
Biometrics laboratory exercise
Exercise 3: Iris recognition

Eduard Bakštein, eduard.bakstein@fel.cvut.cz

7. prosince 2023

Introduction

Iris recognition is a highly accurate biometric method with a wide range
of applications, including airport automatic check-in, access systems or
humanitarian aid missions and more. High robustness and lifelong stabi-
lity of the iris pattern are among the main advantages of the system, as
well as the possibility to read the pattern from a distance. Basic elements
of an iris recognition system are image capture, segmentation (finding the
iris region within the image), unwrapping to pseudo-polar coordinates
and encoding into iris template.

The aim of this exercise is to implement several parts of the recogni-
tion system and evaluate them out on real data. The exercise is divided
into following parts:

1. Implementation of iris region segmentation using circular Hough
transform (or other method of your choice)

2. Match provided iris images to subjects in the database using iris
code.

3. Bonus task: capture and processing of own iris images.

The solution will consist of implementation of requested functions
within provided iris toolbox, available at the lab website. Additional to
the source codes, you will write a brief report, including image outputs
of individual processing steps and your comments. You should be able
to easily reproduce what you did from the report even few years after!
Outputs of some of the tasks are explicitly requested in this text.

You are expected to work individually. The lab uses source codes by
Libor Masek from University of Western Australia.

1

Exercise 3, Iris - feature extraction and iris code
matching (20 points)

Hand-in instructions

The task is to be handed-in personally to the TA at the last lab of the
iris block. You will briefly comment your implementation (incl. source
codes) and present function on provided images. For easier presentation,
you can use our report. You should also be able to answer the questions,
given throughout these instructions. It is necessary to also submit the
source codes (just compressed ToDo folder) and a short report in pdf,
answering the questions below, to the upload system before the deadline
indicated in the BRUTE system.

1 Iris segmentation using circular Hough

transform

Prior to encoding of iris pattern to iris code, it is necessary to segment
(separate) iris region from background and noise (pupil, sclera, eyelids,
eyelashes etc). The easiest way is to assume the iris region to be annular
region, consisting of two non-concentric circles of different diameter, re-
presenting inner - pupillary - and outer iris boundary. To find this region,
we can use e.g. circular Hough transform (HT) (See second Iris lecture).
In this method, edges in the image are first identified using edge detec-
tor. Then, each edge point is projected to parametric space (also denoted
accumulator array): The parametric space is a matrix of the same size
as the original image, initialized with zeros. Then, all points in the para-
metric space at given distance (= known radius) from current edge point
are incremented by a constant (e.g. 1). Given the original image contains
circle of the selected radius, a maximum value of the whole parametric
space will emerge in its center. The method is easily extended to a circle
of unknown radius: the projection is performed for a range of assumed
radii separately and a maximum is searched over all the parametric spa-
ces. In that case, each layer of the parametric space should be divided by
the respective radius in order to compensate for larger radii accumulating
proportionally larger values in the parametric space.

Parametric space

Let us assuma an image of size x times y pixels. Searching a circle of
unknown radius in the range r ∈ R,R = {rmin, rmin+1, ..., rmax} centered
at arbitrary point in the image, the initial parametric space will be a zero
matrix of dimensions (y + 2 · rmax) × (x + 2 · rmax) × |R|, where |R| is
cardinality of set R, here, the number of attempted radii 1.

The individual layers of parametric space are then filled with circles of
radius corresponding to respective layer, centered iteratively at all edge

1If you use provided function circlecoords for calculation of circle coorrdinates,
which automatically limits points to given range, the extension of parametric space in
the x−y axes is unnecessary and the parametric space will be of dimensions y×x×|R|.

2

points. To find circle coordinates, you can either start from the analytical
equation for circle:

(x− a)2 + (y − b)2 = r2, (1)

from which you can easily derive one of the coordinates by solving the
quadratic function, and iterating values of the remaining variable. The
easiest way is to use function circlecoords, provided in the iris toolbox,
which returns point coordinates, corresponding to requested circle para-
meters, directly (Here, function sub2ind may come handy 2. Moreover,
beware of the convention [rowcolumn] vs. [xy])). Another possibility is
to use goniometric functions.

Brief description of Iris toolbox is provided as appendix at the end of
this document. The skeleton functions, you are expected to fill your code
in, are in the ToDo folder.

Task:

1. Implement the function

[circlePupil, circleIris] = findIrisAnnulus(uint8 iris_image),

based on Hough transform. circlePupil and circleIris are parame-
ters of both circles you found in the form [x, y, radius] for pupil
and iris. You should set the ranges for HT parameters such that no
adjustments are necessary for different provided images.

2. Use your implemented function with the rest of Iris toolbox to
encode provided iris images

3. Put the images from individual processing steps (edge detection,
identified circles and parametric space) in the report.

Once you have implemeted the function FindIrisAnnulus, you can run
the toolbox on arbitrary image - just exchange path to the sample image
by path to your image in the iris demo.m function. Iris function (the
createIrisTemplate function in particular) will perform unwrapping of the
annular region you datected to pseudo-polar coordinates and template
encoding using Gabor wavelet phase quantization (see lecture slides for
more details).

Implementation notes:

� For edge detection you can use the function edge(I,′ canny′, thres).
The function first calculates gradient field of the image and then
applies threshold (given by thres parameter). Experiment with the
threshold value to achieve satisfactory edge detection and excessive
edge point removal.

2If you try to index using two integer vectors to index a matrix in MATLAB, a
carthesian product, rather than individual individual [row-column] pairs will be used!
The sub2ind() function converts such pairs to linear indices, that can then be used
as a vector. Ex.: a = magic(3); r = 1 : 3; c = r; a(r, c) =?; a(sub2ind(size(a), r, c)) =?

3

� The high-frequency components in the image, such as eyelashes
or other noise, lead to a high number of undesired edge points
in the image. These produce noise in the parametric space and
increase processing time substantially. To remove these points from
the edge image, you can use pre-process the image prior to edge
detection using vairous brightness/contrast adjustments or by low-
pass filter. To apply gaussian filtering (or ”smoothing”), you first
have to create filter mask using fspecial, and then apply it to the
image.

G = fspecial(’gaussian’,[a a],sigma);

Ig = imfilter(image,G);

Variable a determines size of the mask produced, sigma is standard
deviation of the 2D gaussian distribution.

� Try out, whether your code works better for inner or outer iris boun-
dary and perform this detection first. The parameters you identify
in the first step can then be used to restrict search space in the
second step (e.g. center of the outer iris boundary should lie within
the previously identified pupil etc.). It can be also useful to use
different preprocessing settings for the detection of inner and outer
boundary.

� Each reasonable restriction of the range of search parameters redu-
ces processing time considerably!

2 Identification of provided iris images in

the database

This task simulates the process of iris-based identification in a way, com-
mon in real-life application. First, iris scan of an unknown person is taken
(here: provided iris images). This image is then encoded in a way compa-
tible to the rest of the database. Then, a subject with highest similarity
is searched in the database, which provides most probable match in the
database. If this similarity falls below matching threshold, a match is
declared.

To compare two iris codes, a measure called normalized Hamming
distance (HD) is commonly used. The normalization constant is given by
the number of bits in overlapping usable regions in both codes.

HD =
‖ (codeA⊗ codeB) ∩maskA ∩maskB ‖

‖ maskA ∩maskB ‖
, (2)

where ⊗ is logical XOR operator, ∩ logical AND and ‖ norm operator3 -
the number of true-bits in a binary vector. CodeA and codeB are the iris

3Beware: norm operator in this formula operates on binary/logical values, contrary
to the MATLAB function norm(), which provides euclidean distance from origin and
is therefore inappropriate in this context! You can easily use the function sum() to
calculate number of ones in a binary vector.

4

codes to be compared, while maskA and maskB are corresponding noise
mask (here, 1 means useful signal, 0 is noise. Beware: in Iris toolboxu,
the convention for mask is reversed! Use not/tilde operator to negate the
mask.)

To avoid undesired effects of possible iris rotation (produced by head
tilt) on comparison output, a bit shift od the iris codes is used. One of
the iris codes (both the template and mask) are shifted in selected range
and HD is calculated for each shift. Then, minimum value is selected.

Task:

1. Implement the function

HD = irisHammingDistance(codeA,codeB, maskA, maskB)

for comparison of two iris codes, based on the formula (2). The
function should implement also the bit shift in the range ±12 bits4.
Here, the circshift() function may come handy.

2. Walk through the database of stored iris codes (database.mat) and
identify the person with best match for each of the images provided.
For each of the images, put id of best matching person (and eye -
L or R) together with minimum HD in the report. You can use the
provided script walkDatabase.m for easier database iteration.

3. Iterate through the database one more time and perform all-against-
all comparison. Store the resulting HD values to two arrays, based
on whether the same (iris codes from the same eye of the same per-
son) or different eyes were compared. Plot both sets in a common
histogram. What are the HD distributions for same and different
eyes? Where would you put the recognition threshold (select one)?
What would be the false accept (FAR) and false reject (FRR) rate
for your threshold? You can use ROC curve for appropriate thre-
shold setting. What does the resulting histogram say about our
method. Is it accurate? Is it robust? Put the histogram together
with your comment in the report.

3 Bonus tasks (up to 5 extra points)

In these bonus tasks, you can make use of all your implemeted functions.
The tasks are not too time consuming but will provide you with deeper
understanding of some involved problems, as well as the possibility to
process your own biometric data.

4Realize how many bits are produced in one step of phase quantization (see lectures
for more details). Adjust the shift step accordingly and avoid substantial number of
meaningless comparisons!

5

Bonus task: processing your own iris images

� Use the iris camera VISTA FA2 to capture iris images of both your
eyes.

� Adapt parameters of the iris toolbox to suit images from the ca-
mera used. It will most probably be necessary to adjust irisCon-
fig.loNoiseThreshold in iris demo.m, which defines threshold for
eyelashes (regions darker than given threshold are marked as noise
in the noise mask). Current threshold value is set for the default
database.

� Convert the images to iris codes and store them in your own da-
tabase. What is the hamming distance between images of your left
and right eye? What is the relation between this value and the
threshold you determined in the previous task? Put the results in
the report together with your comment.

Bonus task: Attacking the iris system using printed
eye images

We will use eye photographs, captured using conventional camera, prin-
ted using laser printer and classical photographic technique.

� Capture the provided eye image prints using the iris camera.

� Segment the images, convert to iris codes and compare them to the
provided iris codes, calculated from direct iris images. What is the
hamming distance? Would such attack be successful, considering
your decision threshold?

� Attempt to detect such attack using 2D Fourier transform: calculate
2D power spectra of direct image and both printed images. What
are the differences between the spectra? Is there some difference
between the laser-printout and the photograph? Which method do
you suggest to detect such attack and how robust do you think it
would be? Put images and your comments in the report.

Congratulations!

You have just finished implementation of a remarkable part of iris reco-
gnition system. You have tried out, what preprocessing and segmentation
means and explored various properties of iris code comparison using nor-
malized Hamming distance. You have shown histograms for comparison
of same and distinct eyes and assessed qualities of your system from
statistical point of view. Your system works in a very similar way as
commercial systems all around the world, used in security or airport sys-
tems. Moreover, we hope that when you come to think ”it was great, but
how did I actually do that?”few years later, you will have your protocol
still handy.

6

Acknowledgement

Preparation of this task was supported by the Ministry of Education
Youth and Sports by the grant FRVŠ 2529/2012.

7

Appendix: Brief overview of the Iris Toolbox

� You can get basic idea of the iris toolbox by running iris demo.m.
The demo will show values, precalculated in the cache.

� The main function, responsible for feature extraction, is createiris-
template.m

� The function iris init.m sets toolbox parameters and adds paths
to MATLAB PATH. Among others, you can set here the noise
threshold when processing your own iris images.

� Empty skeleton functions, you are supposed to implement, can be
found in the ToDo directory. This is the place to store all codes
and functions you will produce during working on the assignment.

� You can find the provided iris images in the directory Images.

Data structure

Iris templates and masks, produced by encoding iris images, can be found
in database.mat, containing array of the same name. There are 30 fields
for 30 persons, stored in the database. For each person, there are structure
arrays R and L, containing various number of iris codes. Each iris code
is stored in field called template, corresponding noise mask is in the field
mask.

Example: The iris code, corresponding to the third image of the left
eye of person no. 12 can be accessed through: database(12).R(3).template,
corresponding noise mask then through database(12).R(3).mask. However,
iterating through the database is implemented for you in the scriptwalkDatabase.m.

8

