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Evolutionary algorithms: stochastic, population-based optimization algorithms.

■ Stochastic, but not random search.

■ Population-based counterpart to single-state local search methods (EAs are more
robust w.r.t. getting stuck in local optima).

■ Inspired by

■ Darwin’s theory of evolution (random changes of individuals, and survival of
the fittest).

■ Mendel’s theory of inheritance (transfer of traits from parents to children), and

■ They are not fast (black-box method, population-based).

■ They are robust (efficient in finding good solutions in difficult search spaces).

Difference from a mere parallel hill-climber: candidate solutions affect the search of other
candidates.

Originally, several distinct kinds of EAs existed:

■ Evolutionary programming, EP (Fogel, 1966): real numbers, state automatons

■ Evolutionary strategies, ES (Rechenberg, Schwefel, 1973): real numbers

■ Genetic algorithms, GA (Holland, 1975): binary or finite discrete representation

■ Genetic programming, GP (Cramer, Koza, 1989): trees, programs

Currently, the focus is on emphasizing what they have in common, and on exchange of
ideas among them.
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Vocabulary borrowed from natural genetics:

individual, chromosome an encoded candidate solution
gene a variable or a set of variables in a chromosome
locus a place in a chromosome
allele a particular value of gene at certain locus

fitness quality of an individual
fitness function (landscape) objective function

genotype an individual’s data structure as used during breeding
phenotype the meaning of genotype, interpretation of the genotype

by the fitness function
population a set of candidate solutions

reproduction, selection picking individuals based on their fitness
parents individuals chosen by selection as sources of genetic

material
children (offspring) new individuals created by breeding

breeding the process of creating children from a population of
parents

mutation perturbation of an individual; asexual breeding
recombination, crossover producing one or more children from two or more pa-

rents; sexual breeding
generation one cycle of fitness assessment, breeding, and replace-

ment
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Idealized Illustration of Evolution
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Uniformly sampled population Population converging to promising regions
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In conventional GAs, the solution is represented by

■ a binary string:

However, other types of representation can be more suitable for the problem at hand:

■ real-valued string:

■ string of chars:

■ tree or graph:

■ . . .
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Objective (Fitness) function

■ the only information about the sought solution the algorithm is endowed with,

■ must be defined for every possible chromosome.

Fitness function may be

■ nonlinear,

■ multimodal,

■ discrete,

■ noisy,

■ multidimensional,

■ multiobjective.

Fitness does not have to be defined analytically:

■ simulation/experiment results

■ classification success rate

■ human evaluation

■ . . .

Fitness function should not be too costly (if possible)!!!
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Function optimization

■ maximization of f (x, y) = x2 + y2,

■ parameters x and y take on values from interval < 0, 31 >,

■ and are encoded on 5 bits each.
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Function optimization

■ maximization of f (x, y) = x2 + y2,

■ parameters x and y take on values from interval < 0, 31 >,

■ and are encoded on 5 bits each.

Quiz: Which binary chromosome represents the optimum in the above problem?

A 0 0 0 0 0 0 0 0 0 0

B 1 1 1 1 1 1 1 1 1 1

C None of the two.

D The function does not have any optimum.
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Algorithm 1: Evolutionary Algorithm

1 begin
2 X ← InitializePopulation()

3 f ← Evaluate(X)

4 xBSF , fBSF ← UpdateBSF(X, f)
5 while not TerminationCondition() do
6 XN ← Breed(X, f) // using certain breeding pipeline

7 fN ← Evaluate(XN)

8 xBSF , fBSF ← UpdateBSF(XN, fN)

9 X, f ← Join(X, f , XN , fN) // aka ‘‘replacement strategy’’

10 return xBSF , fBSF

BSF : Best So Far

Algorithm 2: Canonical GA Breeding Pipeline

1 begin
2 XS ← SelectParents(X, f)
3 XN ← Crossover(XS)

4 XN ← Mutate(XN)

5 return XN

Other different Breed() pipelines can be pluged in the EA.
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Initialization is a process of creating individuals from which the search shall start.

■ Random:

■ No prior knowledge about the characteristics of the final solution.

■ No part of the search space is preferred.

■ Informed:

■ Requires prior knowledge about where in the search space the solution can be.

■ You can directly seed (part of) the population by solutions you already have.

■ Pre-optimization:

■ (Some of) the population members can be set to the results of several (probably
short) runs of other optimization algorithms.

Both informed initialization and pre-optimization introduce a bias into the search process:

+ they may help to find better solutions,

+ they may speed up the search process, but

– they may cause irreversible focus of the search process to regions with local optima!
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Selection is the process of choosing which population members shall become parents.

■ Usually, the better the individual, the higher chance of being chosen.

■ A single individual may be chosen more than once; better individuals influence more
children.

Selection types:

■ No selection: all population members become parents (and the selection pressure
must be applied in replacement).

■ Uniform selection: each population member has the same chance of becoming a
parent (and the selection pressure must be applied in replacement).

■ Fitness-proportional selection: the probability of being chosen is proportional to the
individual’s fitness.

■ Rank-based selection: the probability of being chosen is proportional to the rank of
the individual in population (when sorted by fitness).

■ Tournament selection: the set of parents is composed of the winners of small
tournaments (choose n individuals uniformly, and pass the best of them as one of the
parent).

■ Truncation selection: the best n % of the population become parents.

■ . . .
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Mutation makes small changes to the population members (usually, it iteratively applies
perturbation to each individual). It

■ promotes the population diversity,

■ minimizes the chance of loosing a useful part of genetic code, and

■ performs a local search around individuals.

Selection + mutation:

■ Even this mere combination may be a powerfull optimizer.

■ It differs from several local optimizers run in parallel.

Types of mutation:

■ For binary representations: bit-flip mutation

■ For vectors of real numbers: Gaussian mutation, . . .

■ For permutations: 1-opt, 2-opt, . . .

■ . . .
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Crossover (xover) combines the traits of 2 or more chosen parents.

■ Hypothesis: by combining features of 2 (or more) good individuals we can maybe get
even better solution.

■ Crossover usually creates children in unexplored parts of the search space, i.e.,
promotes diversity.

Types of crossover:

■ For vector representations: 1-point, 2-point, uniform

■ For vectors of real numbers: geometric xover, simulated binary xover, parent-centric
xover, . . .

■ For permutations: partially matched xover, edge-recombination xover, . . .

■ . . .
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Replacement strategy (the join() operation) implements the survival of the fittest
principle. It determines which of the members of the old population and which new
children shall survive to the next generation.

Types of replacement strategies:

■ Generational: the old population is thrown away, new population is chosen just from
the children.

■ Steady-state: members of the old population joined with the newly created offspring;
any of them may survive to the next generation.

■ Similar principles as for selection can be applied.
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EAs are popular because they are

■ easy to implement,

■ robust w.r.t. problem formulations, and

■ less likely to end up in a local optimum.

Some of the application areas:
■ control,

■ engineering design,

■ image processing,

■ planning & scheduling,

■ VLSI circuit design,

■ network optimization & routing
problems,

■ optimal resource allocation,

■ marketing,

■ credit scoring & risk assessment,

■ and many others.

John Holland: ”It’s best used in areas where you don’t really have a good idea what the solution
might be. And it often surprises you with what they come up with.”
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Reproduction (parental selection) models nature’s survival-of-fittest principle

■ prefers better individuals to the worse ones,

■ still, every individual should have a chance to reproduce.

Roulette wheel:

■ Prob. of choosing a solution is directly
proportional to its fitness value:

pi =
fi

∑
N
i=1 fi

,

where N is population size.

■ To select n individuals, you need to spin the
wheel n times.
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Reproduction (parental selection) models nature’s survival-of-fittest principle

■ prefers better individuals to the worse ones,

■ still, every individual should have a chance to reproduce.

Roulette wheel:

■ Prob. of choosing a solution is directly
proportional to its fitness value:

pi =
fi

∑
N
i=1 fi

,

where N is population size.

■ To select n individuals, you need to spin the
wheel n times.

Quiz: If an individual i has a selection probability pi , how many of its copies will be
present in the set of N parents:

A 1

B N

C ⌊pi · N⌋

D Any number between 0 and N
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Reproduction (parental selection) models nature’s survival-of-fittest principle

■ prefers better individuals to the worse ones,

■ still, every individual should have a chance to reproduce.

Roulette wheel:

■ Prob. of choosing a solution is directly
proportional to its fitness value:

pi =
fi

∑
N
i=1 fi

,

where N is population size.

■ To select n individuals, you need to spin the
wheel n times.

Expected frequencies vs. observed frequencies

■ Expected selection frequency: given selection probability of i-th individual, pi , and N
individuals to be selected, we expect to get on average N · pi copies of individual i.

■ Observed selection frequency: can be anywhere between 0 and N.
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SUS ensures that the observed selection frequencies of each individual are in line with the
expected frequencies:

■ Extra wheel, let’s denote it a pointer
wheel, with equidistantly distributed
N (pop. size) pointers.
Ex.: If we are selecting 8 individuals,
the pointer wheel will have 8 pointers
distributed with 360/8 = 45 degrees
step size.

■ SUS works by making a single spin of
the pointer wheel.

■ A single rotation of the pointer wheel
selects all of N individuals at once.

■ Every individual i receives a number of copies from interval (⌊N · pi⌋, ⌈N · pi⌉).
Ex.: If we have an individual that occupies 4.5% of the roulette wheel and we select
100 individuals, we would expect on average 4.5 copies for that individual to be
selected. Then, the individual will be selected either four or five times. Neither more,
nor less.
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Two (strongly related) issues in the evolution process:

■ population diversity,

■ selection pressure.

Premature convergence:

■ A premature loss of diversity in the population with the search converging to a
sub-optimal solution.

■ Early stages of the evolution search process.

Stagnation:

■ Ineffective search due to a weak selection pressure.

■ Later stages of the evolution search process.
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Balance between exploration and exploitation.

■ How to achieve the optimal selection pressure during the whole evolutionary search?

Options:

■ scaling techniques,

■ proper selection mechanisms,

■ fitness sharing and crowding,

■ . . . .
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Linear scaling: adjustment of the fitness values distribution in order to get the desired
selection pressure

σ = fmax/ favg

The actual chromosomes’ fitness is scaled as

f ′i = a · fi + b

Parameters a and b are usually determined so that

■ the average fitness is mapped to itself, and

■ the best fitness is a desired multiple of the average fitness.

Typical value of σ is from (1.5, 2.0)
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Linear scaling helps to remedy both the premature convergence and stagnation.
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Diversity preservation method proposed for solving multi-modal optimization problems
so that GA is able to discover and evenly sample all optima.

Idea: decrease fitness of similar solutions

Algorithm to calculate the shared fitness value of i-th individual in population of size N

1. Calculate the distances dij of individual i to all individuals j.

2. Calculate values of sharing function between individual i and all individuals j:

Sh(dij) =

{

1−
(

dij

σshare

)α

, if dij ≤ σshare ,

0, otherwise.

3. Calculate niche count nci of individual i:

nci =
N

∑
j=1

Sh(dij)

4. Calculate shared fitness of individual i:

f ′i = fi/nci

Remark: If d = 0, then Sh(d) = 1, meaning that two solutions are identical. If d ≥ σshare ,
then Sh(d) = 0 meaning that two solutions do not have any sharing effect on each other.
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Bimodal function, six solutions and corresponding shared fitness functions

■ σshare = 0.5, α = 1.

c©Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.

Let’s calculate the shared fitness value of the first solution

■ d11 = 0.0, d12 = 0.254, d13 = 0.731, d14 = 1.302, d15 = 0.127, d16 = 0.191

■ Sh(d11) = 1, Sh(d12) = 0.492, Sh(d13) = 0, Sh(d14) = 0,
Sh(d15) = 0.746, Sh(d16) = 0.618.

■ nc1 = 1 + 0.492 + 0 + 0 + 0.746 + 0.618 = 2.856

■ f ′(1) = f (1)/nc1 = 0.890/2.856 = 0.312
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Tournament selection: the best out of n randomly chosen individuals is selected.

■ n is the size of the tournament.

■ Rank-based method: the size of differences in fitness among individuals do not
matter.

■ To select N individuals, the tournament must be executed N times.



Genetic Operators
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Role of crossover

■ sampling (exploration) of the search space

■ combining features of individuals

Idea (or hypothesis):

■ Given two well-fit solutions to the given problem, it is possible to get a new solution that is even
better than both its parents by properly mixing the two parents. (?)

1-point crossover

■ Mixing of two parents determined by a
single crossing point chosen randomly for
each pair of parents.

2-point crossover

■ Mixing of two parents determined by two
crossing points chosen randomly for each
pair of parents

■ Higher exploration power than 1-point
crossover.
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■ Mixing of two parents determined by an n-point inheritance template chosen
randomly for each pair of parents.

■ Highest exploration power.
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■ Mixing of two parents determined by an n-point inheritance template chosen
randomly for each pair of parents.

■ Highest exploration power.

Quiz: How many different offspring can be created with uniform crossover from two
parents of length l, if they differ on d positions?

A 2

B 2l

C 2d

D 2l−d
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Search space with constraints contains both feasible and infeasible solutions.

Example: Assume the Traveling Salesman Problem and a simple one-point crossover. It is
easy to get an infeasible solution, even when both parents are feasible.

−→

Neither of the two offspring represents a feasible solution:

■ some cities are missing,

■ some cities are duplicated in the tour.

Solutions:

■ repair mechanisms

■ special operators
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Direct representation

genotype: a e d b c
tour: a→ e→ d→ b→ c

Edge recombination crossover

■ Create a table of neighbors (edge table)
– for each city i there is a list of cities
that have a link to i in the parental
tours.

■ Start creating a tour in a randomly
chosen city, currentCity.
Remove all occurrences of currentCity
from the edge table.

■ Choose a new currentCity among the unused neighbors of currentCity in the edge
table.
If currentCity has already an empty list of unused neighbors, choose an arbitrary city
that is not yet in the created tour.
Remove all occurrences of currentCity from the edge table.
Repeat this step until all cities have been added to the tour.
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Roles of mutation:

■ preserves population diversity

■ minimizes the chance of loosing some important piece of genetic information

Single bit-flip mutation event Population with missing genetic information

0 0 1 1 0 0 0 1 1 0

0 1 1 0 0 1 0 1 0 0

0 0 0 1 1 0 1 0 1 1

0 1 0 0 1 0 0 1 1 1

0 1 1 0 0 0 0 1 0 1

. . .

0 1 0 0 1 1 0 1 0 0

Usual implementation of mutation:

■ For each bit independently, decide randomly whether it should be mutated or not.

■ Probability of mutation: pm

■ Default value: pm = 1
l , where l is the chromosome length.

■ The actual number of mutated bits in a chromosome is a random variable from 〈0, l〉.

■ The expected number of mutated bits is pm · l.



Applications
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Database of ”criminals”

Goal is to guide the witness through a huge database of faces to identify the criminal
suspect.

Chromosome structure

Interactive evolution:

■ Human serves as an objective function evaluator!!!

? UK Home Office, Police Systems Research and Development Group ?
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Representation: Pair-wise relative order of jobs on every machine



Artificial Ant Problem

EAs

Reproduction,
selection

Genetic Operators

Applications

• Criminals

• Job Shop

• Artificial Ant

• Ant: GA

• Ant: GA Result

Schema Theory

Summary
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Santa Fe trail

■ 32× 32 grid with 89 food
pieces.

■ Obstacles

■ 1×, 2× strait,

■ 1×, 2×, 3× right/left.

Ant capabilities

■ detects the food right in front
of him in direction he faces.

■ actions observable from
outside

■ MOVE – makes a step and
eats a food piece if there is
some,

■ LEFT – turns left,

■ RIGHT – turns right,

■ NO-OP – no operation.

Goal: find a strategy that would navigate an ant through the grid finding all the food
pieces in the given time (600 time steps).
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Collins a Jefferson 1991, standard GA using binary representation

Representation:

■ Strategy represented as a finite state machine.

■ Transition table encoded as binary chromosome of fixed length.

Example: 4-state FSM, 34-bit long chromosomes (2 + 4× 8)
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Ant behavior

■ What happens if the ant ”hits” an
obstacle?

■ What is strange with transition from
state 10 to the initial state 00?

■ When does the ant succeed?

■ Is the number of states sufficient to
solve the problem?

■ Do all of the possible 34-bit
chromosomes represent a feasible
solution?
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Ant behavior

■ What happens if the ant ”hits” an
obstacle?

■ What is strange with transition from
state 10 to the initial state 00?

■ When does the ant succeed?

■ Is the number of states sufficient to
solve the problem?

■ Do all of the possible 34-bit
chromosomes represent a feasible
solution?

GA result

■ Representation:

■ 32 states

■ chromosome length: 453 = 64× 7 + 5 bits !!!

■ Population size: 65.536 !!!

■ Number of generations: 200

■ Total number of samples tried: 13× 106 !!!
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Schema theory (J. Holland, 1975):

■ Analyzes effect of selection, crossover and mutation on the population’s genotype

■ Tries to answer the question: ”Why and How Evolutionary Algorithms Work?”

In its original form the schema theory assumes:

■ binary representation,

■ proportionate roulette wheel selection,

■ 1-point crossover and bit-flip mutation.
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Schema: a template, which defines a set of solutions with certain specific similarities.

■ consists of 0s, 1s (fixed values) and wildcard symbols * (any value),

■ covers 2r strings, where r is a number of ∗ used in the schema.
Example: schema S = 11*0* covers strings 11000, 11001, 11100, and 11101.

Schema properties

■ Defining length δ(S) (compactness): distance between first and last non-* in a
schema (= number of positions where 1-point crossover can disrupt the schema).

■ Order o(S) (specificity): a number of non-*’s (= number of positions where simple bit
swapping mutation can disrupt the schema).

■ Chromosomes are order l schemata, where l is length of chromosome (in bits or
loci).

■ Chromosomes are instances (or members) of lower-order schemata.

■ Fitness f (S) (quality): average fitness computed over all covered strings.
Example: S = **1*01*0**: δ(S) = 5, o(S) = 4
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8-bit Count Ones problem:
maximize a number of ones in 8-bit
string.

string fitness string fitness
00000000 0 11011111 7
00000001 1 . . . 10111111 7
00000010 1 01111111 7
00000100 1 11111111 8

Schema Sa = 1*1**10* Sb = *0*0****

defining length δ(Sa) = 7− 1 = 6 δ(Sb) = 4− 2 = 2
order o(Sa) = 4 o(Sb) = 2
fitness f (Sa) = 5 f (Sb) = 3

■ Sa covers 1 string of fitness 3, 4 strings of fitness 4, 6 with fitness 5, 4 with withess 6,
and 1 with fitness 7, i.e., f (Sa) = (1 · 3 + 4 · 4 + 6 · 5 + 4 · 6 + 1 · 7)/16 = 80/16 = 5

■ f (Sb) = (1 · 0 + 6 · 1 + 15 · 2 + 20 · 3 + 15 · 4 + 6 · 5 + 1 · 6)/26 = 192/64 = 3
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8-bit Count Ones problem:
maximize a number of ones in 8-bit
string.

string fitness string fitness
00000000 0 11011111 7
00000001 1 . . . 10111111 7
00000010 1 01111111 7
00000100 1 11111111 8

Schema Sa = 1*1**10* Sb = *0*0****

defining length δ(Sa) = 7− 1 = 6 δ(Sb) = 4− 2 = 2
order o(Sa) = 4 o(Sb) = 2
fitness f (Sa) = 5 f (Sb) = 3

■ Sa covers 1 string of fitness 3, 4 strings of fitness 4, 6 with fitness 5, 4 with withess 6,
and 1 with fitness 7, i.e., f (Sa) = (1 · 3 + 4 · 4 + 6 · 5 + 4 · 6 + 1 · 7)/16 = 80/16 = 5

■ f (Sb) = (1 · 0 + 6 · 1 + 15 · 2 + 20 · 3 + 15 · 4 + 6 · 5 + 1 · 6)/26 = 192/64 = 3

Quiz: What is the fitness of S = *0*1**** compared to Sb?

A S is worse than Sb, not clear by how much.

B S is worse than Sb by 1.

C S is better than Sb, not clear by how much.

D S is better than Sb, by 1.
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Let m(S, t) be a number of instances (strings) of schema S in population of size N at time t.

Question: How do schemata propagate? What is a lower bound on change in sampling
rate of a single schema from generation t to t + 1?

Effect of fitness-proportionate roulette wheel selection:

■ A string ai is copied according to its fitness; it gets selected with a probability

pi =
fi

∑ f j
.

■ After picking N strings with replacement from the population at time t, we expect to
have m(S, t + 1) representatives of the schema S in the population at time t + 1 as
given by the equation

m(S, t + 1) = N ·m(S, t) ·
f (S)

∑ f j
,

where f (S) is the fitness of schema S at time t.

■ The formula can be rewritten as

m(S, t + 1) = m(S, t) ·
f (S)

favg
,

where favg is the average fitness of the population.
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Effect of 1-point Crossover:

■ Survival probability ps: let’s make a conservative assumption that crossover within
the defining length of S is always disruptive to S, and ignore gains.

■ Crossover probability pc: fraction of population that undergoes crossover.

ps ≥ 1− (pc · δ(S)/(L− 1))

Example: Compare survival probability of S = (11 ∗ ∗ ∗ ∗) and S = (1 ∗ ∗ ∗ ∗0).

Effect of Mutation:

■ Each fixed bit of schema (o(S) of them) changes with probability pm, so they all stay
unchanged with probability

ps = (1− pm)
o(S) .

■ This can be approximated as

ps = (1− o(S) · pm),

assuming pm ≪ 1.
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Finally, we get a ”classical” form of the reproductive schema growth equation:

m(S, t + 1) ≥ m(S, t) ·
f (S)

favg
· [1− pc ·

δ(S)

L− 1
− o(S) · pm].

What does it tell us?

Schema theorem: Short, low-order, above-average schemata receive exponentially
increasing trials in subsequent generations of a genetic algorithm.

Building Block Hypothesis: A genetic algorithm seeks near-optimal performance
through the juxtaposition of short, low-order, high-performance schemata, called the
building blocks.

David Goldberg: ”Short, low-order, and highly fit schemata are sampled, recombined, and
resampled to form strings of potentially higher fitness: we construct better and better strings from
the best partial solutions of the past samplings.”

Y. Davidor: ”The whole GA theory is based on the assumption that one can state something about
the whole only by knowing its parts.”

Corollary: Choosing the right representation/encoding is critical for GA performance;
chosen encoding should satisfy the idea of short building blocks.
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P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 48 / 50



EA Materials: Reading, Demos, Software

EAs

Reproduction,
selection

Genetic Operators

Applications

Schema Theory

Summary

• Sources

• Learning outcomes
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Classic literature:

■ D. E. Goldberg: Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Wesley, 1989.

■ Z. Michalewicz: Genetic Algorithms + Data Structures = Evolution Programs,
Springer, 1998.

■ Z. Michalewicz: How to solve it? Modern heuristics. 2nd ed. Springer, 2004.

Demos

■ M. Obitko: Introduction to genetic algorithms with java applets
https://www.obitko.com/tutorials/genetic-algorithms/

Software

■ DEAP: EC framework for Python
https://deap.readthedocs.io/en/master/

■ ECJ: A Java-based Evolutionary Computation Research System
http://cs.gmu.edu/~eclab/projects/ecj/

■ EO: Evolving Objects - EC library for C++
http://eodev.sourceforge.net/

■ . . .

https://www.obitko.com/tutorials/genetic-algorithms/
https://deap.readthedocs.io/en/master/
http://cs.gmu.edu/~eclab/projects/ecj/
http://eodev.sourceforge.net/
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After this lecture, a student shall be able to

■ know and actively use the terminology inspired by biology;

■ explain the importance, role and types of representation, selection, and genetic
operators;

■ distinguish between premature convergence and stagnation of EA, and suggest
methods to fight them;

■ explain the trade-off between exploration and expoitation;

■ implement 1- and 2- point crossover, uniform crossover, bit-flip mutation;

■ describe options for encoding the solutions of traveling salesperson problem, and the
relevant genetic operators;

■ give examples of real-world problems EAs have been applied to;

■ describe what a schema theory is and what it is used for;

■ explain the schema theorem, and the influence of its individual parts related to
selection, crossover and mutation;

■ state the so-called Building Block Hypothesis and comment on its relation to the
chosen representation.
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