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Why reinforcement learning?

I https://www.youtube.com/watch?v=l8zKZLqkfII

I https://www.youtube.com/watch?v=W_gxLKSsSIE&list=

PL5nBAYUyJTrM48dViibyi68urttMlUv7e

I AlphaGo, AlphaZero, . . .

I autonomous helicopter flying

I solving Rubik’s cube (2019):
https://openai.com/blog/solving-rubiks-cube/
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What makes it successful?

I agent learns from reward and punishment

I inspired by nature (pain/hunger = negative, pleasure/food =
positive)



Simplest setting

I sequential decision problem

I fully observable environment

I stochastic environment with Markovian transition model

I additive rewards/discounted rewards

= Markov decision process
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Markov decision process

5-tuple (S ,A,P(s ′ | s, a), r(s), γ)
I S is a finite set of states

I A is a finite set of actions

I P(s ′ | s, a) is the probability that action a in state s will lead
to state s ′

I r(s) is the immediate reward received in state s

I γ ∈ [0, 1] is the discount factor

I What if γ = 0?
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What is a solution?

I A fixed sequence of states does not solve the problem . . . why?

I A solution must specify what to do in any state.

I This solution is called policy π.

I π(s) recommends action is state s.
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Criteria - sum of discounted rewards

I Expected utility obtained by executing π starting in s0 is the
sum of discounted rewards

I How to calculate it?
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Criteria - sum of discounted rewards

I Expected utility obtained by executing π starting in s0 is the
sum of discounted rewards

I

Uπ(s0) = E

( ∞∑
k=0

γk r(sk)

)

I
π(s) = argmax

π
Uπ(s)



Utility in Marcovian setting

I Choose action a ∈ A(s) that maximizes the expected utility of
the subsequent state:

π∗(s) = argmax
a∈A(s)

∑
s′

P(s ′ | s, a)U(s ′)

I Bellman equation

U(s) = r(s) + γ max
a∈A(s)

∑
s′

P(s ′ | s, a)U(s ′).

I An alternative formulation . . . what is different?

U(s) = max
a∈A(s)

∑
s′

P(s ′ | s, a)(r(s, a, s ′) + γU(s ′))
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Value iteration

I Bellman update

Ûi+1(s)← r(s) + γ max
a∈A(s)

∑
s′

P(s ′ | s, a)Ûi (s
′)

I The utility function is a fixed point of Bellman update.

I Connection to fixed point iteration.



Value iteration

Û(s) gets initial values
repeat

∆← 0
for all s ∈ S do

tmp ← Û(s)
Û(s)← r(s) + γmaxa∈A(s)

∑
s′ P(s

′ | s, a)tmp(s ′)

∆← max(∆, |tmp − Û(s)|)
end for

until ∆ < θ

I Convergence guaranteed.

I A bound on relative error available.



Policy iteration

Û(s) ∈ R and π(s) ∈ A(s) are arbitrary
repeat

∆← 0
for all s ∈ S do ◃ Policy evaluation

tmp ← Û(s)
Û(s)← r(s) + γ

∑
s′ P(s

′ | s, π(s))tmp(s ′)

∆← max(∆, |tmp − Û(s)|)
end for

until ∆ < θ ◃ Or simply solve the system of linear equations.

π(s)← argmaxa∈A(s)
∑

s′ P(s
′ | s, a)Û(s ′) ◃ P. improvement

if policy did not change, stop.
Otherwise goto policy evaluation step.

I We do not need exact utility values.



Example
There are 4 matches lying on a table. The goal of an automated robot is
to gradually remove them such that there is no match remaining on the
table. The robot can remove 1 or 2 matches in one step. The problem is
that the robot’s arm is unreliable, it can remove more matches than the
robot planned. To be precise, in half the attempts the arm removes one
more match than planned. If the robot tries to remove more matches
than actually available, the task becomes cyclic (-1 turns into 4, -2 turns
into 3). Propose the optimal robot control strategy, the goal is to
minimize the number of steps.

(a) Propose a task formalization based on Markov Decision Process
(MDP).

(b) Formally derive the optimal strategy. If the derivation turns out
difficult, show a few steps only and define the termination
conditions.

(c) Use the derivation ad b and for each state select one out of two
available actions.

(d) How many steps the robot with the optimal control strategy needs
to reach zero matches?
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