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Resources

http://www.bic.mni.mcgill.ca/~louis/seminars/399-650/pet.html

http://ocw.mit.edu/NR/rdonlyres/Nuclear-Engineering/
22-01Introduction-to-Ionizing-RadiationFall2003/
60AA5867-88AE-49C7-9478-2F4661B4EBBE/0/pet_spect.pdf

http:
//Wgw.pet.mc.duke.edu/rsna04/turk—petspectphysicsRSNA2005.pdf
http://www.nuclear.kth.se/courses/medphys/5A1414/TOFPET1 . pdf
http://www.fmri.org,

A. Webb: Introduction to Biomedical Imaging

images by: Wikipedia, NIH, Moazemi et al., Rager et al., Virginia Commonwealth
University. . .
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Principles of nuclear imaging
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Nuclear versus X-ray imaging

Gomma Rays
(Nuclear Madicine)
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Nuclear versus X-ray imaging (2)

I X-ray and CT
I transmission imaging, external source

I PET, SPECT
I emission imaging, source internal to body
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Nuclear versus X-ray imaging (2)

I X-ray and CT

I transmission imaging, external source
I Anatomic imaging (shape, fracture)

I X-rays

I Good resolution, < 1 mm

I PET, SPECT

I emission imaging, source internal to body

I' Functional imaging (metabolism, perfusion), tracer concentration
I yrays
I Lower resolution, 5 20 mm
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Nuclear imaging applications

N

Hand, osteoarthritis, CT+SPECT
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Nuclear imaging applications

Heart, myocardial perfusion, PET

6/153



Nuclear imaging applications

Brain, FDG PET, metabolism
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Nuclear imaging applications

Renal (kidney) PET+CT, Ga-PSMA contrast agent.
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Nuclear imaging applications

Metastases, SPECT+CT, MIP

6/153



Principles of nuclear imaging

Radioactivity
Radioactive decay

Gamma camera
SPECT
PET

Conclusions

71153



Radioactivity

| element = same number of protons
| isotope/nuclide = same number of protons and neutrons

I excess of neutrons/protons instability ! radioactive decay chaih stable
isotope
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Valley of stability

Isotopes withZ slightly smaller thanN are stable.
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Radioactive decay modes

Unstable parent nucleus Daughter nucleus + particles (energy)

Alpha decay ()
Beta decay ()
Positron decay (*)

|

|

|

| Isomeric transition
| Electron capture
I

Proton emission, neutron emission, ...
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Alpha decay

I Spontaneous emission of particles

| 2 protons + 2 neutronsjHe, charged

I energy 4 8MeV, speed M5c

| strong interaction, low penetration (cm in air,m in tissue), easy shielding

I important biological e ects (relative biological e ectiveness 20), DNA damage
I no use in imaging, used in therapy

I happens in heavy nuclei and Be

I excess energy released agelectromagnetic) rays (photons)

X1 LY+ ﬁlil}e

226R 1 222R + 4 e
e el R
radium radon

g Rn!  ZifPol i1 23°Pb
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Decay chain
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Beta decay

| particles = electrons e
I Neutron conversion

n' pt+te + ¢
e | electron antineutrino

A A
X1 B.uY+e + o

| For neutron-rich N > Z) isotopes

I e ejected with high energy ( rays), continuous spectrum
I remaining energy = ¢, nucleus recoil

I excited state nucleus rays
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Beta decay

Examples

¥cr IN+e + o half-life 5730 years

SMo!  BMTc+e + o half-life 2.7 days
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Isomeric transition

Excited state nucleug rays
MetastableTechnetium 33"Tc

2¥Mo! 29Mo  neutron bombardment

SMo!  ¥MTc+e + o  half-life 27 days

2Tc1 B¥re|  halfiife 6 h
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Isomeric transition

Excited state nucleug rays
MetastableTechnetium 33"Tc

2¥Mo! 29Mo  neutron bombardment

SMo!  ¥MTc+e + o  half-life 27 days

2Tc1 B¥re|  halfiife 6 h

B1ct PRu  half-life> 200000 years

| most commonly used medical radioisotope
I (photon) energy 140 keV
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Multiple decay processes
lodine
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Positron decay
* decay

I * particles = positrons &
| Proton conversion

p! n+e*+ ¢
e | electron neutrino
AX1 2 Y+et+ o

I For proton-rich (N < Z) isotopes
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Positron decay
* decay

Examples

2ZMg! BNa+e' + o halflife 11s

8Gal %zn+e*+ .  halflife 68min
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Positron decay

* decay
| Positron € is annihilated: " +e | +

I two photons with energy 511 keV

| Parent/daughter nuclide energy di erenc& 1 MeV
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Electron capture

| Proton absorbs inner electron

EC
p+te !"" n+ o

A EC A
>X+e | 7 1Y+ e

Example:
51 EC 51
r +e | +
Hey By te
chromium vanadium

I Neutrino carries all energy (characteristic spectrum)
I Can occurr for smaller energy di erences
| Excited state nucleus rays
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Decay mode chart

black: stable, light blue: , green: * or electron capture, orange:, dark blue: ssion, red:

neutron emission, brown: proton emission
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Nuclear imaging methods

| SPECT
| camera (2D)
I single photon emission computed tomography (3D)
I photon emitters
I PET
| positron emission tomography (3D)
| positron emitters
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Ideal radionuclides for SPECT imaging

Physical half-life long enough to allow preparation

Physical half-life short enough to minimize long-term e ects
Pure emitter (isomeric transition, electron capture)

Photon energy high-enough to penetrate tissue

Photon energy low-enough for e cient shielding and detection
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Single photon emitters
for SPECT nuclear imaging

Nuclide Half-life Ephoton [keV]

Technetium 33"Tc  6h 140 most used

lodine 23 13h 159 thyroid imaging
Indium 111In 2:8d 171, 245  good, expensive
Thallium 201TI 3d 70 80  cardiac perfussion
Gallium 8’Ga  325d 90 400 tumor localization

lodine 131I 81d 364 606 radiotherapy
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Positron emitters
for PET nuclear imaging

Nuclide Half-life

Rubidium §2Rb  13min cardiac imaging
Oxygen 0  2min

Nitrogen 1N 10min

Carbon  }'C 203 min

Gallum $8Ga 68min  tumor localization
Fluorine éSF 110 min  most often used, FDG
Copper $Cu 127h  oncology, radiotherapy

Mostly short half-time | need to be produced in-situ.
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Activity

| Activity A[Bq], 1 Bq = 1desintegratiors,
| Older unit 1Ci=37 10°Bq | 1g of radium
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Activity

| Activity A[Bq], 1 Bq = 1desintegratiors,
| Older unit 1Ci=37 10°Bq | 1g of radium
I For N nuclei and adecay constant

dN

A= N-= S
dt
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Exponential decay

| Exponential decay oN
N = Noe
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Exponential decay

| Exponential decay oN

N = Nge !
I Half-life

T =log2=  0:693 [s]
1 Tti
_ - l=2
N = Np 5
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Exponential decay

| Exponential decay oN

N = Nge !
I Half-life

T1- =log 2= 0:693= [g]
1 715
_ - 1=2
N = No >

| Exponential decay oA

A= Age b with Ag= Ng; A= N
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E ective half-life

| Physical half-lifeT
| Biological half-lifeTy,
| E ective half-life Te
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E ective half-life

| Physical half-lifeT
| Biological half-lifeTy,
| E ective half-life Te

Note: Te < Tp, Te< Ty
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Radionuclide production

Neutron capture
Nuclear ssion
Radionuclide generator

(Poisitive) ion bombardment

| Linear accelerator
| Cyclotron
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Neutron capture

Neutron activation/neutron bombardment

I Nuclear reactor, \thermal" neutrons, low energy@ 100eV

| Yield depends on neutron ow, cross section , decay constant , amount of
carrier (source) material

I Chemical/physical puri cation
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Neutron capture

Neutron activation/neutron bombardment

I Nuclear reactor, \thermal" neutrons, low energy@ 100eV

| Yield depends on neutron ow, cross section , decay constant , amount of
carrier (source) material

I Chemical/physical puri cation
n+ %Mo ! Mo+
with proton emission

n+ 3251 32p+p  half-life 14 days
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Radionuclides produced by neutron capture

Mostly used for radiotherapy (excegfMo)
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Nuclear ssion

| Heavy nuclei A > 92) | 23°U, 337U, 33°Pu, 332Th | irradiated by neutrons !
unstable

| Fission example
U+ in!  PMo+ i8S p40n

t|n

I Chemical/physical puri cation
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Fission product yield fg3°U
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Radionuclides produced by nuclear ssion
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Radionuclide generator

I Long half-time parent isotope
| Short half-time daughter isotope,» > 1
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Radionuclide generator

I Long half-time parent isotope
| Short half-time daughter isotope,» > 1
I Daughter activity (for Ayg = 0)

A2: 2

Ap e t e 2
1
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Radionuclide generator

I Long half-time parent isotope
| Short half-time daughter isotope,» > 1
I Daughter activity (for Ayg = 0)

2

A2 = A]_O e it e at
1

| After 10T, transient equilibrium

A; = Ape 1 A= Ay
2
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Transient equilibrium

BMo=33"Tc generator,A;, A;
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Technetium generator

Mo produced by ssion or neutron bombardment,
half-life 67 h

Adsorbed to alumina AlO3

SMo ! 2¥MTc (and 15% to23Tc),

22MTc half-life 6h

29MTc is eluted by physiological saline solution
29MTc can by chemically manipulated

When unused, the rati@3Tc/ 33" Tc increases
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Technetium generator (2)
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Radionuclides produced by generators
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lon bombardment

| Charged particles: mostly p 3H*, also?D*, 3He?*, He?

I Accelerated to high energies by a linear accelerator or cyclotron (typical
E, 18MeV)

| hit target, get absorbed in the nucleus, knock out a neutron
I Typical reactions

2B+p ! cC+n
Bzn+p ! §iGa+2n
18 18
gO+p! gGgF+n

+

I neutron de cit ! emitters (or EC), mostly short-lived
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Radionuclides produced by ion bombardment
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Charged particle in a magnetic eld
Cyclotron principle

I Magnetic (Lorentz) forceF = qv B, perpendicular tov andB !  circular
motion
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Charged particle in a magnetic eld
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Charged particle in a magnetic eld
Cyclotron principle

I Magnetic (Lorentz) forceF = qv B, perpendicular tov andB !  circular
motion
| Centripetal=centrifugal forceF = mv?=r
I r= g%’, sincev. r | ! constantf
I Neglecting relativistic mass increase, electrode shape 44/153



Cyclotron

Vacuum

lon source (batch), mostly H

Hollow 'D' electrodes, high frequency AC voltage (MHz)
Magnetic eld (oriented vertically)
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Cyclotron

I Vacuum
| lon source (batch). mostly H 451153



Real cyclotron
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Real cyclotron
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Carousel

| after 100s of cycles

I H ion hits a thin carbon foil

1 looses electrons, converted p H*

I 1 opposite curvature

| Only part of the beam is deviated 47/153



Carousel

| after 100s of cycles
I H ion hits a thin carbon foil 47/153



Carousel

| after 100s of cycles
I 'H ion hits a thin carbon foil 47)153



Target chamber
Realcn komora

| Filled with a stable isotope 48/153



Target chamber

Reakcn komora

| 380 | rare (0 :2%), enrichment needed (distillation, very smallT po;)
I Cooling needed (by water)

I Thin cobalt alloy foils (havar)

I

Every few hoursi®F can be extracted
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Reakcn komora

| 380 | rare (0 :2%), enrichment needed (distillation, very smallT po;)
I Cooling needed (by water)

I Thin cobalt alloy foils (havar)

I

Every few hoursi®F can be extracted
48/153



Biosynthesizer

| Radiopharmaceutical | radioactively labeled biologically active/compatible
chemical compound.

I Quantitative & qualitative imaging of physiological processes.
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Administration, distribution and excretion

Must traverse membranes to get to the targete organ. 51/153



Administration of radiopharmaceuticals

I Mostly physiological (saline) solution
| Blood-brain barrier

I Intravenously administered contrast agent does not get to the brain
| Contrast agent administered to the cerebro-spinal uid only gets to the brain and
spine.
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Administration of radiopharmaceuticals

I Mostly physiological (saline) solution
| Blood-brain barrier

I Intravenously administered contrast agent does not get to the brain
| Contrast agent administered to the cerebro-spinal uid only gets to the brain and
spine.

| Other metabolic barriers (blood-ocular, blood-air, ...)
I Imaging a nity and metabolism speed
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Radiopharmaceutical construction

Radionuclide + carrier molecule (+ probe)
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Radiopharmaceuticals (tracers) for SPECT imaging
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Radiopharmaceuticals (tracers) for SPECT imaging
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Radiopharmaceuticals (tracers) for SPECT imaging
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Radiopharmaceuticals (tracers) for SPECT imaging

and others: seleniun®Se. ..
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Pharmaceuticals for PET imaging
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Oxygen'O

Half-life 1°0 is 2.5 min.
Carbon dioxide (CO,) | brain blood ow
Oxygen (O3) | oxygen consumption in myocardium, tumors

Water ( H>0) | myocardium perfusion

+ not in uenced by metabolism
{ background'®O activity in lungs and blood vessels
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NitrogenN

| Half-life 13N is 10 min.

I Ammonia (NH3) | myocardium perfusion, blood ow
I metabolized in v tissue
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Carbon!lC

Half-life 11C is 20.4 min.

Acetic acid ( CH3COOH) | myocardium perfusion, tumor metabolism
Cocain, carfentanil,... | brain opiod receptor mechanisms

Deprenyl | monoamine oxidase inhibitor, to study Parkinson disease
Leucin, methionine... | amino acid tracer, brain tumor detection
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Fluorinel8F

| Half-time 18F is 109 min.
| Haloperidol | neuroreceptor ligand, drug e ects

| Sodium uoride Na 18F | skeletal imaging, osseous blood- ow, metastases.
Better signal than®*™Tc

| Fluorodopa... | metabolised to dopamine, neurotransmiter studies
I Flourouracil. .. | drug, nucleic acid tracer, chemotherapy dosage

I Fluorodeoxyglucose (FDG) | glucose metabolism ; neurology, cardiology,
oncology. Penetrates blood-brain barier
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FDG usage

I Brain function mapping
I ...glucoseprovides energy to the brain (for adults 100 g/den)
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FDG usage

I Brain function mapping

I ...glucoseprovides energy to the brain (for adults 100 g/den)
I Tumor mapping

| ...tumors have no metabolic barier
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Rubidium®2Rb

| Half-life 8Rb is 1.25 min.
+ Produced by a generator from Sr, (no cyclotron needed)
{ Long positron free pati  low spatial spatial resolution.
+ Short half-life!  good temporal resolution

{ Short half-life!  weak signal

| Myocard perfusion

| Blood-brain barrier study
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Gamma camera
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Gamma camera
Scintigraphy
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Scintillator materials

| High Z advantageous
I BGO good for 511 keV
| For speed, us8aF, | UV light produced
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Photon Counting Detector (PCD)

| Signal propagation directed by electric eld
| High quantum e ciency

I High spacial resolution
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Lung scintigraphy

Most frequent use.

Ventilation (Xe), perfusion 9™ Tc). Pulmonary embolism (blocked artery) s



SPECT
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SPECT, brain imaging

81/153



82/153



Principles of nuclear imaging
Radioactivity
Gamma camera

SPECT

Clinical applications of SPECT
PET

Conclusions

83/153



84/153



SPECT, Brain perfusion
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SPECT, Whole-body imaging
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SPECT, Whole-body imaging
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PET
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