
Bayesian Networks I



Part 1: Probability Refresher



Notation

We will use the following notation (same as we used for stochastic 
processes):


.
P[X1 = x1 ∧ X2 = x2 ∧ … ∧ Xn = xn] = P(x1, x2, …, xn)



Joint Distributions
Given random variables , their joint distribution is the probability 
distribution on tuples  of their possible values, i.e. for us it will 
be given by:




Example: 

 is a binary random variable which is 1 if it rains and 0 otherwise,


 is a binary random variable which is 1 if it is sunny and 0 otherwise,


 is a binary random variable which is 1 if there is a rainbow and 0 
otherwise.

Then  is the probability that, at the same time: it rains, it is not sunny 
and there is a rainbow (we would expect this probability to be close to 0).

X1, X2, …, Xn
(x1, x2, …, xn)

P[X1 = x1 ∧ X2 = x2 ∧ … ∧ Xn = xn] = P(x1, x2, …, xn)

X1

X2

X3

P(1,0,1)



Joint Distribution (Example)
 from the previous slide, i.e. , 

represented as a table.

P(x1, x2, x3) P(rains, sunny, rainbow)

rains sunny rainbow P
0 0 0 0.4

0 0 1 0
0 1 0 0.2
0 1 1 0
1 0 0 0.2
1 0 1 0
1 1 0 0.1
1 1 1 0.1



Marginal Distributions
Given a joint distribution on random variables , and their subset 

, the marginal distribution of the variables 
 is their distribution





and it satisfies:


X1, X2, …, Xn
𝒜 = {Xi1, Xi2, …, Xik} ⊆ {X1, X2, …, Xn}
Xi1, Xi2, …, Xik

P𝒜(xi1, xi2, …, xik) = P[Xi1 = xi1 ∧ … ∧ Xik = xik]

P𝒜(xi1, xi2, …, xik) = ∑
xj1

,xj2
,…,xjn−k

P[Xi1 = xi1 ∧ Xi2 = xi2 ∧ … ∧ Xik = xik ∧ Xj1 = xj1 ∧ Xj2 = xj2 ∧ … ∧ Xjn−k
= xjn−k

]

Each of these  is summed over its range, e.g. if it is binary then over {0,1} etc.xj1, …, xjn−k



Marginal Distributions - Example (1/2)
Recall the table:

X1 (rains) X2 (sunny) X3 P
0 0 0 0.4

0 0 1 0
0 1 0 0.2
0 1 1 0
1 0 0 0.2
1 0 1 0
1 1 0 0.1
1 1 1 0.1

What is the probability ? That is… What is the probability that it is sunny?


In our notation, , . Or using the alternative notation 
when  is a singleton, also .

P[X2 = 1]

𝒜 = {X1} P𝒜(x) = P[X2 = x]
𝒜 PX2

(x) = P[X2 = x]



Marginal Distributions - Example (2/2)
Recall the table:

X1 (rains) X2 (sunny) X3 P
0 0 0 0.4

0 0 1 0
0 1 0 0.2
0 1 1 0
1 0 0 0.2
1 0 1 0
1 1 0 0.1
1 1 1 0.1

What is the probability ? That is… What is the probability that it is 
sunny?


P[X2 = 1]

P[X2 = 1] = P(0,1,0) + P(0,1,1) + P(1,1,0) + P(1,1,1) = 0.2 + 0 + 0.1 + 0.1 = 0.4



Conditional Distribution (1/2)
Special case (two random variables  and ): 

Conditional probability of  given Y is defined as: 





Undefined for ’s that have zero probability, i.e. when . 


We will use the notation .


(To simplify many formulas, we normally use the assumption that , so for 
instance it will allow us to write  for all values 

.)

X Y

X

P[X = x |Y = y] =
P[X = x ∧ Y = y]

P[Y = y]
=

P(x, y)
PY(y)

.

y P[Y = y] = 0

PX|Y(x |y) = P[X = x |Y = y]

undefined ⋅ 0 = 0
P(x, y) = PX|Y(x |y)PY(y) = PY|X(y |x)PX(x)

x, y



Conditional Distribution (2/2)
General case 

Conditional probability of  given  is 
defined as: 





where  and .


Y = (Xi1, Xi2, …, Xik) Z = (Xj1, Xj2, …, Xjl)

P[Z = z |Y = y] =
P[Z = z ∧ Y = y]

P[Y = y]
=

PZ,Y(z, y)
PY(y)

,

z = (z1, z2, …, zl) y = (y1, y2, …, yl)



Conditional Distribution (Example)
Recall the table:

X1 (rains) X2 (sunny) X3 P
0 0 0 0.4

0 0 1 0
0 1 0 0.2
0 1 1 0
1 0 0 0.2
1 0 1 0
1 1 0 0.1
1 1 1 0.1

What is the probability  ( )? That is… What is 
the probability that it is sunny given that there is rainbow?

P[X2 = 1 |X3 = 1] PX2|X3
(1 |1)



Recall the table:
X1 (rains) X2 (sunny) X3 P

0 0 0 0.4

0 0 1 0
0 1 0 0.2
0 1 1 0
1 0 0 0.2
1 0 1 0
1 1 0 0.1
1 1 1 0.1

What is the probability  ( )? That is… What is the probability that it is sunny given 
that there is rainbow?


,


,


.

P[X2 = 1 |X3 = 1] PX2|X3
(1 |1)

P[X2 = 1 ∧ X3 = 1] = P{X2,X3}(1,1) = P(0,1,1) + P(1,1,1) = 0.1 + 0.1 = 0.2
P[X3 = 1] = PX3

(1) = P(0,0,1) + P(0,1,1) + P(1,0,1) + P(1,1,1) = 0.2

P[X2 = 1 |X3 = 1] =
P[X2 = 1 ∧ X3 = 1]

P[X3 = 1]
=

0.2
0.2

= 1

Conditional Distribution (Example)



Part 2: Bayesian Networks - 
Motivation



Curse of Dimensionality

Example: Let’s consider a joint distribution on 100 binary random variables. 
How large does the table representing this distribution need to be? 


Answer: The table will need to have  rows (which means  
parameters to set). 

So, clearly, representing joint distributions exhaustively is not an option 
when we have more than a handful of examples.

2100 2100 − 1



Independence

Definition (special case of two random variables): Two random variables 
 and  are said to be independent if 


 

for all possible values  and  (i.e. using the other notation, if 

 for all possible values  and ).

X Y
P[X = x ∧ Y = y] = P[X = x] ⋅ P[Y = y]

x y
PX,Y(x, y) = PX(x) ⋅ PY(y) x y



Joint Independence

Definition: Random variables  are independent if




for all values .

X1, X2, …, Xn

P[X1 = x1 ∧ X2 = x2 ∧ … ∧ Xn = xn] = P[X1 = x1] ⋅ P[X2 = x2] ⋅ … ⋅ P[Xn = xn]
x1, x2, …, xn



Joint Independence (Events)
Note. For independence of a collection of events (recall that an event is a 
subset of the sample space),the situation is a bit more complicated.  

Let  be events. Then these events are independent if  

 

holds for every subset  of the events  and for 
every . 

A1, A2, …, An

P[Ai1 ∧ Ai2 ∧ … ∧ Aik] = P[Ai1] ⋅ P[Ai2] ⋅ … ⋅ P[Aik]

Ai1, Ai2, …, Aik A1, A2, …, An
k > 0



Independence Is Too Strict
Question: How many parameters do we need to describe a distribution of  
independent binary random variables? 

Answer: We need only  parameters (compare this with  that we need 
for a general distribution of  binary random variables). 

Unfortunately, independence is a condition which is too strict for many 
distributions. Therefore we will need something else… 

Example: Independence holds e.g. when throwing  dice or when running 
independent trials of some experiment…

n

n 2n − 1
n

n



Conditional Independence (1/4)
Definition (special case of 3 random variables ):  
Definition 1:  and  are conditionally independent given  if




holds for all values  (using the alternative notation: 

). 

Definition 2:  and  are conditionally independent given  if




holds for all values  (using the alternative notation: 
).

X, Y, Z
X Y Z

P[X = x ∧ Y = y |Z = z] = P[X = x |Z = z] ⋅ P[Y = y |Z = z]
x, y, z

PX,Y|Z(x, y |z) = PX|Z(x |z) ⋅ PY|Z(y |z)

X Y Z
P[X = x |Y = y ∧ Z = z] = P[X = x |Z = z]

x, y, z
PX|Y,Z(x |y, z) = PX|Z(x |z)



Conditional Independence (2/4)

Notation: The notation for  and  are conditionally independent given  is 
written:


 

X Y Z

X ⊥⊥ Y |Z



Conditional Independence (3/4)
Why the two definitions are equivalent? 
Proof: Def. 1 => Def. 2. 




.


Similarly, we of course also have .

PX|Y,Z(x |y, z) =
PX,Y,Z(x, y, z)

PY,Z(y, z)
=

PX,Y|Z(x, y |z)PZ(z)
PY|Z(y |z)PZ(z)

=
PX,Y|Z(x, y |z)

PY|Z(y |z)
=

=
PX|Z(x |z)PY|Z(y |z)

PY|Z(y |z)
= PX|Z(x |z)

PY|X,Z(y |x, z) = PY|Z(y |z)



Conditional Independence (4/4)

Why the two definitions are equivalent? 
Proof: Def. 2 => Def. 1. 


PX,Y|Z(x, y |z) =
PX,Y,Z(x, y, z)

PZ(z)
=

PX|Y,Z(x |y, z)PY,Z(y, z)
PZ(z)

=

=
PX|Y,Z(x |y, z)PY|Z(y |z)PZ(z)

PZ(z)
= PX|Y,Z(x |y, z)PY|Z(y |z) = PX|Z(x |z)PY|Z(y |z)



Conditional Independence (Example)
Example: 

Alice throws a coin with sides marked by 0 and 1 (that will be ). She then sends a message 
over noisy channels to Bob and Eve about the result of the coin flip. Since the channel is 
noisy, what Bob receives (that will be ) and what Eve receives (that will be ) is not 
necessarily the same as what Alice sent. 

Assuming the noise in the two channels is independent, it holds 

 

That is, given the result of Alice’s coin toss, what Bob and Eve observe is independent. 
However, without this conditioning, what Bob and Eve observe is not independent (imagine 
e.g. that the noise is small and corrupts the message only with probability 0.001…).

X1

X2 X3

X2 ⊥⊥ X3 |X1



How Many Parameters?
Question: How many parameters would we need in the previous example (we always use the fact that 
probabilities sum up to 1)?


We can use: .


2 parameters for  (we need to determine , from which we can compute 
, and similarly …). 

2 parameters for  (similar reasoning as above…) 

1 parameter for . 

5 parameters in total. If we did not use conditional independence, we would need  
parameters (this may not seem like much gain but it would be higher if we had more than three 
variables).

PX1,X2,X3
(x1, x2, x3) = PX2|X1

(x2 |x1)PX3|X1
(x3 |x1)PX1

(x1)

PX2|X1
PX2|X1

(0 |1)
PX2|X1

(1 |1) = 1 − PX2|X1
(0 |1) PX3|X1

(0 |0)

PX3|X1

PX1

23 − 1 = 7



Multi-Variate Case
Both of the equivalent definitions of conditional independence are straightforwardly 
generalized into the multi-variate case:


Definition 1: Random vectors  and  are conditionally independent given  if

) 

for all possible values of the vectors . 

Definition 2: Random vectors  and  are conditionally independent given  if




for all possible values of the vectors .

X Y Z
PX,Y|Z(x, y |z) = PX|Z(x |z) ⋅ PY|Z(y |z)

x, y, z

X Y Z
PX|Y,Z(x |y, z) = PX|Z(x |z)

x, y, z



Trivial Factorization (Chain Rule)
Any joint distribution of a random vector  can be written as:
X = (X1, X2, …, Xn)

PX(x1, x2, …, xn) = PX1
(x1)PX2|X1

(x2 |x1)PX3|X1,X2
(x3 |x1, x2)…PXn|X1,…,Xn−1

(xn |x1, …, xn−1)



Trivial Factorization (Chain Rule)
Any joint distribution of a random vector  can be written as:





The above can be simplified if we know that some conditional independencies 
hold, e.g. if  and  are conditionally independent given  then we can replace 

 by  etc.

X = (X1, X2, …, Xn)

PX(x1, x2, …, xn) = PX1
(x1)PX2|X1

(x2 |x1)PX3|X1,X2
(x3 |x1, x2)…PXn|X1,…,Xn−1

(xn |x1, …, xn−1)

X2 X3 X1
PX3|X1,X2

(x3 |x1, x2) PX3|X1
(x3 |x1)



Part 3: Bayesian Networks



Bayesian Network
Let:  be a random vector and let  
denote a vector of values.


Definition: A Bayesian network for a joint distribution of the random vector 
 is given by:


• A directed acyclic graph G. The nodes of G correspond to the random 
variables .


• For every random variable , a conditional distribution of  given its 
parents.

X = (X1, X2, …, Xn) x = (x1, x2, …, xn)

X

X1, X2, …, Xn

Xi Xi



Bayesian Network (The Graph)

X1 X2

X3

X4 X5



Bayesian Networks: Notation
Let:  be a random vector and let  
denote a vector of values. Let 


Notation: To simplify notation in what follows, we will denote by


 … the vector of parents of  (the random variables corresponding 
to the parents)


 … the vector of values of the parents of  (the values are 
supposed to be taken from the vector of values ).

X = (X1, X2, …, Xn) x = (x1, x2, …, xn)

Par(Xi) Xi

parx(Xi) Xi
x



Bayesian Network Distribution 

Given a BN with a graph , the BN induces the following distribution:


.

G

P(x1, x2, …, xn) =
n

∏
i=1

PXi|Par(Xi) (xi |parx(Xi)))



Bayesian Network: Example (1/3)

X1 X2

X3

X4 X5



Bayesian Network: Example (2/3)

X1 X2

X3

X4 X5

P(x1, …, x5) = PX4
(x4)PX5

(x5)PX3|X4,X5
(x3 |x4, x5)PX1|X3

(x1 |x3)PX2|X3
(x2 |x3)



Bayesian Network: Example (3/3)

X1 X2

X3

X4 X5

P(x1, …, x5) = PX4
(x4)PX5

(x5)PX3|X4,X5
(x3 |x4, x5)PX1|X3

(x1 |x3)PX2|X3
(x2 |x3)

Let’s make the example concrete

Burlglary Earthquake

Alarm

John calls Mary calls



Conditional Independence in BNs

What are the conditional independence assumptions behind BNs? 
The main one is that, for every :  is conditionally independent of its 
ancestors given its parents.

This can be equivalently stated as follows: 
Let  be the ancestors of , i.e. nodes in the BN from which  can 
be reached.


.

Xi Xi

Anc(Xi) Xi Xi

PXi|Par(Xi)(xi |parx(Xi)) = PXi|Anc(Xi)(xi |ancx(Xi))



X1 X2

X3

X4 X5

PX1|X3
(x1 |x3) = PX1|X3,X4,X5

(x1 |x3, x4, x5)
PX2|X3

(x2 |x3) = PX2|X3,X4,X5
(x2 |x3, x4, x5)



Part 4: More on Conditional 
Independence (D-Separation)



More Conditional Independencies?
In general, a BN encodes many conditional independencies. We will now 
learn to recognize them.


In what follows, nodes on which we condition will be shown as full black 
ovals, e.g.:

X1



Causal Chain (1/2)

X2X1 X3

X2X1 X3

X1 ⊥⊥ X3 |X2

 and  not independent (unconditionally)X1 X3



Causal Chain (2/2)
The conditional independence part can be shown as follows:








PX1,X3|X2
(x1, x3 |x2) =

PX1,X2,X3
(x1, x2, x3)

PX2
(x2)

=

=
PX1

(x1)PX2|X1
(x2 |x1)PX3|X2

(x3 |x2)
PX2

(x2)
=

PX1
(x1)PX2|X1

(x2 |x1)
PX2

(x2)

=PX1|X2
(x1|x2)

PX3|X2
(x3 |x2) =

= PX1|X2
(x1 |x2)PX3|X2

(x3 |x2)



Causal Chain: Example

You know one example already… Markov process.

X2X1 X3 X4 X5 X6

The possible values of each  are the states from the state space .Xi S



Common Cause (1/2)
X2

X1 X3 X1 ⊥⊥ X3 |X2

 and  not independent (unconditionally)X1 X3

X2

X1 X3



Common Cause (2/2)

The conditional independence part can be shown as follows:





.

PX1,X3|X2
(x1, x3 |x2) =

PX1,X2,X3
(x1, x2, x3)

PX2
(x2)

=

=
PX1|X2

(x1 |x2)PX3|X2
(x3 |x2)PX2

(x2)
PX2

(x2)
= PX1|X2

(x1 |x2)PX3|X2
(x3 |x2)



Common Cause: Example

X2

X1 X3

Alarm

John calls Mary calls



Common Effect (1/2)

X2

X1 X3

X1 ⊥⊥ X3
X2

X1 X3
Independent unconditionally

But  and  are NOT independent 
given the value of !!!!

X1 X3
X2



Common Effect (2/2)

The independence part can be shown as follows:





.

PX1,X3
(x1, x3) = ∑

x2

PX1,X2,X3
(x1, x2, x3) = ∑

x2

PX2|X1,X3
(x2 |x1, x3)PX1

(x1)PX3
(x3) =

= PX1
(x1)PX3

(x3)∑
x2

PX2|X1,X3
(x2 |x1, x3)

=1

= PX1
(x1)PX3

(x3)



Common Effect: Example

X2

X1 X3

 … flip a coin (the result is 0 or 1)

 … flip a coin (the result is 0 or 1)


.


Then if we do not condition on ,  and  are independent, but if we do 
condition on  then just fixing the value of  determines the value of , 
so they are not conditionally independent given !

X1
X3
X2 = X1 ⊕ X3

X2 X1 X3
X2 X1 X3

X2

X2

X1 X3



Common Effect - Descendants

X2

X1 X3

 and  are NOT independent 
given the value of !!!!

X1 X3
Xi

Xi

…



D-Separation
Given a Bayesian network and a set of variables  that are conditioned on, 
we will want to detect those random variables that are conditionally 
independent given the values of the variables in .


Two variables  and  are conditionally independent given  if there 
is no active path connecting them.

ℰ

ℰ

X1 X2 ℰ



Active Path (1/3)
We will be checking all undirected paths between the two variables (i.e. 
ignoring the direction of the edges).


Terminology: Nodes which we condition on will be called observed nodes 
and the others unobserved nodes.




Active Path (2/3)
Active triples: Blocked triples: 

X2X1 X3
X2X1 X3 X2

X1 X3

X2

X1 X3

X2

X1 X3

Xi

…

X2

X1 X3

X2

X1 X3



Active Path (3/3)
Definition: A path is active if all triples along it are active. Otherwise it is blocked.


EXAMPLES:

X2X1 X3 X4 X5 X6

The path from  to  is active.X1 X6

X2X1 X3 X4 X5 X6

The path from  to  is blocked.X1 X6

X2X1 X3 X4 X5 X6

The path from  to  is active.X1 X6



D-Separation (Examples)

X2

X1

X3

X4

X5

X6

X7 X8

Credit: Petr Pošík



D-Separation (Example 1)

X2

X1

X3

X4

X5

X6

X7 X8

Credit: Petr Pošík

? X2 ⊥⊥ X7 |X1



D-Separation (Example 1)

X2

X1

X3

X4

X5

X6

X7 X8

Credit: Petr Pošík

? 

Yes,  is blocked and 
 is also blocked.

X2 ⊥⊥ X7 |X1

(X2, X1, X7)
(X2, X3, X4)



D-Separation (Example 2)

X2

X1

X3

X4

X5

X6

X7 X8

Credit: Petr Pošík

? X1 ⊥⊥ X4 |X6



D-Separation (Example 2)

X2

X1

X3

X4

X5

X6

X7 X8

Credit: Petr Pošík

? 

Yes,  is blocked and 
so is . 

X1 ⊥⊥ X4 |X6

(X2, X3, X3)
(X7, X6, X4)



D-Separation (Example 3)

X2

X1

X3

X4

X5

X6

X7 X8

Credit: Petr Pošík

? X7 ⊥⊥ X8 |X4



D-Separation (Example 3)

X2

X1

X3

X4

X5

X6

X7 X8

Credit: Petr Pošík

? 

No! There is an active path: 
 (observed 

descendant) 

X7 ⊥⊥ X8 |X4

X7, X6, X8



D-Separation (Example 4)

X2

X1

X3

X4

X5

X6

X7 X8

Credit: Petr Pošík

? X1 ⊥⊥ X3 |{X2, X4}



D-Separation (Example 4)

X2

X1

X3

X4

X5

X6

X7 X8

Credit: Petr Pošík

? 

Yes!  and 
 are both blocked. 

X1 ⊥⊥ X3 |{X2, X4}

(X1, X2, X3)
(X6, X4, X3)



Part 5: Variable Elimination 
(First Look Into Inference)



Marginal Inference
Problem: Given a BN on random variables , compute the 
probability , where  is a subset of 

the random variables .


Example: Compute  from the BN shown here:

X1, X2, …, Xn
PXi1,Xi2,…,Xik

(xi1, xi2, …, xik) Xi1, Xi2, …, Xik
X1, X2, …, Xn

PX1,X5
(x1, x5)

X1 X2

X3

X4 X5



Naive Approach
Naive idea (we won’t be able to do better in the worst case): 

Compute the following sum explicitly:


.


This will have exponential complexity in the number of 
random variables.

PX1
(x1) = ∑

x2

∑
x3

∑
x4

∑
x5

PX1,…,X5
(x1, x2, x3, x4, x5)

X1 X2

X3

X4 X5



Variable Elimination: Basic Idea


PX1
(x1) = ∑

x2

∑
x3

∑
x4

PX4
(x4)PX3|X4

(x3 |x4)PX1|X3
(x1 |x3)

= ∑
x3

PX1|X3
(x1 |x3)∑

x2

PX2|X3
(x2 |x3) ∑

x4

PX4
(x4)PX3|X4

(x3 |x4)

function of x3, it can be cached

= …

X1 X2

X3

X4



Next Lecture

We will finish variable elimination… And we will talk about inference in 
general.


