Data structures and algorithms

Part 9

Petr Felkel

Exploited in Advanced Algorithms 2012-2016

10.12. 2007

Topics

Red-Black tree
— Insert
— Delete
B-Tree
— Motivation
— Search
— Insert
— Delete

Based on:

[Cormen, Leiserson, Rivest: Introduction to Algorithms, Chapter 14 and 19, McGraw Hill, 1990]
[Whitney: CS660 Combinatorial Algorithms, San Diego State University, 1996]

[Frederic Maire: An Introduction to Btrees, Queensland University of Technology,1998]

DSA

Red-Black tree

Approximately balanced BST
hrg <2 X hggr (height < 2 x height of a balanced tree)

Additional bit for COLOR = {red | black}
nil (non-existent child) = pointer to @@ node

‘3

leaf — inner node

3

Red-Black tree

A binary search tree is a [=¢)-fIE@iree if:

1. Every node is either or (EES-

2. Every leaf (nil) is [(EES -
3. If a node is %), then both its children are [JESS -

4. Every simple path from a node to a descendant leaf
contains the same number of [[JEIS8 nodes.

5. Root is NEES -

Black-height bh(X) of a node x is the number of
nodes on any path from X to a leaf, not counting x

Red-Black tree

Black-height bh(X) of a node x is the number of [(ESS
nodes on any path from X to a leaf, not counting X.

bh(x) height h(T)

3
6

Binary Search Tree -> RB Tree

4 M black height bh(T) = 4
h(T) =4
12

7 9 11 13 15

nil @ nil f nil @ nil § nil @ nil § nil @ nil { nil § nil § nil § nil § nil § nil § nil § nil

DSA 6

Binary Search Tree -> RB Tree

black height bh(T)
h(T)

PATITLYA]

DSA

3
4

Binary Search Tree -> RB Tree

black height bh(T)
h(T)

3
4

DSA 8

Binary Search Tree -> RB Tree

2 @ black height bh(T) = 2
h(T) =4

1

nil @ nil g nil @ nil § nil @ nil § nil @ nil @ nil § nil § nil J{ nil § nil § nil § nil § nil

DSA 9

Red-Black tree

Black-height bh(x) of a node x

 Is the number of black nodes on any path from x to a leaf, not
counting x

 is equal for all paths from x to a leaf

* For given his bh(x) in the range from h/2 to h
— if %2 of nodes red => bh(x) =~ 72 h(x), h(x) ~ 2 Ig(n+1)
— if all nodes black => bh(x) = h(x) =Ig(n+1)

Height h(x) of a RB-tree rooted in node x
 Is at maximum twice of the optimal height of a balanced tree
« h<2lg(n+1) h € ©(lg(n))

DSA

10

RB-tree height proof icomen p264
A red-black tree with n internal nodes has height h at most 2Ig(n+1)

Proof 1. Show that subtree starting at x contains at least 26h®)-1 internal nodes.
By induction on height of x:
|. If x is a leaf, then bh(x) = 0, 2°"®)-1 = 0 internal nodes /l... nil node
ll. Consider x with height h and two children (with height at most h -1)
— X's children black-height is either bh(x) -1 or bh(x) // x is black or red
— Ind. hypothesis: x's children subtree has at least 2bhx-1 -1 internal nodes

— So subtree rooted at x contains at least
(20h()-1 -1) + (20h)-1 -1) + 1 = 2°h() - 1 internal nodes => proved

Proof 2. Let h = height of the tree rooted at x
— min %2 nodes are black on any path to leaf =>Dbh(x)=h/2
— Thus, n22"2-1<=>n+122"2<=>|g(n+1)=h/2
— h<2Ig(n+1)

DSA 11

RB-tree Search

Search is performed as in simple BST, node colors do not
iInfluence the search.

Search in R-B tree with N nodes takes
1. In general -- at most 2*Ig(N+1) key comparisons.
2. In best case when keys are generated randomly and uniformly
-- cca 1.002%Ig(N) key comparisons,
very close to the theoretical minimum.

DSA 12

Inserting in Red-Black Tree

Color new node x Red
Insert it as in the standard BST ‘¥

P — p
If parent p is Black, stop. Tree is a Red-Black tree. ./.\ a\

If parent p is Red (3+3 cases)... ‘ \p—» AP a

éh

resp.
While x is not root and parentis Red

If X’s uncle is Red then case 1 // propagate red up
else {if x is Right child then case 2 // double rotation
case 3 } // single rotation
Color root Black

DSA 13

Inserting iIn Red-Black Tree

X's parent is Black

Insert 1

D (1

AN

If parent is Black, stop. Tree is a Red-Black tree.

DSA

14

Inserting iIn Red-Black Tree

X's parent is Red
X's uncle y is Red

x is a Left child Loop: X = X.p.p

Case la

""""

Y Recolor

~— =

DN 12 bh(x)
X is n f interest \ . Increased by one
s node of interes X's uncle is Red y

DSA 15

Inserting iIn Red-Black Tree

X's parent is Red
X's uncle y is Red

x is a Right child Loop: X = X.p.p

Case 1b 17

""""

Y Recolor

~— =

2 3 2 3 bh(x)
X is node of interest 's uncle is Red increased by one

DSA 16

Inserting in Red-Black Tree

X's parent is Red
X's uncle y is Black
X Is a Right child

Case 2

)

Lrot(x.p)

C R &
1/\ AT

2 transform to Case 3

XIs a R'qht chile X's uncle is Black
DSA !

Inserting in Red-Black Tree

X's parent is Red
X's uncle y is Black

Terminal case, tree

X is a Left child is a Red-Black tree
Case 3

. Recolor B, C
4 Rrot(xpp) X A

-~ ‘\ -~
-
7
’
/ \ 7
! \ 1
|
. ! {
1
\ \
\ [
/ \
\ , \
\ N /
4 N Vi
1
1
A X '
1
1
| 4 3 4 ' 5
N 1
Y
N 1
N 1
A 1
\\ |
S 1
\\ 1
A I
N
N 1
N 1
N 1
1
1
1

X | | eft chil : :
s a Left child X's uncle is Black
DSA 18

Inserting iIn Red-Black Tree

Cases Right from the grandparent
are symmetric

4)

DSA 19

RB-INSERT(7, Xx)

1

co 1 O w»n k~ WIN

11
12
13

14
['s
16
17

18

DSA

TREE-INSERT(T, X)

color[x] «— RED

while x # root[T] and color[p[x]] = RED

do if p[x] = left[p[p[x]]]

then y — right[p[p[x]]]

p[x] = parent of x

left[x] = left child of x

y = uncle of x

Red uncle y ->recolor up

(" if color[y] = RED I
then color[p[x]] < BLACK > Case 1
color[y] « BLACK > Case 1
color[p[p[x]]] — RED > Case 1

_ x — p[p[x1] > Case 1 /

[else if x = right[p[x]] A
then x — p[x] > Case 2

L [LEFT-ROTATE(T, X) > Case 2)

(color[p[x]] «— BLACK > Case 3)
color[p[p[x]] — RED > Case 3

L RIGHT-ROTATE(T, p[p[x]]) > Case 3)

else (same as then clause
with “right” and “left” exchanged)
color{root[T]] — BLACK [CormenS0]

20

Inserting in Red-Black Tree

Insertion in ®(log(n)) time
Requires at most two rotations

DSA

21

Deleting in Red-Black Tree

Find node to delete

Delete node as in a regular BST
Node Vv to be physically deleted will have at most one child x!!!

If we delete a Red node, tree still is a Red-Black tree, stop
Assume we delete a black node

Let X be the child of deleted (black) node y Xy’/_> §
If X is red, color it black and stop /\

while(Xx is not root) AND (X is black)
move x with virtual black mark through the tree X%_’/é
(If x is black, mark it virtually double black {¥)

//note that the whole Xx's subtree lost 1 unit of black height
DSA 22

Deleting in Red-Black Tree

while(x is not root) AND (X is black) {
// move X with virtual black markathrough the tree
// just recolor or rotate other subtree up (decrease bh in R subtree)
if (sibling is red)
-> Case 1: Rotate right subtree up, color sibling black, and
continue in left subtree with the new sibling
if (sibling is black with both black children)
-> Case 2: Color sibling red and go up
else // black sibling with one or two red children
if(red left child) -> Case 3: rotate to surface
Case 4: Rotate right subtree up

DSA 23

Deleting in R-B Tree - Case 1

X is the child of the physically deleted black node => double black
X’s sibling w is red

(X’s parent must b\e\\black)

3 4 5

X stays at the same black height continue
[Possibly transforms to case 2a and terminates — depends on 3,4]

DSA 24

Deleting in R-B Tree - Case 2a

X’s sibling wis black ..
X’'s parent is red
P new X
i »" Recolor(w) +
3 4 5 6

X’s sibling left child is black |
Terminal case, tree IS Red-BIack tree STOP

X's sibling right child is black":‘l

' Case 2a

......

Note that A's subtree had less by 1 black height than D's subtree

DSA 25

Deleting in R-B Tree - Case 2b

X's sibling w is black ..

X's parent is black

X’'s sibling left child is black
X’s sibling right child is mx

e . Case 2b

Recolor(w) +
black up>

3 4 5 6 3 4 5 6

Decreases X black height by one continue with new x
Note that A's subtree had less by 1 black height than D's subtree

DSA 26

Deleting in R-B Tree - Case 3

X’'s sibling w is black

X's parent is either

X’s sibling left child is red // impossible to color w red
X's sibling right child is black

Case 3

w Recolor(w.l, w) +

Rrot(w)

18!
/\
3 4 5 6

Transform to case 4 continue
X stays at same black height

DSA 27

Deleting in R-B Tree - Case 4

X's sibling w is black

x's parent is either

X’s sibling left child isieither

X's sibling right child |s red //impossible to color w red

Case 4

' W coI'pr(w) = color(w.p) +
‘Recolor(w.r) +

' Lrot(x.p) >

1 = 6
/ \
3 4 5 6 1 2 3 4
Terminal case, tree is Red-Black tree STOP

(D inherits the color of B)

DSA 28

DSA

Deleting in Red-Black Tree

Notation similar to AVL
z = logically removed
y = physically removed
X = y’s only child

RB-DELETE(7, z)
(1 if left[z] = nil[T] or right[z] = nil[T] h
then y «— z

else y — TREE-SUCCESSOR(Z)

2

3

4 if left[y] # nil[T]
5 then x « left[y]
6

7

8

9

AN

else x — right[y]

plx] — ply]
if p[y] = nil[T]
then root[T] — x
10 else if y = left[p[v]]
11 then left[p[v]] — x
12 else right[p[y]] — x
(13 ify #z
14 then key[z] — key[y]
15 > If y has other fields, copy them, too.
16 if color[y] = BLACK

AN

J_

17 then RB-DELETE-Fixup(7, x) J
18 return y [Cormen90]

29

RB-DELETE-FIxuPp(7, x)

1

O N ONWn B W

11
12
13
14
15
16
17
18
19
20
21
22

23
DSA

while x # root[T] and color[x] = BLACK
do if x = left[p[x]]
then w — right[p[x]]

/" if color[w] = RED

X = child of removed node
p[x] = parent of x
w = sibling of x

Rsubtree up

then color[w] < BLACK > Case 1 Check L
color[p[x]] — RED > Case 1
LEFT-ROTATE(T, p[x]) > Case 1
w — right[p[x]] >Casel /

((if color[left{w]] = BLACK and color[right[w]] = BLACK) | Recolor
then color[w] < RED > Case 2 Black up
x «— p[x] > Case2)| Goup
else(if color[right[w]] = BLACK N | inner R-
then color[left{w]] — BLACK > Case 3 subtree up
color[w] < RED > Case 3
RIGHT-ROTATE(T, w) > Case 3
L w «— right[p[x]] > Case 3
(color[w] «— color[p[x]] > Case 4 | [Rsubtreeup
color[p[x]] — BLACK > Case 4 stop
color[right{w]] < BLACK > Case 4
LEFT-ROTATE(T, p[x]) > Case 4
. X — root[T] > Case 4))
else (same as then clause

with “right” and “left” exchanged)

[Cormen90]

color[x] «— BLACK

30

Deleting in R-B Tree

Delete time is ©(log(n))
At most three rotations are done

DSA

31

Which BS tree is the best? (praff 2004]

It is data dependent
 For random sequences
=> use unsorted tree, no waste time for rebalancing
« For mostly random ordering with occasional runs of sorted order
=> use red-black trees
* Forinsertions often in a sorted order and
— |later accesses tend to be random => AVL trees

— later accesses are sequential or clustered => splay trees

« self adjusting trees,
« update each search by moving searched element to the root

DSA 32

DSA

B-tree

B-tree as BST on disk

33

B-tree

Order 5 (5-ary tree)
v Min degree t = 3

>4

Based on [Cormen] and [Maire]

DSA 34

o0 wbh-=

Motivation

Multiway search tree
B-tree

Search

Insert

Delete

DSA

B-tree

35

B-tree

Motivation

« Large data do not fit into operational memory -> disk
* Time for disk access is limited by HW oS toms
(Disk access = Disk-Read, Disk-Write)

delay 7200rpm 8ms

Instruction:
800 MHz 1,25ns

* Disk access is MUCH slower compared to instruction
— 1 disk access ~ 13 000 000 instructions!!!!

— Number of disk accesses dominates the
computational time

DSA 36

B-tree

Motivation

Disk access = Disk-Read, Disk-Write

— Disk divided into blocks
(512, 2048, 4096, 8192 bytes)

— Whole block transferred

— Design a multiway search tree
— Each node fits to one disk block

DSA

37

B-tree

Multiway search tree

= a generalization of Binary search tree R (m=2)

Each node has at most m children V. /l N (m>2)

Internal node with n keys has n+1 successors, n <m
(except root)

Leaf nodes with no successors

Tree Is ordered

Keys In nodes separates the ranges in subtrees

DSA 38

B-tree

Multiway search tree — internal node

Keys in internal node separate the ranges of keys in subtrees

DSA

N\

keys <k,

k)

o

ky

ks

RAC

ks

F

¥

s

\

\
\
\ A

k2<keys<k3 I ——

/N

ks < keys

|\ Pointers to subtrees

© Frederic Maire, QUT

39

B-tree

Multiway search tree — leaf node

Leaves have no subtrees and do not use pointers

Fkl’szl‘%qdekS‘

v ¥, 1 ' % L

Leaves have no pointers to subtrees

k1 <k2 < .. < k5 © Frederic Maire, QUT

DSA 40

B-tree

B-tree
= of order m is an m-way search tree, such that

* All leaves have the same height (B-tree is balanced)
 All internal nodes are constrained to have
— at least m/2 non-empty children and (precisely later)
—at most m non-empty children

* The root can have 0 or between 2 to m children
0 - leaf
m -afull node

DSA 41

B-tree

B-tree — problems with notation

Different authors use different names

* Order m B-tree
— Maximal number of children
— Maximal number of keys (No. of children - 1)
— Minimal number of keys

* Minimum degree t
— Minimal number of children [Cormen]

DSA

42

B-tree

B-tree — problems with notation
Relation between minimal and maximal number of
children also differs
For minimal number t of children
Maximal number m of children is
c m=2t—1 simple B-tree,
multiphase update strategy
e m=2t optimized B-tree,
singlephase update strategy

DSA

43

B-tree example

.

B-tree

999 keys

999

}% 1000 su\cce\ssors
// Y\

999

~

1000 succ%
T

1 node
999 keys

1000 nodes
999 000 keys

999

#\AR\

1 000 000 nodes
999 000 000 keys

B-tree of order m=1000 of height 2 contains

1 001 001 nodes (1+1000 + 1 000 000)

999 999 999 keys ~ one billion keys (1 miliarda klica)

DSA

44

B-tree

B-tree node fields

DSA

. number of keys k; stored in the node n <m.

Node with n = m-1 Is a full-node

. n keys, stored in non-decreasing order

ki<k,<...<Kk,
. boolean value, true for leaf, false for internal node

. h+1=m pointers to successors (undefined for leaves)

Keys k; separate the keys in subtree:

For keys; in the subtree with root k; holds
keys, < k,<keys, <k, = ... <k, <keys .,

45

B-tree algorithms
e Search
* Insert
* Delete

DSA

B-tree

46

B-tree search

Similar to BST tree search
Keys In hodes sequentially or binary search

Input: pointer to tree root and a key k
Output: an ordered pair (y, 1), node y and index |
such that y.K[i] = k
or NIL, if k not found

DSA

47

B-tree search
Search 17 @) Search 18

> Ty y
13 n 13

I AN

9 112 14116 |18 n 2 17 14 (16|18
1 2 3 4

17 not found => return NIL 18 found => return (x, 3)

DSA

B-tree search

B-treeSearch(x, k)

« 1

while 1 <x.n and k> x.K]i] //sequential search

do 1

« 1+1

1T 1 <=x.nand k = Xx.K[i]

return (x, 1)

1T x._.leaf

DSA

then
else

return NIL

Disk-Read(x.c|[1]) // tree traversal
return B-treeSearch(x.c[1],Kk)

// pair: node & Index

49

B-tree search

B-treeSearch complexity Using tree order m

Number of disk pages read is
O(h) = O(log,, n)
Where his tree height and
m is the tree order
n Is number of tree nodes
Since num. of keys x.n < m, the while loop takes O(m)

and
total time is O(m log,, n)

DSA

50

B-tree search

B-treeSearch complexity Using minimum degree t

Number of disk pages read is
O(h) = O(log; n)

Where h is tree height and

t is the minimum degree of B-tree

n Is number of tree nodes
Since num. of keys x.n < 2t, the while loop takes O(t)

and

total time is O(t log, n)

DSA

o1

B-tree update strategies

'wo principal strategies

. Multiphase strategy
“solve the problem, when appears”

2. Single phase strategy cormen
“avoid the future problems”

Actions:
Split full nodes
Merge nodes with less than minimum entries

DSA 52

B-tree insert - 1.Multiphase strategy

Insert to a non-full node
Insert 17 (17)

> v
13 13

NN

DSA

B-tree insert - 1.Multiphase strategy

Insert to a full node

|

13
¢ . Propagate
median u

Insert 25 [13 Node split . P

. 9112 14 (16 18|25

9112
: 13117
median
1.Multiphase strategy
“solve the problem, when appears” 9112 14116 18125

DSA

54

B-tree insert - 1.Multiphase strategy

Insert (X, T) - pseudocode x...key, T...tree
Find the leaf for x Top down phase
If not full, insert x and stop
while (current_node full) (node overflow)

find median (in keys in the node after insertion of x)
split node into two Bottom-up phase

promote median up as new X
current_node = parent of current_node or new root
Insert x and stop

DSA 55

B-tree insert - 2.Singlephase strategy

Principle: "avoid the future problems”

oSp

Top down phase only
lit the full node with 2t-1 keys when enter

* |t creates space for future medians from the children
* No need to go bottom-up

oSp

DSA

itting of
Root => tree grows by one

nner node or leaf => parent gets median key

56

B-tree insert - 2.Singlephase strategy

m = 2t = 6 children
m-1 keys = odd max number

nsert to a non-full node

nsert B
GIMIP [X

A|CID |[E J K N[O RIS|ITIU|V| |Y|Z
GIM|IP [X

AIBICID |E| |J|K N[O RISITIU|VI| |Y|Z

DSA S7

B-tree insert - 2.Singlephase strategy

1 new node

Splitting a passed full node and insert to a not full node

Insert Q

G

M

P

X

A

B

C

R

Split RSTUV

Insert Q to RS

DSA

58

B-tree insert - 2.Singlephase strategy

2 new nodes
Splitting a passed full root and insert to a not full node

Insert L

M

P

T

\Split GMPTX

Tree grows by 1

A

B

Q

R

S

U

V

Y

Z

DSA

Insert L to JK

59

B-tree insert - 2.Singlephase strategy

Insert E P Split ABCDE
G|M T]X
[aTBlc DTE] [a]K]L N[O Q[R[s ulv Y[z
P Insert F to DE
SEY T]X
AlB D|E J[K]L NJO Q[R[s ulv Y[z
P
clG[m T]X
AlB DIE[F J[K]L NJO Q[R[s ulv Y[z

DSA 60

B-tree insert - 2.Singlephase strategy

Insert (X, T) - pseudocode Top down phase only
While searching the leaf x x ...key, T... tree
if (node full)

find median (in keys in the full node only)

split node into two

iInsert median to parent (there is space)
Insert x and stop

DSA 61

B-tree delete

Delete (x, btree) - principles Multipass strategy only

« Search for value to delete
 Entryisin leaf
is simple to delete. Do it. Corrections of number of elements later...
 Entryisin Inner node
— It serves as separator for two subtrees
— swap it with predecessor(x) or successor(x)
— and delete in leaf
Leaf in detall
if leaf had more than minimum number of entries
delete x from the leaf and STOP
else
redistribute the values to correct and delete x in leaf
(may move the problem up to the parent,
problem stops by root, as it has no minimum number of entries)

DSA

62

B-tree delete

Node has less than minimum entries GIM JKLMN
* Look to siblings left and right ST N L
* |[f one of them has more than minimum entries G|L

— Take some values from it

J K M|N

— Find new median in the sequence:
(sibling values — separator- node values)

— Make new median a separator (store in parent)
* Both siblings are on minimum

— Collapse node — separator — sibling to one node

— Remove separator from parent

— Go up to parent and correct G

DSA J K N J |[KIM|N 63

B-tree delete

Delete (X, btree) - pseudocode Multipass strategy only

1T(x to be removed 1s not In a leaf)
swap 1t with successor(x)

currentNode = leaf

while(currentNode underflow)

try to redistribute entries from an Immediate
sibling 1nto currentNode via 1ts parent

1f(impossible) then merge currentNode with a
sibling and one entry from the parent

currentNode = parrent of CurrentNode

DSA 64

Maximum height of B-tree

h<lo n+1)/2 half node used for k,
Y2 SR

half of children

O

Gives the upper bound to number of disk accesses
See [Cormen] for detalils

DSA

65

References

[Cormen] Cormen, Leiserson, Rivest: Introduction to Algorithms, Chapter 14 and
19, McGraw Hill, 1990

Red Black Tree

[Whitney]: CS660 Combinatorial Algorithms, San Diego State University, 1996],
RedBlack, B-trees
http://www.eli.sdsu.edu/courses/fall96/cs660/notes/redBlack/redBlack.himI#RT
FToC5

[Wiki] B-tree. Wikipedia, The Free Encyclopedia.
http://en.wikipedia.org/wiki/B-tree

[Jones] Jeremy Jones: B-Tree animation - java applet
https://www.cs.tcd.ie/Jeremy.Jones/vivio/trees/B-tree.htm

Splay tree
[Wiki] Splay tree. Wikipedia, http://en.wikipedia.org/wiki/Splay tree.
Tree comparison

[Pfaff 2004] Ben Pfaff. Performance Analysis of BSTs in System Software,
extended abstract : SIGMETRICS/Performance 2004.
http://www.stanford.edu/~blp/papers/libavl.pdf

DSA 66

