|=\left|\arctan \left(-\frac{a_{11}}{a_{12}}\right)-\arctan \left(-\frac{a_{21}}{a_{22}}\right)\right|
$$

System of Linear Equations - A Note on Angle Between f_{1} and f_{2}

II. Property of the inner product:

$$
\begin{aligned}
& \mathbf{u}_{1} \cdot \mathbf{u}_{2}=\left\|\mathbf{u}_{1}\right\|\left\|\mathbf{u}_{2}\right\| \cos (\alpha) \\
& |\alpha|=\left|\arccos \left(\frac{\mathbf{u}_{1} \cdot \mathbf{u}_{2}}{\left\|\mathbf{u}_{1}\right\|\left\|\mathbf{u}_{2}\right\|}\right)\right|
\end{aligned}
$$

Normal vectors \mathbf{u}_{1} and \mathbf{u}_{2} along f_{1} and f_{2} are

$$
\mathbf{u}_{1}=c_{1}\left[\begin{array}{c}
a_{11} \\
-a_{12}
\end{array}\right], \quad \mathbf{u}_{2}=c_{2}\left[\begin{array}{c}
a_{21} \\
-a_{22}
\end{array}\right] .
$$

System of Linear Equations - Parametric Study

- Since we know the analytical solution to the problem, we can compare Matlab solution with it (depending on κ).
- As we should expect, the accuracy will be dependent on floating-point resolution.

MATLAB (double precision):

$$
\begin{aligned}
\kappa & =0.999999999000000 \\
x_{1}(\kappa) & =1000000028.281932 \\
x_{2}(\kappa) & =1000000028.281932
\end{aligned}
$$

$$
|\operatorname{det}(\mathbf{A}(\kappa))|=0.000000001000000
$$

$$
\operatorname{cond}(\mathbf{A})=2500000205.439272
$$

MATLAB (single precision):

$$
\kappa=0.999999999000000
$$

$$
\begin{aligned}
& x_{1}(\kappa)=\operatorname{Inf} \\
& x_{2}(\kappa)=\operatorname{Inf}
\end{aligned}
$$

$|\operatorname{det}(\mathbf{A}(\kappa))|=0.000000000000000$ $\operatorname{cond}(\mathbf{A})=163117008.0000000$

MATLAB (double precision):

$$
\begin{aligned}
\kappa & =0.999999999000000 \\
x_{1}(\kappa) & =1000000028.281932 \\
x_{2}(\kappa) & =1000000028.281932 \\
|\operatorname{det}(\mathbf{A}(\kappa))| & =0.000000001000000 \\
\operatorname{cond}(\mathbf{A}) & =2500000205.439272
\end{aligned}
$$

MATLAB (single precision):

$$
\kappa=0.999999999000000
$$

$$
\begin{aligned}
& x_{1}(\kappa)=\operatorname{Inf} \\
& x_{2}(\kappa)=\operatorname{Inf}
\end{aligned}
$$

$$
\begin{aligned}
|\operatorname{det}(\mathbf{A}(\kappa))| & =0.000000000000000 \\
\operatorname{cond}(\mathbf{A}) & =163117008.0000000
\end{aligned}
$$

- Single precision gives finite results up to $\kappa \approx 1-10^{-7}$, since $\operatorname{eps}(\operatorname{single}(1)) \approx 1.2 \cdot 10^{-7}$, i.e., abs $(\log 2(\operatorname{eps}(\operatorname{single}(1))))=23$.
- Double precision gives finite results up to $\kappa \approx 1-10^{-16}$, since $\operatorname{eps}($ double $(1)) \approx 2.22 \cdot 10^{-16}$, i.e., abs $(\log 2(e p s(\operatorname{single}(1))))=52$.

System of Linear Equations - On Special Cases

We are yet not finished!

System of Linear Equations - On Special Cases

- If the RHS of the problem

$$
\left[\begin{array}{cc}
1 & -1 \\
0.5 & 0.5-\kappa
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

is changed to

$$
\left[\begin{array}{cc}
1 & -1 \\
0.5 & 0.5-\kappa
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

we get for $\kappa \rightarrow 1$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\frac{1}{1-\kappa}\left[\begin{array}{l}
0 \\
0
\end{array}\right] \rightarrow \infty\left[\begin{array}{l}
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
\mathrm{NaN} \\
\mathrm{NaN}
\end{array}\right] .
$$

- Remember, sometimes, special cases lead to a very different solution!

System of Linear Equations - Under-/Over-determined Problems

$\left[\begin{array}{ll}1 & -1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=[0]$
to

$$
\left[\begin{array}{cc}
1 & -1 \\
0.5 & 0.5 \\
0.5 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

System of Linear Equations - Under-/Over-determined Problems

How to a priori recognize under-/over-determined system?

- Check rank of the matrix A, Matlab: rank (A).
- Check the reduced echelon form of the augmented matrix, i.e., rref ([A b]) in Matlab. Is there any zero row?

Powerful techniques are still available (even inside lin. system solution via mldivide or /):

- Pseudo-inverse of a matrix, \mathbf{A}^{+}, Matlab: pinv (A).
- Least-square-sense solution, $\min _{\mathbf{x}}\|\mathbf{A x}-\mathbf{b}\|$.

In all cases:

- Be aware or check the condition number, Matlab: cond (A).

```
More about
condition number of mathematical operations
```


System of Linear Equations - Final Remark (Linearity)

And ... what if we make the following simple change?

$$
\left[\begin{array}{cc}
1 & -1 \\
0.5 & 0.5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad\left[\begin{array}{cc}
1 & -1 \\
0.5 & 0.5
\end{array}\right]\left[\begin{array}{l}
x^{2} \\
x^{1}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

System of Linear Equations - Final Remark (Linearity)

And ... what if we make the following simple change?

$$
\left[\begin{array}{cc}
1 & -1 \\
0.5 & 0.5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad\left[\begin{array}{cc}
1 & -1 \\
0.5 & 0.5
\end{array}\right]\left[\begin{array}{l}
x^{2} \\
x^{1}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

No linearity anymore! Entering very different world (still, at least, the solution exist, $x=1$).

Matlab:

```
>> syms x
>> solve([x^2 - x == 0, ...
    1/2* *^2 + 1/2*x == 1], x)
```


Mathematica:

Questions?

A8B17CAS
miloslav.capek@fel.cvut.cz

September 26
Winter semester 2023/24

This document has been created as a part of A8B17CAS course.
Apart from educational purposes at CTU in Prague, this document may be reproduced, stored, or transmitted only with the prior permission of the authors.

