
Planning
Planning is a term used in control theory, artificial intelligence, manufacturing, and
many other areas including robotics of course. It can be applied for example to solve
puzzles, assembly in automotive, for programming virtual humans and smart
characters in movies or video games, drug design, scheduling, etc. Dozens of
methods were developed during last decades differing in the task they are used,
representation of the environment the planning is done as well as movement
constrains. Generally, the planning problem is NP-hard, which means that no
polynomial algorithm exist and therefore some simplifications of the problem are
needed or approximations algorithms should be developed.

In this lecture we describe a practical approach for planing a path for a circular-
shaped robot in the environment represented as a binary grid, i.e. a grid, where cells
representing an empty space have value 0, while cells corresponding to an obstacle
have value 1. A binary grid can be also understood as a binary image, where obstacles
are shown as black pixels, while free space is white, see Fig. 1.

 
Fig.1.: A map as a binary grid.

In this case, an algorithm computing a shortest path between given start and goal
positions on a graph can be employed. To do that, some preprocessing is needed: the
graph has to be constructed from a binary grid. Notice that an algorithm that plans on
a graph assumes that a robot is a point, i.e. it can pass an arbitrary edge in the graph.
Fortunately, adjusting the graph for a circular robot is relatively straightforward, it only
involves inflating of obstacles by a radius of the robot. A path found this way is
optimal on a grid, but can be suboptimal in Euclidean space, see Fig. 2. The path is
therefore smoothed and only a vector important nodes of the path is returned as a
final path.



 
Fig.2.: All paths have the same length on a grid (they contain the same number of
cells).

Assuming a binary grid, the start position of the robot, the goal position, and robot's
radius, output of the algorithm is a vector of nodes (points) to be sequentially
traversed and the planning algorithm is a sequence of the following steps:

Inflate obstacles in the binary grid by a radious of the robot.

Construct a graph from the inflated binary grid.

Run a graph searching algorithm.

Smooth the found path.

The particular steps are described in details in the next paragraphs.

Map inflation
Position of a circular robot in 2D space is typically described by two parameters: x and
y representing coordinates of robot's center in some coordinate system (note that
robot orientation is not considered as it has no influence on the space the robot
occupies. Moreover, we assume a differential driving of the robot, which means that it
can turn on the spot). It is clear that robot's center cannot be placed at an arbitrary
empty place in the environment, instead if the center is close to some obstacle, the
robot collides with it. Therefore, all positions of robot's center that collide with any
obstacle should be determined. Intuition behind this determination is shown in Fig. 3,
where the gray area was identified to be colliding with the robot.



 
Fig.3.: The gray color depicts an area of colliding positions of the blue robot with the
brown obstacle.

Mathematical apparatus for computing this area is called Minkowski sum (or
Minkowski addition), which is a binary operation over two sets P and Q:

.

If the sets are described by convex polygons, Minkowski sum can be computed in 
, where m and n are number of verticies of P and Q [1]. In case, only one

polygon is convex and another one is not, the complexity increases to . If both
of them are nonconvex, their Minkowski sum complexity is .

For binary grids, which can be viewed as images, mathematical morphology known
used in image processing can be applied. Specifically, dilation is a special case of
Minkowski sum for images, which uses a structuring element for expanding of an
input image. A structuring element is a point set, i.e. a set of point placed relatively to
the origin of the element. Typical structuring elements are depicted in Fig. 4, where the
origin is highlighted by a cross.

 
Fig.4.: Typical structuring elements.

Dilation traverses the input image (grid) row by row and column by column and
whenever it reaches a black pixel, it places a structuring element so, that its origin lies
on the pixel. The structuring element is than used as a template for drawing: new
black pixels are drawn at pixels covered by the structuring element. An example of
dilation is shown in Fig.5

P ⊕ Q = {p + q|p ∈ P , q ∈ Q}

O(m + n)
O(nm)

O((mn)2)



 
Fig.5.: Dilation of the image (on the left) by the structuring elements in the middle. The
added pixels are in yellow.

A structuring element for a circular robot is approximation of a circle in a grid (given
the radius of the robot and a real size of one cell) as can be seen in Fig. 6.

 
Fig.6.: A structuring element for a circular robot.

Fig. 7 shows the inflated map from 1. Notice that narrow corridors disappeared as the
robot cannot pass through them. Therefore, it is important to choose appropriate
structuring element carefully. If it is small, the generated path can collide with
obstacles. On the other hand, a large structuring element may cause that an optimal
path (or even any path) is not found.

 
Fig.7.: The map from Fig. 1 inflated.



Adjacency graph construction
Once the grid is inflated, adjacency graph of cells in the inflated grid can be
constructed. The graph  contains a set of nodes V and a set of edges E,
where an edge  is a pair of nodes: . Moreover, each edge has a
weight (cost) associated with it expressing effort needed to traverse it. In our case, 
is a set of all empty (non occupied) grid cells and we connect two nodes with an edge
when their corresponding grid cells share a common edge or point. The cost of the
edge is determined as a distance of the centers of the involved cells, i.e. if the cells
have a common edge, the cost is 1, while in the case of the common point, the cost is 

. Sometimes it is useful to represent distances as integers. A good approximation
is to set cost to 5 for edge going vertically or horizontally (i.e. connecting cells with a
common edge) and to 7 for diagonal edges, see Fig. 8.

 
Fig.8.: Left: Neighbours (in blue) of the violet nodes. Horizontal and vertical edges are
in green, while diagonal edges are in orange. Right: the full adjacency graph.

Dijkstra's algorithm
We can employ some graph searching algorithm to find a path from the current robot
position to a given goal. An ideal candidate (at first sight) is A  algorithm [2]
introduced by Nils Nilsson in 1968, which is widely used as it is easily implementable,
fast, and it provides optimal solutions. As we will need to evaluate costs of (path
lengths to) several nodes in the exploration instead of just the single goal position we
will use Dijkstra's algorithm [3], which computes shortest paths to all nodes in the
graph from a given start position.

Dijkstra's algorithm, as a predecessor of A  was introduces by Edsger W. Dijkstra in
1956. Its key idea is to manage a set of nodes for which a shortest path has been
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determined and add the nearest node to this set in each iteration. To do that, the
algorithm stores actual values of the length of the shortest path  and predecessor
of each vertex along this path  for each vertex . The shortest path for the
given vertex  can be then easily determined by walking consecutively over
predecessors starting in . In the initialization stage, distances  of all the vertices
are set to infinity and their predecessor  to a fictive vertex , what means that
the shortest path has not been found yet (lines 1-4). The only exception is the starting
vertex, whose distance value is set to 0 (line 5). The start vertex is then put into a
priority queue, which is sorted according to  (line 6).

The algorithm then consecutively takes the vertices from the priority queue (line 8)
and for the current vertex  it processes its neighbours (line 9). If  is reached first
time with the algorithm, it is updated accordingly (lines 11 and 12) and added into the
priority queue (line 13). If it is not the case, a tentative distance to the start is
computed (line 15) for each neighbour  and if it is smaller than the current one, 
is updated to the tentative distance (line 17) and  to  (line 18) and  is updated
in the priority queue (line 19).

Alg 1. Dijkstra's algorithm

1. foreach vertex  do

2.      

3.      

4. end

5. ;

6. 

7. while( ) do

8. u = ;

9. foreach neighbour  of  do
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16.          if( )
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18.              ;

19.              

20.          end
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21.      end

22. end

Note employment of a binary heap. Heap [4] is a structure based on a binary tree that
allows fast (in a constant time) answers to questions on the highest number (given
some comparison predicate) in a set of numbers. Moreover, It supports inserting new
nodes into the tree, updating nodes in the tree, and deleting the highest number from
the tree. All these operations are done in .

Path smoothing
As we already mentioned, the path generated by Dijkstra's algorithm is optimal on a
graph, but can be suboptimal in Euclidean space. It can be proven that an optimal path
for a point robot (which is our case as we reformulated the task by inflating obstacles)
is a polyline. In contrast, the generated path contains many nodes that lie on a line and
thus bring no information. These unnecessary nodes will be removed from the path in
the final step, which, as a side effect will lead to a shorter path in Euclidean space.

The algorithm starts in the start node and tests, whether the next node on the path is
visible from the start point. If yes, it goes to the next node and performs the visibility
test again. This is consecutively repeated until the first invisible node is reached. The
previous note is taken in that case, pushed into the final path and set as a new starting
point. This procedure is repeated until the goal node is reached.

The whole process is illustrated in Fig. 9. The start node is represented by the read
color, while the goal is green. The yellow lines are those not intersecting obstacles and
thus allowing the process to proceed to a next point. The read lines, in contrary, hit
obstacles and the process steps back to the previous node (filled in pink). The pink
nodes determine (together with the goal) the final path, while the cyan ones are
discarded.

 
Fig.8.: Left: the path smoothing process by node filtering. Right: the final path.

O(log(n))



Bresenham's line algorithm [5] is employed to perform visibility test. This algorithm is
widely used in computer graphics for line drawing. It consecutively computes
coordinates of pixels to be drawn. Instead of drawing a pixel, we will check, whether
the pixel represents inflated obstacle and if yes, we report that end points of the line
are not visible.
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