o /N\i

CZECH TECHNICAL

UNIVERSITY CENTER

IN PRAGUE

Paralelni a distribuované vypocty

(B4B36PDV)

Jakub Marecek

jakub.marecek@fel.cvut.cz

Artificial Intelligence Center
Department of Computer Science
Faculty of Electrical Engineering
Czech Technical University in Prague

In the previous lecture

« Parallel programming

« Aim: speeding up computation

« The influence of various approaches on the speedup
 Distributed programming

« Aim: consistency across a large number of machines

« The algorithms in state-of-the-art database engines

« CourseWare
« https://cw.fel.cvut.cz/wiki/courses/b4b36pdv/start

In the previous lecture

You have seen the textbook

| .2 A Fable

Instead of treating coordination problems (such as mutual exclusion) as pro-
gramming exercises, we prefer to think of concurrent coordination problems as
if they were physics problems. We now present a sequence of fables, illustrating
some of the basic problems. Like most authors of fables, we retell stories mostly
invented by others (see the Chapter Notes at the end of this chapter).

Alice and Bob are neighbors, and they share a yard. Alice owns a cat and Bob
owns a dog. Both pets like to run around in the yard, but (naturally) they do
not get along. After some unfortunate experiences, Alice and Bob agree that they
should coordinate to make sure that both pets are never in the yard at the same
time. Of course, we rule out trivial solutions that do not allow any animals into
an empty yard.

How should they do it? Alice and Bob need to agree on mutually compatible
procedures for deciding what to do. We call such an agreement a coordination
protocol (or just a protocol, for short).

The yard is large, so Alice cannot simply look out of the window to check
whether Bob’s dog is present. She could perhaps walk over to Bob’s house and
knock on the door, but that takes a long time, and what if it rains? Alice might
lean out the window and shout “Hey Bob! Can I let the cat out?” The problem
is that Bob might not hear her. He could be watching TV, visiting his girlfriend,
or out shopping for dog food. They could try to coordinate by cell phone, but
the same difficulties arise if Bob is in the shower, driving through a tunnel, or
recharging his phone’s batteries.

Alice has a clever idea. She sets up one or more empty beer cans on Bob’s
windowsill (Fig. 1.4), ties a string around each one, and runs the string back
to her house. Bob does the same. When she wants to send a signal to Bob, she
yanks the string to knock over one of the cans. When Bob notices a can has been
knocked over, he resets the can.

Up-ending beer cans by remote control may seem like a creative solution, but
it is still deeply flawed. The problem is that Alice can place only a limited number
of cans on Bob’s windowsill, and sooner or later, she is going to run out of cans to
knock over. Granted, Bob resets a can as soon as he notices it has been knocked
over, but what if he goes to Canctin for Spring Break? As long as Alice relies on
Bob to reset the beer cans, sooner or later, she might run out.

So Alice and Bob try a different approach. Each one sets up a flag pole, easily
visible to the other. When Alice wants to release her cat, she does the following:

I. She raises her flag.
2. When Bob’s flag is lowered, she unleashes her cat.
3. When her cat comes back, she lowers her flag.

Bob’s behavior is a little more complicated.

I. He raises his flag.
2. While Alice’s flag is raised

a) Bob lowers his flag
b) Bob waits until Alice’s flag is lowered
c) Bob raises his flag

3. Assoon as his flag is raised and hers is down, he unleashes his dog.
4. When his dog comes back, he lowers his flag.

In the previous lecture
You have seen the textbook

https://upload.wikimedia.org/wikipedia/commons/7/7b/An_illustration_of_the_dining_philosophers_problem.png

The Concepts

« Parallelism means two or more tasks can be executed
simultaneously. This is an option, which the compiler and
operating system and processor can exercise, but does not
come with any guarantees.

« Often, this means no shared variables or other resources, and
need not require any synchronization primitives.

« Concurrency means that two or more tasks start, run, and
complete in overlapping time periods, while sharing some

resources.

« If two tasks concurrently set shared variable xto 1 and 2, it is
not clear what value it would have, subsequently.

« More broadly, concurrent access to a mutable shared memory
can result in issues without the use of synchronization primitives
(data race, problém soubéhu) and with the use of
synchronization primitives (deadlock, uvaznuti).

Data Race

Problém soubehu

When we need to ensure mutual exclusion in access to two or more shared
mutable variables, e.g., read value of one of the variables and add it to another
variable, we may need to use some synchronization primitives (e.g.,

mutexes).Without the use of synchronization primitives, we are facing the risk of
a data race.

For example, consider the a silly bank without a solid relational database

management system, where there are three clients: Alice and Bob and
Corporation C.

« Transaction T1: Bob has $100 in his account, but will be paying a $50 bill to
Corporation C. At the same time, in

« Transaction T2, Alice will be paying $100 to Bob.

Depending on the ordering of the reading and writing operations, one may
obtain several outcomes.

Data Race

Problém soubehu

For example, consider the a silly bank without a solid relational database
management system, where there are three clients: Alice and Bob and Corporation C.

« Transaction T1: Bob has $100 in his account, but will be paying a $50 bill to
Corporation C. At the same time, in

-« Transaction T2, Alice will be paying $100 to Bob.

Depending on the ordering of the reading and writing operations, one may obtain
several outcomes:

« Transaction T1 will read $100 valued of Bob's account. Transaction T2 will read
$100 value. Transaction T1 will write $200. Transaction T2 will write $50 value.

« Transaction T1 will read $100 valued of Bob's account. Transaction T1 will write
$50. Transaction T2 will read $50 value.Transaction T2 will write $150 value.

« Transaction T1 will read $100 valued of Bob's account. Transaction T2 will read
$100 value. Transaction T1 will write $50. Transaction T2 will write $200 value.

« Transaction T2 will read $100 value. Transaction T2 will write $200 value.
Transaction T1 will read $200 valued of Bob's account. Transaction T1 will write

$150.
Either Bob or the bank could be up to $100 short.

Deadlock

Problém uvaznuti

« When we need to ensure mutual exclusion in access to two
or more shared variables, e.g., two temporary results
associated with two mutexes, one may naively lock the first
mutex first, and subsequently lock the other mutex.

« This, however, can lead to a deadlock.
« Instead, one needs to lock both mutexes at the same time.
« Easily, one could run:

Locking multiple mutexes at once.

void thread_operation(){
std: :lock(mutexl,mutex?2) ;

complicated_task();

mutexl.unlock();
mutex2.unlock() ;

00 ~N O O b WN -

Open in Compiler Explorer

Deadlock

In Theory

In theory, a deadlock (Czech: “problém uvaznuti') can occur
when:

« each lock is owned by one thread

« each thread has locked at least one lock and needs to lock at
least one more lock

 itis impossible to remove the lock ownership
« there is a cyclic dependency among the lock-using threads.

Amdahl's law

In Theory

« There is almost always some overhead in parallel
programming (e.g., synchronization primitives)

« There is almost always some nonparallelizable code:

- Let us consider the speed-up § = —=¢rie of the parallel code

Tparallel

« E.g.if 10% of the code is nonparallelizable and there are p
processors (hardware threads):

e § = - '.Tserial < Tserial
0.9x Seg‘al+o.1szerial 0.1XTserial

« In general, for a fraction n of nonparallelizable code and p
processors (hardware threads):
e § = - Ts?rial < Tserial
(1-n)X se;tal+nszerial NXTserial

Amdahl's law

In the previous lecture

Log-linear plot for certain proportions Linear plot, for multiples of 10% of

of non-parallelizable code. non-parallizable code
20 ____—_______________'—_____—_____/_____.—;_-_—' ==
—
18 ///
// Parallel portion
16 " 50%
/ 75%
14 / —— 90%
—_— 95%
12
g 8
3 1 e —— - -
& P 5
8 o
6
4 gy, Fret xEccl by it ikt s et bl e it By
2
0
-t T Tee g g g 3 g g e ogogod —
= 8 5 = £ 4 4
Processors
Number of processors

Grafy z:
+ https://upload.wikimedia.org/wikipedia/commons/e/ea/AmdahlsLaw.svg
+ https://www.youtube.com/watch?v=QIHy8pXbnel

https://upload.wikimedia.org/wikipedia/commons/e/ea/AmdahlsLaw.svg

Concurrent programming

The Options

There are two essential models for concurrent programmin%: shared memory
(0

and message passing. In sharing memory, we have broadly

ur options:

Confinement: Do not share memory between threads. This is often
impossible.

Immutability: Do not share any mutable data between threads.

Thread-safe code: Use data types with additional guarantees for storing
any mutable data shared between threads, or even better, use
implementations of algorithms that are already parallelized and handle the
concurrency issues foryou. . .

For example in C++, one can use the standard template library with a
suitable execution policy. . . _
Incioartlcula(, the header execution defines objects std::execution::seq,
std::execution::par, std::execution::par_unseq, which can be passed as the
first argument of any standard algorithm, e.g., std::vector<int> v
std::sort(std::execution::par, v.begin(), v.end());

Synchronization: Use synchronization primitives to prevent accessing the
\clla”aIIOIe at the same time. This option is explored in this chapter in more
etail.

Eventually, we will see that message passin? can be implemented using the
e

synchronization primitives and may be the

ast challenging to use correctly.

Concurrent programming

The Options Revisited

HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient
Descent

Feng Niu, Benjamin Recht, Christopher Re, Stephen J. Wright

Stochastic Gradient Descent (SGD) is a popular algorithm that can achieve state-of-the-art performance on a variety of
machine learning tasks. Several researchers have recently proposed schemes to parallelize SGD, but all require performance-
destroying memory locking and synchronization. This work aims to show using novel theoretical analysis, algorithms, and
implementation that SGD can be implemented without any locking. We present an update scheme called HOGWILD! which
allows processors access to shared memory with the possibility of overwriting each other's work. We show that when the
associated optimization problem is sparse, meaning most gradient updates only modify small parts of the decision variable,
then HOGWILD! achieves a nearly optimal rate of convergence. We demonstrate experimentally that HOGWILD! outperforms

alternative schemes that use locking by an order of magnitude.

" —Hogwild 4 —Hogwild
a -~AlG a --AlIG
33 RR 323 RR
o o | /.
82 82
» »
1 S e]
(a) (b)
1

0 0

2 4 6 8
Number of Splits

2 4 6 8 2 4 6 8
Number of Splits Number of Splits

Figure 2: Total CPU time versus number of threads for (a) RCV1, (b) Abdomen, and (c) DBLife.

Lock-free approaches more broadly:
https://www.youtube.com/watch?v=YI8OrOafcfg&ab_channel=ChurchillCompSciTalks

Structuring code

Processes, Threads, Tasks, Coroutines

« Processes, threads, tasks, and coroutines execute instructions.

« A process provides all of the prerequisites for executing instructions:
loads an executable program,
sets up a virtual address space,
sets up the environment (e.g. environment variables and a security
context),
sets up the process control block (PCB, often stored in registers of the
processor and on a per-process stack in kernel memory), opens handles
to system objects (e.g., files, sockets), and often much more.

« In some sense, one can imagine a virtual machine '’

« All modern operating systems (OS) are multitasking, l.e., running
multiple processes with the operating system forcibly interrupting the
run one one process to execute another Erocess after a certain amount
of time (" preemptive scheduling"). Switching between the processes
involves swapping the process control block (PCB). In Intel architectures,
this is known as the task state segment (TSS), and there is hardware
support for the switch. AMD64 does not support task switches in
hardware.

Structuring code

Processes, Threads, Tasks, Coroutines

- Within a particular process, there is at least one thread. All
threads of a particular process share the same virtual address
space and handles to system objects. Each thread,
independently, operates its own context (registers, stack,
exception handlers).

« Unless declared otherwise, threads of a particular process share
memory and are allocated ‘time slices" by the operating
system.

« This can be seen as a "virtual processor" within a "a virtual
rr|1agh|ne" of a process, often with no guarantees on the time
slicing.

« Most modern processors are multi-core and support
multithreading in some form. This means that each process can
execute multiple "hardware threads' and there is some
support for switching between those. In Intel architectures,
hyper-threading means each hardware core can execute

multiple threads, e.g., two, to take advantage of idle time (e.g.,
loading data, network communications).

Structuring code

Processes, Threads, Tasks, Coroutines

« Within a particular thread, one may utilize multiple
coroutines, which can be seen as subroutines that can run in

multiple steps, but sometimes can serve as a light-weight
alternative to hardware threads.

main regular main

_'l function —'l coroutine

function call create & call

suspend

resume

return v return

L |

https://blog.eiler.eu/posts/20210512/images/coroutines.png

Structuring code

Processes, Threads, Tasks, Coroutines

Within a particular thread, one may utilize multiple coroutines,
which can be seen as subroutines that can run in multiple steps,
but sometimes can serve as a light-weight alternative to
hardware threads. Coroutines can be called, can return when
completed, but also can suspend themselves, yielding control
and partial results, and be resumed by another co-routine.
Typical uses involve generators andfactories and various other
concepts within lazy evaluation”, as well as event-driven
architectures within cooperative multi-tasking.

That is: two coroutines within one thread never run in parallel,
but one can have the runs of two or more coroutines
interleaved. We can suspend a co-routine in one thread and
resume it within another thread.

As it turns out, the “context switch" with user-level threads has
a similar cost to a function call or suspending a coroutine
(co_yield). Indeed, coroutines are typically implemented with
user-level threads, which leads to cheaper context-switch
compared with hardware threads. Within the user-level threads,
one can distinguish stackful and stackless versions, where
coroutine state is saved on the heap (as in C++).

Structuring code

Processes, Threads, Tasks, Coroutines

« Coroutines can be called, can return when completed, but also
can suspend themselves, yielding control and partial results, and
be resumed by another co-routine.

« Typical uses involve generators and factories and various other
concepts within “lazy evaluation", as well as event-driven
architectures within cooperative multl—tasking.

« That is: two coroutines within one thread never run in parallel,
but one can have the runs of two or more coroutines
interleaved. We can suspend a co-routine in one thread and
resume it within another thread.

« As it turns out, the context switch" with user-level threads has
a similar cost to a function call or suspending a coroutine
(co_yield). Indeed, coroutines are typically implemented with
user-level threads, which leads to cheaper context-switch
compared with hardware threads. Within the user-level threads,
one can distinguish stackful and stackless versions, where
coroutine state is saved on the heap (as in C++).

Structuring code

Processes, Threads, Tasks, Coroutines

4 #include <coroutine>
5 #include <iostream>
6
7 // The caller-level type
8 struct Generator {
9 // The coroutine level type
10 struct promise_type {
11 using Handle = std::coroutine_handle<promise_type>;
12
13 Generator get_return_object() {
14 return Generator{Handle::from_promise(*this)};
15 }
16 std: :suspend_always initial_suspend() { return {}; }
17 std: :suspend_always final_suspend() noexcept { return
= {3}
18 std: :suspend_always yield_value(int value) {
19 current_value = value;
20 return {};
21 }
22 void unhandled_exception() { }
23 int current_value;
24 ¥
25
26 explicit Generator(promise_type::Handle coro) :
— coro_(coro) {}
27 // Make move-only
28 Generator(const Generator&) = delete;
29 Generator& operator=(const Generator&) = delete;
30 Generator (Generator&& t) noexcept : coro_(t.coro_) {
— t.coro_ = {}; }
31 Generator& operator=(Generator&& t) noexcept {
32 if (this == &t) return *this;
33 if (coro_) coro_.destroy();
34 coro_ = t.coro_;
35 t.coro_ = {};
36 return *this;
37 }
38
39 int get_next() {
40 coro_.resume() ;
41 return coro_.promise().current_value;
42 }
43
44 private:
45 promise_type::Handle coro_;

A6 L.

Generator myCoroutine() {
int x = 0;
while (true) {
co_yield x++;

int main() {
auto ¢ = myCoroutine();
intx =0;
while ((x = c.get_next()) < 10) {
std::cout << x << "\n";

Structuring code

Processes, Threads, Tasks, Coroutines

An example of the use of coroutines, which currently does not compile in GCC 12.2.

#include <coroutine>
#include <generator>
#include <iostream>

#include <syncstream>

std: :generator<int> work() {
for (dnt 1 = 0; 1 < 10; i++) {
co_yield 1i;
}
10 }

12 int main() {

13 for (int i : work()) {

14 std: :osyncstream(std::cout) << ch << '\n';
15 }

Open in Compiler Explorer

Structuring code

Processes, Threads, Tasks, Coroutines

« A task is a rather abstract unit of work, e.g., a function, which
can be executed by any thread, but often allocated to one of
a many threads within a pool.

Memory order

« First, one should like to understand several options for
implementing synchronization primitives, known as memory
orders. All guarantee atomicity and modification-order
consistency.

Skylake Xeon(R) CPU E3-1505M v5

3.7Ghz

0.27ns cycle

Latency ~

L1: 1.0 ns
L2: 3.5 ns
L3: 12 ns
RAM: 60 ns

L3 slice (2M) L3 slice (2M)

60ns

System Agent

L3 slice (2M) L3 slice (2M)

L1d cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 8192K

Obrazek z https://github.com/GorNishanov/await/blob/master/2018_CppCon/NanoCoroutines%20-
%20Gor%20Nishanov%20-%20CppCon%202018.pdf

Memory order

« First, one should like to understand several options for
implementing synchronization primitives, known as memory
orders. All guarantee atomicity and modification-order
consistency.

CoreLink™ CCI-500

CoreLink GIC-500

I/O Coherent . Mali-v550 J[Mali-DP550
ENEN -
_I NIC-400

Cortex-A72 B Cortex-A53

CorelLink

]
CoreLink MMU-500 NIC-400
I D

Snoop Filter CoreLink CCI-500 MMU-500

I R
CoreLink TZC-400

Memory System

CIETIGIIIN) 3¢ Party: LPDDR34 JD

(DRAM)

)

(Peripherals

https://developer.arm.com/Processors/CorelLink%20CCI-500

Memory order

« Let us focus on ARM in particular:

The ARMv8 architecture employs a weakly-ordered model of

memory. In general terms, this means that

* the order of memory accesses is not required to be the same as
the program order for load and store operations.

* The processor is able to re-order memory read operations with
respect to each other.

* Writes may also be re-ordered (for example, write combining).

As a result, hardware optimizations, such as the use of cache and

write buffer, function in a way that improves the performance of the

processor, which means that the required bandwidth between the

processor and external memory can be reduced and the long latencies

associated with such external memory accesses are hidden.

https://developer.arm.com/documentation/den0024/
a/Memory-Ordering?lang=en

Memory order

InC++11

In memory_order_relaxed, no further guarantees are provided and
specifically no order is imposed on concurrent memory accesses. This is
also how weakly-ordered architectures (e.g. ARM) operate, by default: if
two threads access shared memory the load in one thread does not
have to read a value written by another thread very recently.

With memory_order_release and memory_order_acquire specifiers, we
force weakly-ordered achitectures to behave closer to strongly-ordered
architectures (e.g., Intel). If one thread writes into shared memor
atomically with memory_order_release and another thread read); the
memory atomically with memory_order_acquire, the load in the second
thread is guaranteed to read the value written by another thread.

With memory_order_seq_cst, we additionally require a single total
ordering of all modifications (with this specifier). A load with this
specifier gets its value either from the last store with this specifier or
from some store without this specifier that did not precede the most
recent memory_order_seq_cst store. This is the default option.

Compare and swap

In General

Synchronization primitives are typically implemented using some hardware
instructions, typically compare-and-swap. In locking, these make it
possible to test whether the lock is free, and if so, acquire the lock within a
single operation that the hardware guarantees to execute atomically.

The atomic compare and swap (CAS) instruction compares the value of an
atomic variable against a given value. If there is a match, CAS stores a given
new value in the atomic variable. That is:

« we declare an atomic variable (and a pointer to it)

« (*) we save the value of an atomic variable to a local, private variable (by
dereferencing the pointer)

« based on the saved value in a local, private variable, we compute the
new value, which we would like to store in the atomic variable

« the CAS instruction is used. If the current value matches the value saved
in the local, private variable, we will overwrite the value with the newly
computed value. If the current value no longer matches the value saved
in the local, private variable, we wait (some random and growing from a
small starting value) and repeat from (*).

Compare and swap

InC++

In C++, the atomic header defines two variants of "compare
and swap" and a specialization thereof for pointers:

« bool compare_exchange_weak(_Tp& __e, _Tp _|,
memory_order __s, memory_order __f) noexcept

* bool compare_exchange_strong(_Tp& _e, _Tp _,
memory_order __s, memory_order _f) noexcept

Both are called with the desired value e, the new value i, and
the memory orders to consider if there is a match and if there is
no match.

Typically, if there is a match and we want to replace the value,
we may use std::memory_order_release. If there is no match,
we are just reading the value and std::memory_order_acquire
would suffice. In the latter variant, we pass two pointers.

Compare and Swap

Weak and strong variants

The difference between the weak and strong variant is in
that the weak variant may return false even if there is a
match, in certain cases, but can be much faster in certain
architectures. This notably entails ARM architectures (RISC-V
and MIPS), where the weak variant will be implemented
using the so called load-link/store-conditional pair of
instructions (load exclusive register / Idxr and store exclusive
register / stxr in ARM version 8). These are much faster than

the comparable instructions issuing a barrier (Idaxr/stlxr in
ARM version 8).

All four ARM instructions utilize only two registers, compared
to three registers for CAS proper in Intel arcﬂitectu res
(Compare and exchange / cmpxchg since 80486 and
cmpxchg8b and cmpxchgl6b since Intel Core 2). On recent
Intel ang AMD processors, cmpxchg is only marginally slower
than a non-cached load.

Memory order

InC++11

If you want to understand memory orders in more detail:

« See https://arxiv.org/abs/1803.04432

[Submitted on 12 Mar 2018]
Memory Models for C/C++ Programmers

Manuel Poter, Jesper Larsson Traff

The memory model is the crux of the concurrency semantics of shared-memory systems. It defines the possible values that a read operation is allowed to return for
any given set of write operations performed by a concurrent program, thereby defining the basic semantics of shared variables. It is therefore impossible to
meaningfully reason about a program or any part of the programming language implementation without an unambiguous memory model.

This note provides a brief introduction into the topic of memory models, explaining why it is essential for concurrent programs and covering well known memory
models from sequential consistency to those of the x86 and ARM/POWER CPUs. Section 4 is fully dedicated to the C++11 memory model, explaining how it can be
used to write concurrent code that is not only correct and portable, but also efficient by utilizing the relaxed memory models of modern architectures.

« See also:

https://www.youtube.com/watch?v=A_vAG6LIHWQ®&ab_chan
nel=ACCUConference

Synchronization primitives

 Synchronization primitives make it possible to synchronize or restrict
access of multiple threads to some resources (e.g., global variables, file
handles, sockets). You can use them as an interface, without knowing
their implementation.

« Raw synchronization primitives: Lock, Mutex, Semaphore, Atomic,
Memory Fence, Condition Variable are synchronization Ip.rlmltlves, which
make it'possible to synchronize or restrict access of multiple threads to
some resources.

« Lock is a very general term for a synchronization primitive. Mutexes are
usually used by one thread only, while semaphores are shared between
multiple threads.

« The binary semaphore is the most simple type of a lock, which provides
exclusive access for both reading and writing.

« The counting semaphore limits the use of a single resource by at most a
given number of threads.

« A spinlock, the thread simpl?; waits ("spins”) until the lock becomes
available. This is efficient it threads are blocked for a short time, because
it avoids the overhead of operating system process re-scheduling. It is
inefficient if the lock is held for a long time, or if the progress of the
tﬂreag that is holding the lock depends on preemption of the locked
thread.

Synchronization primitives

InC++

« In C++, the only synchronization primitive that is guaranteed
to be hardware implemented is a particular atomic boolean
type, which is known as std::atomic_flag.

« Unlike all specializations of std::atomic, it is guaranteed to
be lock-free.

« Prior to C++20, it has been very restricted, because there
was no way to check the value of std::atomic_flag without
setting it. C++20 adds method test().

Synchronization primitives

And how to implement them

A silly implementation of a spin lock.

1 // based on https://en.cppreference.com/w/cpp/atomic/atomic_flag
2

3 class SpinLock {

< std::atomic_flag locked = ATOMIC_FLAG_INIT ;

5 public:

6 void lock() {

7 while (locked.test_and_set(std::memory_order_acquire)) {
8 #if defined(__cpp_lib_atomic_flag test)

9 while (locked.test(std::memory_order_relaxed))

10 #endif

11 ;

12 }

13 }

14 void unlock() {

15 locked.clear(std: :memory_order_release);

16 }

17 };

Open in Compiler Explorer =

Further features

In C++23

Further synchronization features

Fences help order non-atomic and atomic memory accesses,
without any associated operations. On Intel architectures
(including x86-64), atomic_thread_fence do not issue any
instructions, except
std::atomic_thread_fence(std::memory_order::seq_cst).

Barrier provides a thread-coordination mechanism that blocks a
group of threads until all threads in that group have reached the

arrier. Such a barrier can be used repeatedly to wait until a
number of threads have finished their operations.

Latch and is a downward counter, whose initial value is initialized

and then threads may block on the latch until the counter is

zero. One thread may decrement a latch multiple times, but no

’lcghread can increment the latch. Thus, it serves as a single-use
arrier.

We will also see synchronized output streams. The synchronized
buffer is flushed only when the destructor of the synchronized
buffer is called, but provides forc?uarantees of atomicity for the
access. (That is, std::endl and std::flush no longer flush!)

Debugging

https://godbolt.org/

= COMPILER . .
= Add...~ More~ Templates Chat on our welcoming Discord x Share
EXPLORER e o
C++source#1 ¢ X o X x86-64 gcc 11.1 (Editor #1) ¢ X
A~ B +- v £ » @C++ v x86-64 gcc 11.1 v ©@ -std=c++2b -fopenmp
1 #include <thread> A~ @ Output..~ VFilter..~ B Libraries + Addnew...> ” Add tool...~
2 #include <queue> " 93
3 #include <iostream> -L93:
4 #include <atomic> 22 mov rax, QWORD PTR [rbp-40]
5 n 23 mov QWORD PTR [rbp-24], rax
24 DWORD PTR bp-28 2
6 class SpinLock { 5 mov 4 (rbp 1])' o4
5 WORD PTR -
7 std::atomic_flag locked = ATOMIC_FLAG_INIT mov rdx, @ (rbp !
. 26 mov eax, 1
8 public: h
27 1, BYTE PTR d.
9 void lock() { e ¥chg ALy [rdx]
10 while (locked.test_and_set(stci: :memory._ nop
. . . : | 29 test al, al
11 ‘ #if defined(_ cpp_lib_atomic_flag_test 20 B
j .L97
12 while (locked.test(std::memory orde 31 jne
13 #endif 3 fop
e ’ 33 oo b
15 } pop rbp
21 e

https://godbolt.org/z/cEdE7r5fq

Debugging

https://godbolt.org/

) £ OMm

PILER (. . | g
= ~pEp Add..~ More~ Templates Chat on our welcoming Discord Share ¥ Policies
\=, EXPLORER P \ d) ‘
C++source #1 # X O X x86-64 gcc 11.1 (Editor #1) # X
A~ B +- v £ » G C++ ¢ x86-64 gce 1.1 v @ -std=c++2b -fopenmp
1 #include <mutex> A~ @Output..> VFilter..v B Libraries + Addnew...> 4 Add tool...~
2 #include <thread> 1 1
ml:
3 #include <iostream>
2 .zero 40
4 #include <syncstream>
5 3 m2:
4 .zero 40
6 std::mutex ml; X
5 f(int):
7 std::mutex m2;
8 6 push rbp
7 mov rb rs
9 void f(int id) { Do S
8 sub rsp, 32
10 std::lock(ml, m2); - .
9 mov DWORD PTR [rbp-20], edi
11 std::lock_guard<std::mutex> lockl(ml, std:: .
- 10 mov esi, OFFSET FLAT:m2
12 std::lock_guard<std::mutex> lock2(m2, std:: .
13 - 11 mov edi, OFFSET FLAT:ml
12 } 12 call void std::lock<std::mutex, std::mutex>(std::mutex&, std::mutex&)
. L 13 lea rax, [rbp-8]
15 int main(int argc, char* argv[]) { .
14 mov esi, OFFSET FLAT:ml
16 std::jthread t1(£f, 1); X
15 mov rdi, rax
17 std::jthread t2(£f, 2);
16 call std: :lock guart*std: tmutex>::lock guard(std::mutex&, std::adopt loc
18 } - - -
19 17 lea rax, [rbp-16]
18 mov esi, OFFSET FLAT:m2
19 mov rdi, rax
20 call std::lock guard<std::mutex>::lock guard(std::mutex&, std::adopt loc
21 lea rax, [rbp-16]
22 mov rdi, rax
23 call std::lock guard<std::mutex>::~lock guard() [complete object destruc
24 lea rax, [rbp-8]
25 mov. rdi, rax

C HEOutput (0/0) x86-64gcc 111 i - 3071ms (5009538) ~29010 lines filtered |= Compiler License

Debugging

https://godbolt.org/

B+~ v £ 2 C++

#include <iostream> Pty

struct A
{

void foo() {std::cout << "1\n";}

template <typename T = int>
void foo() {std::cout << "2\n";}

}i

int main()

{

A X;

x.template foo();
}

A~ OwWwraplines B Libraries % Compilation >.

x86-64 gcc 11.2 v @& -std=c++20

Program returned: 0
Program stdout
1

x86-64 gcc 11.2 § - 1264ms LM

Executor x86-64 clang 13.0.0 (C++, Editor #1) X
A~ [OWraplines @ Libraries % Compilation >.

x86-64 clang 13.0.0 v @ -std=c++20

Program returned: @
Program stdout
2

x86-64 clang 13.0.0 § -7639ms LMl
x64 msvc v19.0 (WINE) (C++, Editor #1, Compiler #3) X

x64 msvc v19.0 (WINE) ¥ € /std:c++20

A~ @ Output...> Y Filter...~ @ Libraries <+ Ad

Debugging

https://clang.llvm.org/docs/ThreadSanitizer.html

« https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual

$ clang++ simple_race.cc -fsanitize=thread -fPIE -pie —g
$./a.out

WARNING: ThreadSanitizer: data race (pid=26327)
Write of size 4 at 0x7f89554701d0 by thread T1:
#0 Threadl(voidx) simple_race.cc:8 (exe+0x000000006e66)

Previous write of size 4 at 0x7f89554701d@ by thread T2:
#0 Thread2(voidx) simple_race.cc:13 (exe+0x000000006ed6)

Thread T1 (tid=26328, running) created at:

#0 pthread_create tsan_interceptors.cc:683 (exe+0x00000001108b)
#1 main simple_race.cc:19 (exe+0x000000006f39)

Thread T2 (tid=26329, running) created at:

#0 pthread_create tsan_interceptors.cc:683 (exe+0x00000001108b)
#1 main simple_race.cc:20 (exe+0x000000006163)

ThreadSanitizer: reported 1 warnings

https://clang.llvm.org/docs/ThreadSanitizer.html
https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual

What comes next?

o fu%ﬂmx

M.s.'.'.'.' !T,,
R)

fe=

Odpovidajici statnicové otazky

Paralelni cast

Hardwarova podpora pro paralelni vypocty:
(super)skalarni architektury, pipelining,
spekulativni vyhodnocovani, vektorove
instrukce, vlakna, procesy, GPGPU.
Hierarchie cache pameti.

Komplikace v paralelnim programovani:
soubéh (race condition), uvaznuti (deadlock),
iluze sdileni (false sharing).

Podpora paralelniho programovani v C a
C++: pthreads, thread, jthread, atomic,
mutex, lock_guard.

Podpora paralelniho programovani v

(task region), rizné implementace
specifikace. Direktivy parallel, for, section,
task, barrier, critical, atomic.

Techniky dekompozice programu: statické a
paralelni rozdéleni prace. Threadpool a fronta
ukoll. Balancovani a zavislosti
(dependencies).

Techniky dekompozice programu na
prikladech z razeni: quick sort, merge sort.

Techniky dekompozice programu na
prikladech z numerické linearni algebry a
strojového uceni: nasobeni matice vektorem,

OpenMP: sériove-paralelni model usporadani nasobeni dvou matic, reseni systému

vlaken (fork-join), paralelizovatelna uloha

linearnich rovnic.

Odpovidajici statnicové otazky

Distribuovana cast

Uvod do distribuovanych systémd (DS). Volba lidra v DS. Algoritmy pro volbu lidra a
Charakteristiky DS. Cas a typy selhani v DS. jejich vlastnosti.

Detekce selhani v DS. Detektory selhani a Konsensus v DS. FLP teorém. Algoritmy pro
jejich vlastnosti. distribuovany konsensus.

Cas a kauzalita v DS. Usporadani udalosti v
DS. Fyzickeé hodiny a jejich synchronizace.
Logické hodiny a jejich synchronizace.

Globalni stav v DS a jeho vypocet. Rez
distribuovaného vypoctu. Algoritmus pro
distribuovany globalni snapshot. Stabilni
vlastnosti DS.

Vzajemneé vylouceni procest v DS. Algoritmy
pro vylouceni procesu a jejich vlastnosti.

