
Paralelní a distribuované výpočty
(B4B36PDV)

Jakub Mareček, Michal Jakob

jakub.marecek@fel.cvut.cz

Artificial Intelligence Center
Department of Computer Science
Faculty of Electrical Engineering 

Czech Technical University in Prague



Use Cases
Via Theoretical Computer Science

A large part of theoretical computer 
science is devoted to the study of the 
limitations of parallelizability of 
algorithms, starting with the very clear 
question: 

does every problem with a polynomial-
time sequential algorithm also have an 
efficient parallel algorithm? 

In particular, an algorithm solving the 
problem in time O(logc n) using O(nk) 
parallel processors for some constants 
c and k.

In short, the answer is no. 



Use Cases
Via Theoretical Computer Science

Let us consider the P-Complete problems i.e., decision problems that are in 
P and where every problem in P can be reduced to the P-Complete problem in 
logarithmic space (L). The prime examples of P-Complete problems are
• circuit evaluation: given a Boolean circuit and an input, is the output of the 

circuit 0?
• linear programming: given a linear function subject to linear inequality 

constraints, is the minimum greater or equal to 0?
• many graph problems, such as Lexicographically First Depth-first Search 

Ordering (LFDFS): given an undirected graph with fixed ordered adjacency 
lists, and two vertices u and v, is vertex u visited before vertex v in the 
depth-first search of the graph?

• many compression algorithms: given strings s and t, will compressing s with 
LZ78 add t to the dictionary?

• many problems related to Markov decision processes: is the minimum 
expected cost over all policies equal to 0 (for both finite, and long-run 
versions)?

• many tests of local optimality in combinatorial optimization: in an instance 
of Traveling Salesman, and a sequence of tours, is this a 2-Opt sequence?



Use Cases
Via Theoretical Computer Science

In contrast, Nick's class NCc are decision problems solvable by a uniform 
family of Boolean circuits with polynomial size, depth O(logc (n)), and fan-in 2.

More usefully, a problem in NC with input of length n can be solved in time 
O(logc n) using O(nk) parallel processors for some constants c and k. (Notice 
that for a constant k, O(nk) is a polynomial.

Thus, NC can be thought of as problems that can be efficiently solved on a 
parallel computer, and hence ``easier'' than P-Complete problems. For 
example:
• integer arithmetics (addition, multiplication and division), 
• matrix arithmetics (multiplication, determinant, inverse, rank), or 
• some graph problems (shortest path, maximal matching with some 

restrictions on the weights)



Use Cases
Via Theoretical Computer Science

Let us consider the problem of sorting an array of n elements. 
Is it P-Complete?



Use Cases
Via Theoretical Computer Science

Let us consider the problem of sorting an array of n elements. 
Is it P-Complete?



Use Cases
Via Theoretical Computer Science

Let us consider the problem of sorting an array of n elements. 
Is it P-Complete?

As the table suggests, sorting is Nick's class: for n items, we can consider 
all pairs of items in parallel, compare them to obtain a binary value, and then 
for each item, obtain its rank in the sorted order by adding the binary values. 
This is known as the parallel ranking. There are many other parallel 
algorithms based on picking minimum and maximum from a small set, as 
well as algorithms based on hashing.



Use Cases
What to do in a particular use case?

In the second lecture, we have seen 
that within shared-memory parallel 
programming, we have broadly four 
options:
• Confinement: Do not share memory 

between threads. 
• Immutability: Do not share any 

mutable data between threads. 
• Thread-safe code: Use data types 

with additional guarantees for 
storing any mutable data shared 
between threads, or even better, use 
implementations of algorithms that 
are already parallelized and handle 
the concurrency issues for you.

• Synchronization: Use 
synchronization primitives to prevent 
accessing the variable at the same 
time. 



Thread-safe Code in C++20
Use STL!

We have seen that the 
header execution defines 
objects 
std::execution::par and 
std::execution::par_unseq, 
which can be passed as 
the first argument of any 
standard algorithm:



Thread-safe Code in C++20
Use STL!

What does the code do?



Thread-safe Code in C++20
Use STL!

What does the code do?

One may imagine:
• templates
• iterators
• execution strategies.
Elegant code.



Thread-safe Code in C++20
Use STL!

Reality can be 
much more messy:



Thread-safe Code in C++20
Use STL!

Reality can be 
much more messy:



Thread-safe Code in C++20
Use STL!

In the previous slides, we have seen the implementation in Intel Thread 
Building Blocks (TBB) backend of the GCC. This uses:

• many megabytes of a library (TBB)
• ``sorting based on task tree and parallel merge’’, 

while making use of several non-trivial tricks, including
• tbb::task_scheduler_init, 
• std::thread::hardware_concurrency(),
• std::hardware_constructive_interference_size. 

(Contrast this with the serial version of GCC sort, which uses a multi-way 
mergesort, and GCC stable_sort, which uses a quicksort.) We wish to make 
use of the STL, rather than redevelop it, in the first instance.



Thread-safe Code in C++20
Use STL!

Even making full use of the 
STL is quite non-trivial. 

In the lecture notes, we 
present an overview of the 
sorting-related routines in 
verbatim from the fantastic 
book ``A Complete Guide to 
Standard C++ Algorithms'' of 
Simon Toth, in compliance 
with the license.

https://github.com/HappyCerberus/
book-cpp-algorithms



Thread-safe Code in C++20
Use STL!

What is wrong with
comparators:



Thread-safe Code in C++20
Use STL!

What is wrong with
projections:



Thread-safe Code in C++20

If you know your problem and STL well, you may benefit from 
reformulating the problem, e.g., to partial sort:



Synchronization

Now, let us move to our own parallel sorting algorithms.

We will see: 
• Bubble sort with OpenMP
• Quick sort variants with task construct in OpenMP
• Merge sort variants with task construct in OpenMP
• Many variants, including intrinsics.



Synchronization
Bubble Sort

Bubble sort is essentially using loops:



Synchronization
Bubble Sort

Bubble sort is essentially using loops, which are easy to parallize:



Synchronization
Quick Sort

Quick sort may benefit from, OpenMP construct task



Synchronization
Quick Sort

One can improve upon this:
• using three-way sort
• using task mergeable
(As suggested by Intel.)



Synchronization
Quick Sort

One can improve upon this:
• using three-way sort
• using task mergeable



Synchronization
Quick Sort

One can improve upon this:
• using three-way sort
• using task mergeable



Synchronization
Merge Sort

Similarly, one can use task to parallelise merge sort:



Synchronization
Merge Sort

Similarly, one can use task to parallelise merge sort:



Synchronization
Merge Sort

Similarly, one can use task to parallelise merge sort:



Synchronization
Merge Sort



Synchronization
Going beyond Merge Sort

Odd-Even Merge Sort:



Synchronization
Going beyond Merge Sort

Odd-Even Merge Sort:



Synchronization
Going beyond Merge Sort

Odd-Even Merge Sort:

One can go even further with bitonic sort. 



Synchronization
Bitonic Sort

• Efficient implementations can vectorize the compare and swap
• This is the most efficient approach on GPGPUs
• One can also experiment with intrinsics:

https://software.intel.com/sites/landingpage/IntrinsicsGuide/



An Aside
Intrinsics

• Modern processors imlement vector instructions (SIMD)
• On Intel and AMD, there are Streaming SIMD Extensions (SSE) and 

Advanced Vector Extensions (AVX) incl. 512-bit vectors.
• In SSE, __m128d stores 2 doubles, 4 ints, 16 chars,

but in the reverse order float[4] {0f,1f,2f,3f} 
• You can compile for this with –march=native-mavx

• You can run pairwise sorting using minima and maxima:

3 2 1 0

2 5 6 9

1 3 7 8

1 3 6 8

2 5 7 9

min

max



An Aside
Intrinsics

2 5 6 9

1 3 7 8

1 3 6 8

2 5 7 9

min

max



• We can also pad, shift, truncate. 
(Illustrations by Brano Bosansky.)

x3 x2 x1 x0

2 5 6 90 0 0 0

x3 x2 x1

0 2 5 60 0 0 0
Shift to the right:

Pad:

Truncate:

Compare:
x3 x2 x1 x0

2 5 6 9

x3 x2 x1

0 2 5 6

An Aside
Intrinsics



• We can also pad, shift, truncate. 
(Illustrations by Brano Bosansky.)

An Aside
Intrinsics



• We can also pad, shift, truncate. 
(Illustrations by Brano Bosansky.)

• See https://xhad1234.github.io/Parallel-Sort-Merge-Join-in-Peloton/
for a comprehensive illustration.

An Aside
Intrinsics

https://xhad1234.github.io/Parallel-Sort-Merge-Join-in-Peloton/


The Upshot
Intrinsics need not win



The Upshot
https://arxiv.org/pdf/2009.13569.pdf



Conclusions

• First use case in parallelization

• Highlights importance of“thinking out of the box”


