
Bayesian Networks II
Monday, March 28, 2022



Part 1: Recap



Materials

Great materials on BNs from Volodymyr Kuleshov and Stefano Ermon from 
Stanford:


https://ermongroup.github.io/cs228-notes/

https://ermongroup.github.io/cs228-notes/


Bayesian Network (The Graph)

X1 X2

X3

X4 X5



Bayesian Network Distribution 

Given a BN with a graph , the BN induces the following distribution:


.

G

P(x1, x2, …, xn) =
n

∏
i=1

PXi|Par(Xi) (xi |parx(Xi)))

P(x1, x2, …, xn) = P[X1 = x1 ∧ X2 = x2 ∧ … ∧ Xn = xn]



Conditional Independence
Definition (special case of 3 random variables ):  
Definition 1:  and  are conditionally independent given  if




holds for all values  (using the alternative notation: 

). 

Definition 2:  and  are conditionally independent given  if




holds for all values  (using the alternative notation: 
).

X, Y, Z
X Y Z

P[X = x ∧ Y = y |Z = z] = P[X = x |Z = z] ⋅ P[Y = y |Z = z]
x, y, z

PX,Y|Z(x, y |z) = PX|Z(x |z) ⋅ PY|Z(y |z)

X Y Z
P[X = x |Y = y ∧ Z = z] = P[X = x |Z = z]

x, y, z
PX|Y,Z(x |y, z) = PX|Z(x |z)



Conditional Independence

Notation: The notation for  and  are conditionally independent given  is 
written:


 

X Y Z

X ⊥⊥ Y |Z



D-Separation
Given a Bayesian network and a set of variables  that are conditioned on, 
we will want to detect those random variables that are conditionally 
independent given the values of the variables in .


Two variables  and  are conditionally independent given  if there 
is no active path connecting them.

ℰ

ℰ

X1 X2 ℰ



Active Path (1/3)
We will be checking all undirected paths between the two variables (i.e. 
ignoring the direction of the edges).


Terminology: Nodes which we condition on will be called observed nodes 
and the others unobserved nodes.




Active Path (2/3)
Active triples: Blocked triples: 

X2X1 X3
X2X1 X3 X2

X1 X3

X2

X1 X3

X2

X1 X3

Xi

…

X2

X1 X3

X2

X1 X3



Active Path (3/3)
Definition: A path is active if all triples along it are active. Otherwise it is blocked.


EXAMPLES:

X2X1 X3 X4 X5 X6

The path from  to  is active.X1 X6

X2X1 X3 X4 X5 X6

The path from  to  is blocked.X1 X6

X2X1 X3 X4 X5 X6

The path from  to  is active.X1 X6



Part 2: Variable Elimination 
Algorithm (Intuition)



Marginal Inference
Problem: Given a BN on random variables , compute the 
probability , where  is a subset of 

the random variables .


Example: Compute  from the BN shown here:

X1, X2, …, Xn
PXi1,Xi2,…,Xik

(xi1, xi2, …, xik) Xi1, Xi2, …, Xik
X1, X2, …, Xn

PX1,X5
(a, b)

X1 X2

X3

X4 X5



Let’s Simplify Notation (1/2)

To simplify notation, we will assume that: 

• We have a joint distribution, given by a BN, on random variables 
 (this is the same as was before ).


• We want to compute the marginal probability . 


• We will call  unobserved random variables.

Y1, Y2, …, Yk, Z1, …, Zl X1, X2, …, Xn

PY1,…,Yk
(y1, …, yk)

Z1, …, Zl



Let’s Simplify Notation (2/2)

What we want to compute is now: 




where  is the joint probability given by the Bayesian 
network.

PY1,…,Yk
(y1, …, yk) = ∑

z1

∑
z2

…∑
zl

P(y1, …, yk, z1, …, zl)

P(y1, …, yk, z1, …, zl)



Naive Approach
Naive idea (we won’t be able to do better in the worst case): 

Compute the following sum explicitly:


.


This will have exponential complexity in the number of 
random variables.

PY1
(y1) = ∑

z1

∑
z2

∑
z3

P(y1, z1, z2, z3)

Y1 Z1

Z2

Z3



Naive Approach: Example (1/2)

Y1 Z1

Z2

Z3

P[Y1 = 1] = PY1
(1) = ?

Y1 Z2

0 0 0.2

1 0 0.8

0 1 0.9

1 1 0.1

PY1|Z2 Z1 Z2

0 0 0.5

1 0 0.5

0 1 0.1

1 1 0.9

PZ1|Z2 Z1 Z2

0 0 0.5

1 0 0.5

0 1 0.1

1 1 0.9

PZ2|Z3

Z3

0 0.4
1 0.6

PZ3



Naive Approach: Example (2/2)

Y1 Z1

Z2

Z3

Y1 Z2

0 0 0.2

1 0 0.8

0 1 0.9

1 1 0.1

PY1|Z2 Z1 Z2

0 0 0.5

1 0 0.5

0 1 0.1

1 1 0.9

PZ1|Z2 Z1 Z2

0 0 0.5

1 0 0.5

0 1 0.1

1 1 0.9

PZ2|Z3












PY1
(1) =

1

∑
z1=0

1

∑
z2=0

1

∑
z3=0

P(1,z1, z2, z3) =

1

∑
z1=0

1

∑
z2=0

1

∑
z3=0

PY1|Z2
(1 |z2)PZ1|Z2

(z1 |z2)PZ2|Z3
(z2 |z3)PZ3

(z3)

= 0.8 ⋅ 0.5 ⋅ 0.5 ⋅ 0.4 + 0.8 ⋅ 0.5 ⋅ 0.1 ⋅ 0.6 + 0.1 ⋅ 0.1 ⋅ 0.5 ⋅ 0.4+
+0.1 ⋅ 0.1 ⋅ 0.9 ⋅ 0.6 + 0.8 ⋅ 0.5 ⋅ 0.5 ⋅ 0.4 + 0.8 ⋅ 0.5 ⋅ 0.1 ⋅ 0.6
+0.1 ⋅ 0.9 ⋅ 0.5 ⋅ 0.4 + 0.1 ⋅ 0.9 ⋅ 0.9 ⋅ 0.6 = 0.282

Z3

0 0.4
1 0.6

PZ3



Naive Approach: Example (2/2)

Y1 Z1

Z2

Z3

Y1 Z2

0 0 0.2

1 0 0.8

0 1 0.9

1 1 0.1

PY1|Z2 Z1 Z2

0 0 0.5

1 0 0.5

0 1 0.1

1 1 0.9

PZ1|Z2 Z1 Z2

0 0 0.5

1 0 0.5

0 1 0.1

1 1 0.9

PZ2|Z3












PY1
(1) =

1

∑
z1=0

1

∑
z2=0

1

∑
z3=0

P(1,z1, z2, z3) =

1

∑
z1=0

1

∑
z2=0

1

∑
z3=0

PY1|Z2
(1 |z2)PZ1|Z2

(z1 |z2)PZ2|Z3
(z2 |z3)PZ3

(z3)

= 0.8 ⋅ 0.5 ⋅ 0.5 ⋅ 0.4 + 0.8 ⋅ 0.5 ⋅ 0.1 ⋅ 0.6 + 0.1 ⋅ 0.1 ⋅ 0.5 ⋅ 0.4+
+0.1 ⋅ 0.1 ⋅ 0.9 ⋅ 0.6 + 0.8 ⋅ 0.5 ⋅ 0.5 ⋅ 0.4 + 0.8 ⋅ 0.5 ⋅ 0.1 ⋅ 0.6
+0.1 ⋅ 0.9 ⋅ 0.5 ⋅ 0.4 + 0.1 ⋅ 0.9 ⋅ 0.9 ⋅ 0.6 = 0.282

Z3

0 0.4
1 0.6

PZ3



Naive Approach: Example (2/2)

Y1 Z1

Z2

Z3

Y1 Z2

0 0 0.2

1 0 0.8

0 1 0.9

1 1 0.1

PY1|Z2 Z1 Z2

0 0 0.5

1 0 0.5

0 1 0.1

1 1 0.9

PZ1|Z2 Z1 Z2

0 0 0.5

1 0 0.5

0 1 0.1

1 1 0.9

PZ2|Z3












PY1
(1) =

1

∑
z1=0

1

∑
z2=0

1

∑
z3=0

P(1,z1, z2, z3) =

1

∑
z1=0

1

∑
z2=0

1

∑
z3=0

PY1|Z2
(1 |z2)PZ1|Z2

(z1 |z2)PZ2|Z3
(z2 |z3)PZ3

(z3)

= 0.8 ⋅ 0.5 ⋅ 0.5 ⋅ 0.4 + 0.8 ⋅ 0.5 ⋅ 0.1 ⋅ 0.6 + 0.1 ⋅ 0.1 ⋅ 0.5 ⋅ 0.4+
+0.1 ⋅ 0.1 ⋅ 0.9 ⋅ 0.6 + 0.8 ⋅ 0.5 ⋅ 0.5 ⋅ 0.4 + 0.8 ⋅ 0.5 ⋅ 0.1 ⋅ 0.6
+0.1 ⋅ 0.9 ⋅ 0.5 ⋅ 0.4 + 0.1 ⋅ 0.9 ⋅ 0.9 ⋅ 0.6 = 0.282

Z3

0 0.4
1 0.6

PZ3



Naive Approach: Example (2/2)

Y1 Z1

Z2

Z3

Y1 Z2

0 0 0.2

1 0 0.8

0 1 0.9

1 1 0.1

PY1|Z2 Z1 Z2

0 0 0.5

1 0 0.5

0 1 0.1

1 1 0.9

PZ1|Z2 Z1 Z2

0 0 0.5

1 0 0.5

0 1 0.1

1 1 0.9

PZ2|Z3












PY1
(1) =

1

∑
z1=0

1

∑
z2=0

1

∑
z3=0

P(1,z1, z2, z3) =

1

∑
z1=0

1

∑
z2=0

1

∑
z3=0

PY1|Z2
(1 |z2)PZ1|Z2

(z1 |z2)PZ2|Z3
(z2 |z3)PZ3

(z3)

= 0.8 ⋅ 0.5 ⋅ 0.5 ⋅ 0.4 + 0.8 ⋅ 0.5 ⋅ 0.1 ⋅ 0.6 + 0.1 ⋅ 0.1 ⋅ 0.5 ⋅ 0.4+
+0.1 ⋅ 0.1 ⋅ 0.9 ⋅ 0.6 + 0.8 ⋅ 0.5 ⋅ 0.5 ⋅ 0.4 + 0.8 ⋅ 0.5 ⋅ 0.1 ⋅ 0.6
+0.1 ⋅ 0.9 ⋅ 0.5 ⋅ 0.4 + 0.1 ⋅ 0.9 ⋅ 0.9 ⋅ 0.6 = 0.282

Z3

0 0.4
1 0.6

PZ3

We need  additions 
and 24 multiplications…

23 − 1 = 7



Variable Elimination: Basic Idea (1/11)


PY1
(1) =

1

∑
z1=0

1

∑
z2=0

1

∑
z3=0

P(1,z1, z2, z3) =

Y1 Z1

Z2

Z3



Variable Elimination: Basic Idea (2/11)







PY1
(1) =

1

∑
z1=0

1

∑
z2=0

1

∑
z3=0

P(1,z1, z2, z3) =

=
1

∑
z1=0

1

∑
z2=0

1

∑
z3=0

PY1|Z2
(1 |z2)PZ1|Z2

(z1 |z2)PZ2|Z3
(z2 |z3)PZ3

(z3) =

Y1 Z1

Z2

Z3



Variable Elimination: Basic Idea (3/11)







PY1
(1) =

1

∑
z1=0

1

∑
z2=0

1

∑
z3=0

P(1,z1, z2, z3) =

=
1

∑
z1=0

1

∑
z2=0

1

∑
z3=0

PY1|Z2
(1 |z2)PZ1|Z2

(z1 |z2)PZ2|Z3
(z2 |z3)PZ3

(z3) =

=
1

∑
z2=0

1

∑
z3=0

PY1|Z2
(1 |z2)PZ2|Z3

(z2 |z3)PZ3
(z3)

1

∑
z1=0

PZ1|Z2
(z1 |z2)

=G1(z2)

Y1 Z1

Z2

Z3



Variable Elimination: Basic Idea (4/11)







PY1
(1) =

1

∑
z1=0

1

∑
z2=0

1

∑
z3=0

P(1,z1, z2, z3) =

=
1

∑
z1=0

1

∑
z2=0

1

∑
z3=0

PY1|Z2
(1 |z2)PZ1|Z2

(z1 |z2)PZ2|Z3
(z2 |z3)PZ3

(z3) =

=
1

∑
z2=0

1

∑
z3=0

PY1|Z2
(1 |z2)PZ2|Z3

(z2 |z3)PZ3
(z3)

1

∑
z1=0

PZ1|Z2
(z1 |z2)

=G1(z2)

Y1 Z1

Z2

Z3

G1(0) = 0.5 + 0.5 = 1
G1(1) = 0.1 + 0.9 = 1



Variable Elimination: Basic Idea (7/11)







PY1
(1) =

1

∑
z1=0

1

∑
z2=0

1

∑
z3=0

P(1,z1, z2, z3) =

=
1

∑
z1=0

1

∑
z2=0

1

∑
z3=0

PY1|Z2
(1 |z2)PZ1|Z2

(z1 |z2)PZ2|Z3
(z2 |z3)PZ3

(z3) =

=
1

∑
z3=0

PZ3
(z3)

1

∑
z2=0

PY1|Z2
(1 |z2)PZ2|Z3

(z2 |z3)G1(z2)
Y1 Z1

Z2

Z3

G1(0) = 0.5 + 0.5 = 1
G1(1) = 0.1 + 0.9 = 1



Variable Elimination: Basic Idea (9/11)







PY1
(1) =

1

∑
z1=0

1

∑
z2=0

1

∑
z3=0

P(1,z1, z2, z3) =

=
1

∑
z1=0

1

∑
z2=0

1

∑
z3=0

PY1|Z2
(1 |z2)PZ1|Z2

(z1 |z2)PZ2|Z3
(z2 |z3)PZ3

(z3) =

=
1

∑
z3=0

PZ3
(z3)G2(z3)

Y1 Z1

Z2

Z3

G2(0) = 0.8 ⋅ 0.5 ⋅ 1 + 0.1 ⋅ 0.5 ⋅ 1 = 0.45
G2(1) = 0.8 ⋅ 0.1 ⋅ 1 + 0.1 ⋅ 0.9 ⋅ 1 = 0.17



Variable Elimination: Basic Idea (10/11)







PY1
(1) =

1

∑
z1=0

1

∑
z2=0

1

∑
z3=0

P(1,z1, z2, z3) =

=
1

∑
z1=0

1

∑
z2=0

1

∑
z3=0

PY1|Z2
(1 |z2)PZ1|Z2

(z1 |z2)PZ2|Z3
(z2 |z3)PZ3

(z3) =

=
1

∑
z3=0

PZ3
(z3)G2(z3)

Y1 Z1

Z2

Z3

G2(0) = 0.8 ⋅ 0.5 ⋅ 1 + 0.1 ⋅ 0.5 ⋅ 1 = 0.45
G2(1) = 0.8 ⋅ 0.1 ⋅ 1 + 0.1 ⋅ 0.9 ⋅ 1 = 0.17



Variable Elimination: Basic Idea (11/11)







PY1
(1) =

1

∑
z1=0

1

∑
z2=0

1

∑
z3=0

P(1,z1, z2, z3) =

=
1

∑
z1=0

1

∑
z2=0

1

∑
z3=0

PY1|Z2
(1 |z2)PZ1|Z2

(z1 |z2)PZ2|Z3
(z2 |z3)PZ3

(z3) =

=
1

∑
z3=0

PZ3
(z3)G2(z3)

Y1 Z1

Z2

Z3

G2(0) = 0.8 ⋅ 0.5 ⋅ 1 + 0.1 ⋅ 0.5 ⋅ 1 = 0.45
G2(1) = 0.8 ⋅ 0.1 ⋅ 1 + 0.1 ⋅ 0.9 ⋅ 1 = 0.17

PY1
(1) = 0.4 ⋅ 0.45 + 0.6 ⋅ 0.17 = 0.282



How Many Operations Did We Need?

10 multiplications and 5 additions (we needed 24 multiplications and 7 
additions fot the naive approach!)

G1(0) = 0.5 + 0.5 = 1
G1(1) = 0.1 + 0.9 = 1

G2(0) = 0.8 ⋅ 0.5 ⋅ 1 + 0.1 ⋅ 0.5 ⋅ 1 = 0.45
G2(1) = 0.8 ⋅ 0.1 ⋅ 1 + 0.1 ⋅ 0.9 ⋅ 1 = 0.17

PY1
(1) = 0.4 ⋅ 0.45 + 0.6 ⋅ 0.17 = 0.282



Variable Elimination: Example II (1/8)


PY1
(1) =

1

∑
z1=0

1

∑
z2=0

1

∑
z3=0

P(1,z1, z2, z3) =

=
1

∑
z1=0

1

∑
z2=0

1

∑
z3=0

PY1|Z2
(1 |z2)PZ2|Z1,Z3

(z2 |z1, z3)PZ1
(z1)PZ3

(z3) Y1

Z1

Z2

Z3



Variable Elimination: Example II (2/8)






PY1
(1) =

1

∑
z1=0

1

∑
z2=0

1

∑
z3=0

P(1,z1, z2, z3) =

=
1

∑
z1=0

1

∑
z2=0

1

∑
z3=0

PY1|Z2
(1 |z2)PZ2|Z1,Z3

(z2 |z1, z3)PZ1
(z1)PZ3

(z3) =

=
1

∑
z2=0

1

∑
z3=0

PY1|Z2
(1 |z2)PZ3

(z3)
1

∑
z1=0

PZ1
(z1)PZ2|Z1,Z3

(z2 |z1, z3)
Y1

Z1

Z2

Z3



Variable Elimination: Example II (3/8)






PY1
(1) =

1

∑
z1=0

1

∑
z2=0

1

∑
z3=0

P(1,z1, z2, z3) =

=
1

∑
z1=0

1

∑
z2=0

1

∑
z3=0

PY1|Z2
(1 |z2)PZ2|Z1,Z3

(z2 |z1, z3)PZ1
(z1)PZ3

(z3) =

=
1

∑
z2=0

1

∑
z3=0

PY1|Z2
(1 |z2)PZ3

(z3)
1

∑
z1=0

PZ1
(z1)PZ2|Z1,Z3

(z2 |z1, z3)

=G1(z2,z3)

Y1

Z1

Z2

Z3

G1(0,0) = …, G1(0,1) = …
G1(1,0) = …, G1(1,1) = …



Variable Elimination: Example II (4/8)







PY1
(1) =

1

∑
z1=0

1

∑
z2=0

1

∑
z3=0

P(1,z1, z2, z3) =

=
1

∑
z1=0

1

∑
z2=0

1

∑
z3=0

PY1|Z2
(1 |z2)PZ2|Z1,Z3

(z2 |z1, z3)PZ1
(z1)PZ3

(z3) =

=
1

∑
z2=0

1

∑
z3=0

PY1|Z2
(1 |z2)PZ3

(z3)G1(z2, z3) Y1

Z1

Z2

Z3



Variable Elimination: Example II (6/8)







PY1
(1) =

1

∑
z1=0

1

∑
z2=0

1

∑
z3=0

P(1,z1, z2, z3) =

=
1

∑
z1=0

1

∑
z2=0

1

∑
z3=0

PY1|Z2
(1 |z2)PZ2|Z1,Z3

(z2 |z1, z3)PZ1
(z1)PZ3

(z3) =

=
1

∑
z3=0

PZ3
(z3)

1

∑
z2=0

PY1|Z2
(1 |z2)G1(z2, z3) Y1

Z1

Z2

Z3



Variable Elimination: Example II (7/8)






PY1
(1) =

1

∑
z1=0

1

∑
z2=0

1

∑
z3=0

P(1,z1, z2, z3) =

=
1

∑
z1=0

1

∑
z2=0

1

∑
z3=0

PY1|Z2
(1 |z2)PZ2|Z1,Z3

(z2 |z1, z3)PZ1
(z1)PZ3

(z3) =

=
1

∑
z3=0

PZ3
(z3)

1

∑
z2=0

PY1|Z2
(1 |z2)G1(z2, z3)

=G2(z3)

Y1

Z1

Z2

Z3

G2(0) = …,
G2(1) = …,



Variable Elimination: Example II (8/8)







PY1
(1) =

1

∑
z1=0

1

∑
z2=0

1

∑
z3=0

P(1,z1, z2, z3) =

=
1

∑
z1=0

1

∑
z2=0

1

∑
z3=0

PY1|Z2
(1 |z2)PZ2|Z1,Z3

(z2 |z1, z3)PZ1
(z1)PZ3

(z3) =

=
1

∑
z3=0

PZ3
(z3)G2(z3) Y1

Z1

Z2

Z3



Factor Representation (1/2)
We will now abstract a bit… We will replace conditional probabilities in a BN by factors 

. This is for now just a change of notation, which will simplify things.


So instead of





we will write





where each  is a tuple consisting of a subset of .

ψi(xi, xp1
, …, xpk

)

P(x1, x2, …, xn) =
n

∏
i=1

PXi|Par(Xi) (xi |parx(Xi)))

P(x1, …, xn) =
n

∏
i=1

ψi(vi)

vi {x1, x2, …, xn}



Factor Representation (2/2)
We will now abstract a bit… We will replace conditional probabilities in a BN by factors 

. This is for now just a change of notation, which will simplify things.


So instead of





we will write





where each  is a tuple consisting of a subset of .

ψi(xi, xp1
, …, xpk

)

P(x1, x2, …, xn) =
n

∏
i=1

PXi|Par(Xi) (xi |parx(Xi)))

P(x1, …, xn) =
n

∏
i=1

ψi(vi)

vi {x1, x2, …, xn}
This can simply be done by setting  and  
where  are the parents of  (more precisely, their values).

ψi(vi) = PXi|Par(Xi) (xi |parx(Xi))) vi = (xi, x′ 1, …, x′ ki
)

x′ 1, x′ 2, …, x′ ki
Xi



Two Operations: Product
Product: 
Given factors  and , their product is defined simply as:


,


where . (Note that this will be 
represented as a table that will have a row for every possible combination of the 
values of the variables in it.)


Example: 
, . Then


.

ψ1(xi1, …, xik) ψ2(xj1, …, xjk)
ψ1×2(xh1

, …, xhk
) = ψ1(xi1, …, xik) ⋅ ψ2(xj1, …, xjk)

{xh1
, …, xhk

} = {xi1, …, xik} ∪ {xj1, …, xjk}

ψ1(x1, x2) = PX1|X2
(x1 |x2) ψ2(x2, x3) = PX2|X3

(x2 |x3)

ψ1×2(x1, x2, x3) = PX1|X2
(x1 |x2) ⋅ PX2|X3

(x2 |x3)



Two Operations: Marginalization
Marginalization: 
Given a factor  and a variable , the marginalization is:


.


Example: 
Let us have a factor . Then


.


Note: The operations product and marginalization are similar in spirit to join and 
projection operations from relational databases.

ψ(xi1, …, xi*, …, xik) xi*

τi*(xi1, …, xi*−1, xi*+1, …, xik) = ∑
xi*

ψ(xi1, …, xi*, …, xik)

ψ(x1, x2, x3)
τ2(x1, x3) = ∑

x2

ψ(x1, x2, x3)



Variable Elimination: Algorithm

Assume that the unobserved random variables of the BN are ordered as 
.


For : 

Collect all factors containing  and compute their product .


Marginalize out  from  and call the result .


Remove all factors containing  and add  instead.

Z1, Z2, …, Zn

i = 1,…, n
Zi ψ(i)

prod

Zi ψ(i)
prod τ

Zi τ



The Elimination Order Matters

The number of operations (~runtime)  depends on the ordering of the 
unobserved variables that we use when eliminating them.


The runtime depends on the size of the intermediate factors and that 
depends on the order.


Finding the best ordering is an NP-hard problem (but there are heuristics).




Part 3: Approximate Methods



Approximate Methods

Variable elimination is an exact method.


Exact inference is computationally hard. Computing marginal probabilities in 
Bayesian networks is #P-hard.


Now we will take a look at approximate methods based on sampling.



Forward Sampling
Generating samples from a distribution given by a Bayesian network (without  
evidence) is easy… 

Algorithm: 
Let the nodes of  be ordered topologically. (That is, for all , all 

 parents must preceed  in this ordering.) 
Initialize:  
For : 

Let  be the parents of  and  be the 
conditional distribution of .

Sample .


Set .

X1, X2, …, Xn i
X′ is Xi

Sampled = []
i = 1,…, n
Xi1, Xi2, …, Xil Xi PXi,Par(Xi)(x | , xi1, …, xil)

Xi

xi ∼ PXi|Par(Xi)( . |Sampled[i1], Sampled[i2], …, Sampled[il])
Sampled[i] = xi



Forward Sampling: Example
Topological ordering? …  ✅
X1, X2, X3, X4

X4

X1

X3

X2



Forward Sampling: Example
Topological ordering? …  ✅

Sample , e.g.  

 

X1, X2, X3, X4

x1 ∼ PX1
( . ) x1 = 0

Sampled = [0]

X4

X1

X3

X2



Forward Sampling: Example
Topological ordering? …  ✅

Sample , e.g.  

 
Sample , e.g.  

 

X1, X2, X3, X4

x1 ∼ PX1
( . ) x1 = 0

Sampled = [0]
x2 ∼ PX2

( . ) x2 = 1
Sampled = [0,1]

X4

X1

X3

X2



Forward Sampling: Example
Topological ordering? …  ✅

Sample , e.g.  

 
Sample , e.g.  

 
Sample , e.g.  

X1, X2, X3, X4

x1 ∼ PX1
( . ) x1 = 0

Sampled = [0]
x2 ∼ PX2

( . ) x2 = 1
Sampled = [0,1]

x3 ∼ PX3|X1,X2
( . |0,1) x3 = 1

Sampled = [0,1,1]X4

X1

X3

X2



Forward Sampling: Example
Topological ordering? …  ✅

Sample , e.g.  

 
Sample , e.g.  

 
Sample , e.g.  

 
Sample , e.g.  

X1, X2, X3, X4

x1 ∼ PX1
( . ) x1 = 0

Sampled = [0]
x2 ∼ PX2

( . ) x2 = 1
Sampled = [0,1]

x3 ∼ PX3|X1,X2
( . |0,1) x3 = 1

Sampled = [0,1,1]
x4 ∼ PX4|X3

( . |1) x4 = 1
Sampled = [0,1,1,1]

X4

X1

X3

X2



Monte Carlo Estimation

We can use forward sampling to estimate marginal probabilities (without 
conditioning):


.PY(y) ≈
1
N ∑

(y(i),z(i))

𝕀(y(i) = val)



Sampling with Evidence
How can we sample from a BN if there is evidence on some 
random variables?


Example: How can we sample ?


Note: One possibility is to use marginal inference and to compute 
 for all tuples  as 

. However, that is something we want to 
avoid… after all we sample to do approximate marginal inference.

(x1, x2, x3) ∼ PX1,X2,X3|X4
( . , . , . |x4)

PX1,X2,X3|X4
(x1, x2, x3 |x4) (x1, x2, x3) ∈ {0,1}3

P(x1, x2, x3,1)/PX4
(1)

X4

X1

X3

X2

Evidence:  
e.g. X4 = 1



Rejection Sampling (1/2)
Basic idea: 

We know how to sample without evidence (forward sampling). Let 
 be 

samples from the BN without taking evidence into account.


To get samples from the distribution conditioned on , we just 
need to filter out those samples where .


Downside: What if  is small? Then we will need many 
samples from the unconditional distribution to get enough samples 
from the conditional one…

(x(1)
1 , x(1)

2 , x(1)
3 , x(1)

4 ), (x(2)
1 , x(2)

2 , x(2)
3 , x(2)

4 ), …, (x(N)
1 , x(N)

2 , x(N)
3 , x(N)

4 )

X4 = 1
x(i)

4 ≠ 1

P[X4 = 1]
X4

X1

X3

X2

Evidence:  
e.g. X4 = 1



Rejection Sampling (2/2)
Monte Carlo Estimation with rejection sampling: 
We are interested in estimating , e.g.,  

.


Algorithm : 
, 


For : 



if  is consistent with evidence  on :


if  is consistent with 




else 


return 

P[Y = y |E = e] = PY|E(y |e)
P[X2 = 1 |X4 = 1] = PX2|X4

(1 |1)

RejectionMC(BN, Y, E, y, e)
YES := 0 NO := 0

i = 1,…, N
(x(i)

1 , …, x(i)
n ) := ForwardSampling(BN)

(x(i)
1 , …, x(i)

n ) e E
(x(i)

1 , …, x(i)
n ) Y = y

YES := YES + 1
NO = NO + 1

YES/(YES + NO)

X4

X1

X3

X2



Importance Sampling: Basic Idea (1/3)

Problem: Estimate


 .
PY|E(y |e) = ∑
z

P(y, z, e)
PE(e)



Importance Sampling: Basic Idea (2/3)
We have



PY|E(y |e) = ∑
z

P(y, z, e)
PE(e)

We(y, z) =
P(y, z, e)
Q(y, z, e)P(y, z, e) > 0 ⇒ Q(y, z, e) > 0



Importance Sampling: Basic Idea (2/3)
We have



PY|E(y |e) = ∑
z

P(y, z, e)
PE(e)

=
∑z P(y, z, e)

∑y′ ,z P(y′ , z, e)
=

We(y, z) =
P(y, z, e)
Q(y, z, e)P(y, z, e) > 0 ⇒ Q(y, z, e) > 0



Importance Sampling: Basic Idea (2/3)
We have








PY|E(y |e) = ∑
z

P(y, z, e)
PE(e)

=
∑z P(y, z, e)

∑y′ ,z P(y′ , z, e)
=

=
∑z P(y, z, e) Q(y, z, e)

Q(y, z, e)

∑y′ ,z P(y′ , z, e) Q(y′ , z, e)
Q(y′ , z, e)

We(y, z) =
P(y, z, e)
Q(y, z, e)P(y, z, e) > 0 ⇒ Q(y, z, e) > 0



Importance Sampling: Basic Idea (2/3)
We have








PY|E(y |e) = ∑
z

P(y, z, e)
PE(e)

=
∑z P(y, z, e)

∑y′ ,z P(y′ , z, e)
=

=
∑z P(y, z, e) Q(y, z, e)

Q(y, z, e)

∑y′ ,z P(y′ , z, e) Q(y′ , z, e)
Q(y′ , z, e)

=
∑z Q(y, z, e) P(y, z, e)

Q(y, z, e)

∑y′ ,z Q(y′ , z, e) P(y′ , z, e)
Q(y′ , z, e)

We(y, z) =
P(y, z, e)
Q(y, z, e)P(y, z, e) > 0 ⇒ Q(y, z, e) > 0



Importance Sampling: Basic Idea (2/3)
We have








PY|E(y |e) = ∑
z

P(y, z, e)
PE(e)

=
∑z P(y, z, e)

∑y′ ,z P(y′ , z, e)
=

=
∑z P(y, z, e) Q(y, z, e)

Q(y, z, e)

∑y′ ,z P(y′ , z, e) Q(y′ , z, e)
Q(y′ , z, e)

=
∑z Q(y, z, e) P(y, z, e)

Q(y, z, e)

∑y′ ,z Q(y′ , z, e) P(y′ , z, e)
Q(y′ , z, e)

=

=
∑y′ ,z Q(y′ , z, e) ⋅ 𝕀(y = y′ ) ⋅ P(y′ , z, e)

Q(y′ , z, e)

∑y′ ,z Q(y′ , z, e) P(y′ , z, e)
Q(y′ , z, e)

We(y, z) =
P(y, z, e)
Q(y, z, e)P(y, z, e) > 0 ⇒ Q(y, z, e) > 0



Importance Sampling: Basic Idea (2/3)
We have








PY|E(y |e) = ∑
z

P(y, z, e)
PE(e)

=
∑z P(y, z, e)

∑y′ ,z P(y′ , z, e)
=

=
∑z P(y, z, e) Q(y, z, e)

Q(y, z, e)

∑y′ ,z P(y′ , z, e) Q(y′ , z, e)
Q(y′ , z, e)

=
∑z Q(y, z, e) P(y, z, e)

Q(y, z, e)

∑y′ ,z Q(y′ , z, e) P(y′ , z, e)
Q(y′ , z, e)

=

=
∑y′ ,z Q(y′ , z, e) ⋅ 𝕀(y = y′ ) ⋅ P(y′ , z, e)

Q(y′ , z, e)

∑y′ ,z Q(y′ , z, e) P(y′ , z, e)
Q(y′ , z, e)

=
𝔼Y,Z∼Q [𝕀(Y = y′ ) ⋅ We(Y, Z)]

𝔼Y,Z∼Q [We(Y, Z)]
We(y, z) =

P(y, z, e)
Q(y, z, e)P(y, z, e) > 0 ⇒ Q(y, z, e) > 0



Importance Sampling: Basic Idea (3/3)
We have





where  is a collection of samples which were sampled according to the distribution 
.


The trick: Pick  for which sampling is easy! (We will see one particular choice of  
next, which will lead to a method called likelihood weighting.) 

PY|E(y |e) =
𝔼Y,Z∼Q [𝕀(Y = y′ ) ⋅ We(Y, Z)]

𝔼Y,Z∼Q [We(Y, Z)]
≈

∑(y(i),z(i))∈𝒟 𝕀(Y = y(i)) ⋅ We(y(i), z(i))

∑(y(i),z(i))∈𝒟 We(y(i), z(i))

𝒟
Q

Q Q



Likelihood Weighting (1/4)

X4

X1

X3

X2

We want to find a  from which it is easy to sample (we want to 
use forward sampling) and such that  is easy 
to compute.

Q
P(y, z, e)/Q(y, z, e)



Likelihood Weighting (2/4)
We want to find a  from which it is easy to sample (we want to use forward 
sampling) and such that  is easy to compute. 

Method: For every node from  (i.e. for every node on which we are conditioning), 
remove all edges that end in it.

Q
P(y, z, e)/Q(y, z, e)

E

X4

X1

X3

X2

X4

X1

X3

X2



Likelihood Weighting (3/4)
We want to find a  from which it is easy to sample (we want to use forward sampling) and such 
that  is easy to compute. 

Method: 

1. For every node from  (i.e. for every node on which we are conditioning), remove all edges that 
end in it.


2. Use forward sampling (keeping the values of nodes which are in 

  fixed to construct  samples from the modified BN. Store them in .


3. For every sample , compute  as follows (here we are using the original BN):


.

Q
We(y, z) = P(y, z, e)/Q(y, z, e)

E

E N 𝒟

(y(i), z(i)) We(y(i), z(i))

We(y(i), z(i)) = ∏
Ei∈E

PEi|Par(Ei) (ei |pary(i),z(i)(Ei))
X4

X1

X3

X2



Likelihood Weighting (4/4)
Method: 

1. For every node from  (i.e. for every node on which we are conditioning), remove all edges that end in 
it.


2. Use forward sampling (keeping the values of nodes which are in 

  fixed to construct  samples from the modified BN. Store them in .


3. For every sample , compute  as follows:


.


4. Compute estimate of  as


.

E

E N 𝒟

(y(i), z(i)) We(y(i), z(i))

We(y(i), z(i)) = ∏
Ei∈E

PEi|Par(Ei) (ei |pary(i),z(i)(Ei))
PY|E(y |e)

PY|E(y |e) ≈
∑(y(i),z(i))∈𝒟 𝕀(y = y(i)) ⋅ We(y(i), z(i))

∑(y(i),z(i))∈𝒟 We(y(i), z(i))
X4

X1

X3

X2



Part 4: Requisite Network



Exploiting Conditional Independence
Do we need to perform inference on the whole 
network in order to compute 

? 

No!


We can check that .


Therefore we can do inference on a smaller 
network…

P[X3 = 1 |X2 = 0,X1 = 1]

X3 ⊥⊥ {X5, X6, X7} |X1, X2

X4

X1

X3

X2

X5
X6

X7



Exploiting Conditional Independence
Do we need to perform inference on the whole 
network in order to compute 

? 

No!


We can check that .


Therefore we can do inference on a smaller 
network…

P[X3 = 1 |X2 = 0,X1 = 1]

X3 ⊥⊥ {X5, X6, X7} |X1, X2

X4

X1

X3

X2

X5
X6

X7



Exploiting Conditional Independence
Do we need to perform inference on the whole 
network in order to compute 

? 

No!


We can check that .


Therefore we can do inference on a smaller network…


This can be done more efficiently than by checking 
all paths (whether they are active)  by so-called 
Bayes-Ball Algorithm.

P[X3 = 1 |X2 = 0,X1 = 1]

X3 ⊥⊥ {X5, X6, X7} |X1, X2

X4

X1

X3

X2

X5
X6

X7



Part 5: What we did not 
cover…



What we did not cover…

Inference: Join-tree algorithm, Gibbs sampling, variational inference…


Other inference problem: MAP-inference, MPE-inference


Learning: Maximum-likelihood learning (for fully-observable data, this is just 
estimation of conditional probability tables from frequencies), EM algorithm 
(when we have missing data or latent random variables), structure learning…


