
SMU: Lecture 4
Monday, March 7, 2022


(Heavily inspired by the Stanford RL Course of Prof. Emma Brunskill, but all potential errors are mine.)
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Plan for Today

• A very short recap of important concepts from last lectures.


• Value function approximation.


• Control with value function approximation.


• Intro to Bandits.
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Part 1: Recap (Q-Learning)
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State-Action Value Q
• Definition: 

       . 

• Intuition: 

• The value of the return that we obtain if we first take the action  in the 
state  and then follow the policy  (including when we visit  again).


• Think of it as perturbing the policy  — we deviate from following the policy 
 only in the first step in .

Qπ(s, a) = R(s, a) + γ ⋅ ∑
s′￼∈S

P(s′￼|s, a) ⋅ Vπ(s′￼)

a
s π s

π
π s
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-Greedy Policyε

π(a |s) =
1 − ε + ε

|A |
 when a = arg maxa∈A Q(s, a)

ε
|A |

 when a ≠ arg maxa∈A Q(s, a)

We assume ties are decided consistently
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Q-Learning

1. Initialize: set  to be some -greedy policy, set 

2. Sample  using the distribution given by  in the state  (for sampling, we will 

use the notation ). Take the action  and observe .

3. While  is not a terminal state:


1. Take action  and observe .


2. 


3. 

4. Set . Update   /* see next slides */

π ε t = 0
a π0 s0

a ∼ π(s) a r0, s1
st

a ∼ π(st) rt, st+1

Q(st, at) := Q(st, at) + α (rt + γ max
a∈A

Q(st+1, a) − Q(st, at))
π := ε-greedy(Q)

t := t + 1 ε, α
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Part 2: RL with Function 
Approximation (Problem 

Description)
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Limitations of What We Saw So Far
• In the previous lectures, we assumed discrete MDPs with number of 

states that was not too large (i.e. the set  was not too large).


• Now imagine that we want to learn to play Atari games (which is what 
DeepMind did!) and we want to do it from the pixel inputs. How many 
states would we need if we wanted to use what we learned in the previous 
lectures? … Then we would need at least  states (128 colors 
with resolution 160 x 192 pixels).


• What we need is function approximation.

S

128160⋅192
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Basic Idea
• Do not represent the state value function  or the state-action value 

function  explicitly. 


• Represent the state value function  or the state-action value function 
 approximately using a function from some parametrized family, 

e.g. as a neural network, linear function, decision tree…

V
Q

V(s)
Q(s, a)

ws ̂V(s; w)

ws Q̂(s, a; w)a
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w ̂V(s; w)
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w Q̂(s, a; w)

a, a ∈ {left, right, up, down}
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State Representation
• States will be represented by feature vectors.


• The feature vector of a state  will be denoted as  and we can think of 
it as a function mapping states to some vector space, e.g. , i.e. 

.


• Examples: 

• Atari: the feature vector can, e.g., contain the intensities of the pixels 
(concatenated).


• Pole balancing: physical features such as velocities, angles…

s x(s)
ℝd

x(s) = (x1(s), x2(s), …, xd(s))T
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Linear Functions

• Scalar product of a weight vector with the feature vector, which represents 
the state:


.


• Linear function approximations can work well but need good features 
(which requires feature engineering).

̂Vπ(s; w) = wTx(s)
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Neural Networks
• Neural network (well, you know them):   

• In this lecture we will think of neural networks simply as blackboxes  which 
we can evaluate and for which we can compute the gradients  efficiently 
(we will usually omit the subscript  from  when it is clear from the context).


•  In particular, the approximation will have the form , where  
is some neural network…

g(x; w)
∇wg(x; w)

w ∇w

Vπ(s; w) = g(x(s); w) g
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Part 3: Some Background
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Gradient Descent (1/3)
• A method for finding a (local) optimum of a function.


• In our setting, we want to find  that is a local minimum of a 
function .


• We do that using gradient descent. 

w ∈ ℝd

J(w)
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Gradient Descent (2/3)

Gradient:           

Example:  

, .


Then


.

∇J(w) = ( ∂J
∂w1

(w),
∂J

∂w2
(w), …,

∂J
∂wd

(w))

J(w) = w1 ⋅ w2 + w1 w ∈ ℝ2

∇J(w) = (w2 + 1,w1)
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Gradient Descent (3/3)

Gradient descent update rule: 




(gradient descent algorithm iterates this rule).

wn+1 = wn − α ⋅ ∇J(wn)
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Stochastic Gradient Descent
• We want to optimize a function  of the form  where  is a random 

variable.


• We assume that we can sample from the distribution w.r.t. which the expectation is taken.


• Stochastic gradient descent uses samples to approximate the gradient of  using just one 
sample (SGD can also use a mini-batch of multiple samples but we will not consider it now for 
simplicity) and estimates the gradient of  as:





(instead of ).


• Assuming that we can exchange the order of expectation and taking gradients (which we can 
when  is well-behaved), the expected SGD step is the same as the full gradient of .

J(w) J(w) = 𝔼[g(X; w)] X

J(w)

J

∇J(w) ≈ ∇g(X; w)

∇𝔼[g(X; w)]

g J
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A Useful Property of Mean Squared Loss
Let  be independent random variables following some distribution with 
expected value . 


What is the value  (~prediction) that minimizes the mean squared error 

?


It is the sample average , which, for , converges to the mean .


Consequence: Learning a predictor under mean squared loss leads to learning a 
predictor for conditional expectation (we will explain later what it means for RL).

Y1, Y2, …, Yn
μ = 𝔼[Yi], ∀i

y
1
n

n

∑
i=1

(Yi − y)2

y =
1
n

n

∑
i=1

Yi n → ∞ μ
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Warm-Up: Learning to “Compress” , (1/3)Vπ(s)

• Suppose that we know  and can query it but yet want to learn an 
approximation of it… using a parametric function …


• We will use mean-squared error to measure how good the approximation 
is, i.e.:


.


• How could we train the approximation using SGD?

Vπ(s)
̂Vπ(s; w)

J(w) = 𝔼π [(Vπ(X) − ̂Vπ(X; w))
2]
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Warm-Up: Learning to “Compress” , (2/3)Vπ(s)

While (some stopping condition): 
Sample a state  and compute the gradient of 


,

which is:




Take the gradient step:


s
̂Js(w) = (Vπ(s) − V(s; w))2

∇ ̂Js(w) = − 2(Vπ(s) − Vπ(s; w)) ⋅ ∇Vπ(s; w) = 2(Vπ(s; w) − Vπ(s)) ⋅ ∇Vπ(s; w)

w := w − α ⋅ 2(Vπ(s; w) − Vπ(s)) ⋅ ∇V(s; w)
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Warm-Up: Learning to “Compress” , (3/3)Vπ(s)

• But in reality we will not have access to !


• So we cannot compute the gradient step: 
…


• We will therefore need to combine SGD with what we saw in the previous 
lectures…

Vπ(s)

w := w − α ⋅ 2(Vπ(s; w) − Vπ(s)) ⋅ ∇V(s; w)
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Part 4: Policy Evaluation with 
Function Approximation
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Monte-Carlo Value Function Approximation

Basic Idea (not yet complete… wait for the next slide): We can frame the 
value function approximation problem as a supervised learning problem 
under MSE loss:


Sample an episode under policy :  
Training examples: , where  denotes the 
return from the episode from time .

π s1, a1, r1, s2, a2, r2, …, sT

[s1, g1], [s2, g2], …, [sT−1, gT−1] gi
i

First visit or every-visit? See next slide.26



First/Every-Visit Monte-Carlo Value Function 
Approximation

Initialize: . 
For : 

Sample episode .


For each time step :

If  is the first occurrence of state  in the episode  /* This is for first-visit MC */

    is the state visited at time  in the episode 




 /* SGD step */


w =  some initialization...
i = 1,…, N

ei := si,1, ai,1, ri,1, si,2, ai,2, ri,2, …, si,Ti

1 ≤ t ≤ Ti

t s ei

s t ei

gi,t := ri,t + γ ⋅ ri,t+1 + γ2 ⋅ ri,t+2 + … + γTi−t ⋅ ri,Ti

w := w − α ⋅ (Vπ(x(st); w) − gt) ⋅ ∇V(x(st); w)
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Intuition About Why It Works

• Recall that what we want to estimate is .


• When using first-visit MC, each of the training examples  is an 
unbiased (but very noisy!) estimate of .  But when we use these 
examples and try to find a best mean-squared-error fit then we are 
estimating their expectation which equals . And that is why it 
works…

Vπ(s) = 𝔼[Gt |Xt = s]

[st, gt]
Vπ(s)

Vπ(s)
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Convergence of MC VFA (1/3)
• Definition (On-Policy Distribution): Given an MDP and a policy , we 

define on-policy distribution  as follows. 

• In non-episodic settings:  is the stationary distribution of the MRP 
that is given by the MDP and the policy (recall MDP + policy = MRP).


• In episodic settings:  depends also on the distribution of the initial 
states  (see Sutton’s book for details).  

• In what follows, we denote the on-policy distribution by .

π
Pπ

onp

Pπ
onp

Pπ
onp

Pinit

Pπ
onp
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Convergence of MC VFA (2/3)
• Definition: Mean squared error of value function approximation is defined 

as


,


which is the same as


.

MSVEπ(w) = ∑
s∈S

Pπ
onp(s) ⋅ (Vπ(s) − ̂Vπ(s; w))

2

MSVEπ(w) = 𝔼X∼Pπ
onp [(Vπ(s) − ̂Vπ(s; w))

2]
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Convergence of MC VFA (3/3)

• Theorem: Assume that  (i.e. we are assuming linear 
function approximation). Then MC VFA converges to weights that are 
optimal in the sense that they minimize . 

• Caution: This theorem holds for linear function approximation, not for 
general functions! We do not have such guarantees for, e.g., arbitrary 
neural networks.

̂Vπ(s; w) = wTx(s)

MSVEπ(w)
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Temporal Difference VFA (1/5)
• For temporal difference learning in the tabular setting, we had the 

following update rule: 


.


• Now, we will want to have a similar update rule but for the case where 
 is only approximated by .

Vπ(st) := Vπ(st) + α ⋅ rt + γ ⋅ Vπ(st+1)

TD-target

− Vπ(st)

Vπ(s) Vπ(s; w)
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Temporal Difference VFA (2/5)
Recall the Bellman equation (for simplicity, we are showing it for deterministic policy):





which is the same as:


.


We can turn the system of equations above into the following minimization problem:


.

Vπ(s) = R(s, π(s)) + γ ⋅ ∑
s′￼∈S

P(s′￼|s, π(s)) ⋅ V(s′￼)

Vπ(s) = R(s, π(s)) + γ ⋅ 𝔼 [Vπ(Xt+1) |Xt = s]

min
Vπ ∑

s∈S

Ponp(s) ⋅ 𝔼 [(R(s, π(s)) + γ ⋅ Vπ(Xt+1) − Vπ(s))2 Xt = s]
33



Temporal Difference VFA (3/5)
Next we replace  by its approximation , yielding:


.


Now, instead of the on policy distribution, we will just take the states as they 
come in an episode and instead of the expectation we will use the tuple 

 which we get in the current episode (as is common in TD-
learning). That will lead us to the minimization problem:


Vπ(s) ̂Vπ(s; w)

min
Vπ ∑

s∈S

Ponp(s) ⋅ 𝔼 [(R(s, π(s)) + γ ⋅ ̂Vπ(Xt+1; w) − ̂Vπ(s; w))
2

Xt = s]

(st, at, rt, st+1)

min
w (R(st, rt) + γ ⋅ ̂Vπ(st+1; w) − ̂Vπ(st; w))

2
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Temporal Difference VFA (4/5)
We need to solve:


. Denoting





we have





But this is not what TD with function approximation does! TD VFA is a so-
called semigradient method. It does not consider the contribution of 

 and considers it fixed.

min
w (R(st, rt) + γ ⋅ ̂Vπ(st+1; w) − ̂Vπ(st; w))

2

J(w) = (R(st, rt) + γ ⋅ ̂Vπ(st+1; w) − ̂Vπ(st; w))
2

∇J(w) = 2 (R(st, rt) + γ ⋅ ̂Vπ(st+1; w) − ̂Vπ(st; w)) ⋅ (γ ⋅ ∇ ̂Vπ(st+1; w) − ∇ ̂Vπ(st; w))

∇ ̂Vπ(st+1; w)
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Temporal Difference VFA (4/5)
We need to solve:


. Denoting





we have





But this is not what TD with function approximation does! TD VFA is a so-
called semigradient method. It does not consider the contribution of 

 and considers it fixed.

min
w (R(st, rt) + γ ⋅ ̂Vπ(st+1; w) − ̂Vπ(st; w))

2

J(w) = (R(st, rt) + γ ⋅ ̂Vπ(st+1; w) − ̂Vπ(st; w))
2

∇J(w) = 2 (R(st, rt) + γ ⋅ ̂Vπ(st+1; w) − ̂Vπ(st; w)) ⋅ (γ ⋅ ∇ ̂Vπ(st+1; w) − ∇ ̂Vπ(st; w))

∇ ̂Vπ(st+1; w)
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Temporal Difference VFA (5/5)

The TD update rule for value function approximation is:



w := w + α (rt + γ ⋅ ̂Vπ(st+1; w) − ̂Vπ(st; w)) ⋅ ∇ ̂Vπ(st; w)
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Convergence of TD VFA with Linear Functions

• As for MC VFA, we will use the on-policy distribution  and define the mean 
squared error w.r.t. it, that is…


 


• Theorem: Let  be the weight vector to which TD VFA converges. Then it holds:


.


• Recall that for MC VFA with linear functions we had convergence of mean squared error to 
.

Pπ
onp

MSVEπ(w) = ∑
s∈S

Pπ
onp(s) ⋅ (Vπ(s) − ̂Vπ(s; w))

2

wTD

MSVEπ(wTD) ≤
1

1 − γ
⋅ min

w
MSVEπ(w)

min
w

MSVEπ(w)
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Part 5: Control with Function 
Approximation
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Basic Idea

• Same ideas, just plugging them into what we were doing in the last 
lecture, but there are caveats… 

• Instead of approximating , we need to approximate .


• The algorithms are similar to those we saw last week (MC, SARSA, Q-
Learning). Important: the idea of using -greedy policies. The 
motivation is the same but we use .

Vπ Qπ(s, a)

ε
Qπ(s, a; w)

40



Basic Idea

• Recall the structure of RL algorithms from the last lecture:  

• Maintain an estimate of Q-function.

• Compute an -greedy  policy w.r.t. the Q-function estimate.

• Use the policy , either for an episode (MC methods) or for a step 

(SARSA and Q-learning).

• Update the Q-function estimate (here we rely on the ideas from value 

function approximation).

ε π
π

41



Representing State-Action Pairs

• For control RL problems, we need to encode both states and actions 
together.


• The feature vector of a state-action pair  will be denoted as  
and we can think of it as a function mapping state-action pairs to some 
vector space, e.g. , i.e. .

(s, a) x(s, a)

ℝd x(s, a) = (x1(s, a), x2(s, a), …, xd(s, a))T

42



Approximation of Q-Function

• Linear function approximation: Scalar product of a weight vector with 
the feature vector, which represents the state-action pair:


.


• Neural network function approximation: 

 

 where  is a function represented as a neural network.

Q̂π(s, a; w) = wTx(s, a)

Q̂π(s, a; w) = g(x(s, a); w)

g
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Weight Updates

• MC:  
       


• SARSA: 
      


• Q-Learning: 

   

w := w + α ⋅ (gt − Q̂(st, at; w)) ⋅ ∇Q̂(st, at; w)

w := w + α ⋅ (r + γQ̂(st+1, at+1; w) − Q̂(st, at; w)) ⋅ ∇Q̂(st, at; w)

w := w + α ⋅ (r + γ max
a∈A

Q̂(st+1, a; w) − Q̂(st, at; w)) ⋅ ∇Q̂(st, at; w)
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DQN Pseudocode

1: Input C , ↵, D = {}, Initialize w , w�
= w , t = 0

2: Get initial state s0
3: loop

4: Sample action at given ✏-greedy policy for current Q̂(st , a;w)

5: Observe reward rt and next state st+1

6: Store transition (st , at , rt , st+1) in replay bu↵er D

7: Sample random minibatch of tuples (si , ai , ri , si+1) from D

8: for j in minibatch do

9: if episode terminated at step i + 1 then

10: yi = ri
11: else

12: yi = ri + � maxa0 Q̂(si+1, a
0
;w�

)

13: end if

14: Do gradient descent step on (yi � Q̂(si , ai ;w))
2
for parameters w : �w = ↵(yi � Q̂(si , ai ;w))rw Q̂(si , ai ;w)

15: end for

16: t = t + 1

17: if mod(t,C) == 0 then

18: w�  w
19: end if

20: end loop

Emma Brunskill (CS234 Reinforcement Learning. )Lecture 6: CNNs and Deep Q Learning
1

Winter 2022 41 / 53

Slide taken from the Reinforcement Learning course  by Prof. Emma Brunskill

Deep Q-Learning



With Neural Networks…
Convergence is not guaranteed.


Two of the reasons why Q-learning with VFA may diverge: correlations 
between samples and non-stationary targets.


Partial remedies: experience replay and fixed Q-targets.


There are many variations proposed in the literature with many tricks to 
improve deep Q-learning and many are still appearing…



Convergence of MC, SARSA and Q-Learning

Tabular Linear NN

MC ✅
Chattering


(may oscilate at the 
end but not diverge)

❌

SARSA ✅
Chattering


(may oscilate at the 
end but not diverge)

❌

Q-Learning ✅ ❌ ❌



Convergence
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Part 6: Bandits (Introduction)



Efficient Learning
So far we only cared about whether our RL algorithms converge, not that 
much how fast


We assumed that failed experiments (episodes) do not cost us anything 
(except, maybe, time). That is the case, e.g., when learning some strategy 
with a simulator or when playing computer games, but not, e.g., when 
optimizing an advertisement campaign…


We can generally study efficient learning for MDPs but in this course we will 
only look at efficient learning for multi-armed bandits (which are simpler but 
still interesting and used in practice).



Multi-Armed Bandits

🎰 🎰 🎰 🎰

P[R = r |A = i]

1 2 3 4

We can choose actions  and each of them leads 
to a different distribution of rewards.

{1,2,3,4}



Setting
Multi-armed bandit is essentially a degenerate MDP that contains a single state.


Definition: A multi-armed bandit is given by:


A set  containing  actions  (each can be thought of as “pulling an arm”).


Reward distributions , that is the distribution of rewards at time  given 
the action at time .


At each step, the agent takes an action and receives a reward sampled from the above 
distribution.


The informal goal is to maximize the reward …. of course, this is a random variable.

A m a1, a2, …, am

P[Rt = r |At = a] t
t

T

∑
t=1

Rt



Example
Your PR team created  different advertisements. You are now supposed to show 
these advertisements to people and maximize the number of times they click on 
them. 

This can be modelled using multi-armed bandits:


The action  corresponds to displaying the -th advertisement from our collection.


We get reward 1 when the person clicks on the advertisement and 0 otherwise.


Clearly, the probabilities , , … will be different 
(different advertisements will have different quality).

m

ai i

P[Rt = 1 |At = 1] P[Rt = 1 |At = 2]



Regret (1/3)

Action-value: .


Similar to MDPs where we had . However, we do not need  
because we now have only one state. So we could rewrite it as . But 
then, since the action only affects the immediate reward and not to which 
state we get, the whole notion of policy is not very important for  in this 
setting, so we drop that as well and end up with .

Q(a) = 𝔼[Rt |At = a]

Qπ(s, a) s
Qπ(a)

Q
Q(a) = 𝔼[Rt |At = a]



Regret (2/3)
Optimal value:          .


Optimal action:         . 

Regret:                       . 

That is, regret is the “opportunity loss” at time t. Note that we use expected value 
in the definition of regret (recall how we defined ). That means we are not 
measuring regret directly in terms of what we observe. Since the parameters of 
bandits will generally be unknown, it also means we will not be able to compute 
regret directly.

V* = max
a∈A

Q(a) = max
a∈A

𝔼[Rt |At = a]

a* = arg max
a∈A

Q(a)

Lt = V* − Q(At)

Q(a)



Regret (3/3)

Total regret:               . 

Minimizing total regret is the same as maximizing the expected sum of 
rewards (i.e. return).

Ltot
T =

T

∑
t=1

Lt =
T

∑
t=1

(V* − Q(At))



Example
Consider again the example with advertisements, say we have 2 different 
advertisements that we can use, so .

Suppose that: 

, 

So , .


Let us have the following deterministic sequence of actions: 



What is the total regret of this episode? 
We have , , .

So the total regret is:


.


A = {a1, a2}

P[Person t clicks on ad |At = a1] = 0.8 P[Person t clicks on ad |At = a2] = 0.5
𝔼[Rt |At = a1] = 0.8 𝔼[Rt |At = a2] = 0.5

a1,1,a1,0,a2,1,a1,1,a2,0,a1,1,a1,0,a1,1,a1,1,a1,1

V* = 0.8 V* − Q(a1) = 0 V* − Q(a2) = 0.8 − 0.5 = 0.3

0 + 0 + 0.3 + 0 + 0.3 + 0 + 0 + … + 0 = 0.6



What We Want… (1/2)
We want to find algorithms where the regret will grow slowly with the number 
of time steps taken.


Note that: 

When regret does not grow at all after some time, that means that we are 
already taking the optimal action. 

Regret is the difference between best possible return and the return under 
our strategy. So when the regret grows slowly, it means we are already 
doing quite well.



What We Want… (2/2)

If we knew the expectations  then the problem would be trivial, 
but it would not be reinforcement learning. 

We could try to first estimate  by taking actions completely 
randomly. However, then in this first part we would incur high regret and it is 
also not clear how long we should be estimating (because that actually 
depends on the values of )… So we will need something 
smarter.

𝔼[Rt |At = a]

𝔼[Rt |At = a]

𝔼[Rt |At = a]



Greedy Methods (Why They 
Would Not Work)



Greedy Algorithm
Initialization: Do several passes over all actions and compute estimates   for all . 
Maintain counter  with the number of times an action was used.

While (some stopping condition): 

Select the action  which maximizes .


Use the selected action and observe .


Set .


Set .** 

Q̂(a) a ∈ A
N(a)

at ∈ A Q̂(a)
rt

N(at) := N(at) + 1

Q̂(at) := Q̂(at) +
1

N(at)
(rt − Q(at))

** 

Q(at)
= 1

N(at) − 1 (ri1
+…+rit−1

)

+ 1
N(at)

rit − 1
N(at)

Q(at) =
N(at)(ri1

+ … + rit−1
) + (N(at) − t)rit − (N(at) − 1) 1

N(at) − 1 (ri1
+ … + rit−1

)

(N(at) − 1)N(at)

=
(N(at) − 1)(ri1

+ … + rit−1
) + (N(at) − t)rit

(N(at) − 1)N(at)
= 1

N(at)
(ri1 + ri2 + … + rit)



Why Greedy Will Not Work Well
This will be similar to why purely greedy methods do not work well for RL (as 
we saw before, where we solved the problem by using -greedy methods. 

Example (Continue with our previous example): 
, .


For greedy methods, we need some initialization (e.g. passing over all the 
actions a couple of times). 

Suppose that our initial estimates for  are  and  
(which can happen if we are unlucky in the initialization).

Then we will never select  even though it is the optimal action. So regret 
will grow linearly with time in this case.

ε

𝔼[Rt |At = a1] = 0.8 𝔼[Rt |At = a2] = 0.5

Q Q̂(a1) = 0 Q̂(a2) = 0.5

a1



-Greedy Methods (Also not 
that great…)

ε



-Greedy (Basic Idea)ε
Similarly to what we did in the previous lectures… 

Initialization: Do several passes over all actions and compute estimates   for all . Maintain counter 
 with the number of times an action was used.


While (some stopping condition): 
With probability :


Select the action  which maximizes .

Else:


Select an action  uniformly at random.


Use the selected action and observe .


Set .


Set .

Q̂(a) a ∈ A
N(a)

1 − ε
at ∈ A Q̂(a)

at ∈ A
rt

N(at) := N(at) + 1

Q̂(at) := Q̂(at) +
1

N(at)
(rt − Q(at))



Regret of -Greedy Methodsε
If we keep  constant during the run of the -greedy algorithm then we will incur 
regret growing linearly with the number of time steps—in every step we have 
probability  of picking a suboptimal action (assuming no ties) which will 

incur a regret of at least 


So also not great… 

We might try to set  to be a function of  (as we did before) but it turns out to be 
tricky and need to know a lot about ’s in advance.

ε ε

ε −
ε

|A |
V* − max

a≠a*
Q(a)

ε t
Q(a)



Optimism Under Uncertainty



UCB Algorithm: Basic Idea
Upper-Confidence Bound (UCB) Algorithm 

For every action , maintain an upper bound  (the upper bound 
will change with time, that is why it is indexed by ). 

In every time step , take the action that has the maximum upper bound, i.e. 
take the action .


After observing the reward, update the estimates.

a ∈ A Ut(a)
t

t
arg max

a∈A
Ut(a)



UCB Algorithm
Initialization: 

Take every action  once and record the rewards in .




Loop: 
Compute upper confidence bounds for all actions :


 

Use the action  and observe the reward .


Update 


Update .


 

a ∈ A Q̂(a)
t := 1

ai ∈ A

Ut(ai) = Q̂(ai) +
1

2N(ai)
log

2t2

δ

at = arg max
a∈A

Ut(a) rt

N(at) := N(a1) + 1

Q̂(at) := Q̂(at) +
1

N(at)
(rt − Q(at))

t := t + 1



UCB Theorem

With probability at least , we have for the regret of the UCB 
algorithm:


.

1 − 2δm

Ltot
T ≤ 2

Tm
2

log
T2

δ

Sublinear regret!!!!



Conclusions

• There is a lot more about bandits than we could cover here… and about 
sample-efficient reinforcement learning in general.



If you want to know more…

Lattimore, Tor, and Csaba Szepesvári. Bandit algorithms. Cambridge 
University Press, 2020.


Available online: https://tor-lattimore.com/downloads/book/book.pdf

https://tor-lattimore.com/downloads/book/book.pdf


EXTRA



Proof (1/12)

Claim: If all upper bounds  satisfy , 
i.e. if none of them underestimates the true value, then for the action  
selected at time , it must hold 


.


Easy to see why…

Ut(a1), Ut(a2), …, Ut(am) Ut(ai) ≥ Q(ai)
at

t

Ut(at) ≥ U(a*) ≥ Q(a*) = V*



Proof (2/12)
First, we will state an auxiliary statement (which you probably know from other courses).


Theorem (Hoeffding’s Inequality): Let  be independent random variables bounded on the interval 

. Let . Then it holds


, 


,


.

X1, X2, …, XN

[a; b] XN =
1
N

N

∑
i=1

Xi

P [XN − 𝔼[XN] ≥ ξ] ≤ exp (−
2Nξ2

(b − a)2 )
P [𝔼[XN] − XN ≥ ξ] ≤ exp (−

2Nξ2

(b − a)2 )
P [ |XN − 𝔼[XN] | ≥ ξ] ≤ 2 exp (−

2Nξ2

(b − a)2 )



Proof (3/12)
Our  will be , i.e. the estimate of , and our  will therefore be , 
i.e. number of times  was used. 


We have .


We will want to find  (one value for each ) such that


,


where  is the current number of time steps.

XN Q̂t(ai) Q̂(ai) N Nt(ai)
ai

𝔼[Q̂t(ai)] = Q(ai)

ξt t

P [ |Q(ai) − Q̂(ai) | ≥ ξt] ≤ 2 exp (−
2Nt(ai)ξ2

t

(b − a)2 ) =
δ
t2

t



Proof (4/12)
We have


,


,





For simplicity we will now assume that .

P [ |Q(ai) − Q̂(ai) | ≥ ξt] ≤ 2 exp (−
2Nt(ai)ξ2

t

(b − a)2 ) =
δ
t2

−
2N(ai)ξ2

t

(b − a)2
= log

δ
2t2

ξt = (b − a)
1

2Nt(ai)
log

2t2

δ

a = 0, b = 1



Proof (5/12)
That is, the upper bounds  will be:


.


And we will also have lower bounds :


.

Ut(ai)

Ut(ai) = Q̂(ai) +
1

2Nt(ai)
log

2t2

δ

Lt(ai)

Lt(ai) = Q̂(ai) −
1

2Nt(ai)
log

2t2

δ



Proof (6/12)

Let  be the action selected at time .

We will now bound the probability that at least some of the bounds are 
incorrect (we will see in a moment why we want this).





.

At t

P [
T

⋁
t=1

m

⋁
i=1

Q(ai) ∉ [Lt(ai); Ut(ai)]] ≤

≤
T

∑
t=1

m

∑
i=1

P[ |Q(ai) − Q̂t(ai) | > ξt] ≤
T

∑
t=1

m

∑
i=1

δ
t2

= mδ
T

∑
t=1

1
t2



Proof (7/12)
We can now use the famous identity  (which is smaller than 2).**


So we can bound:


.


That  means that the probability that all lower and upper bounds are valid at all time steps is at 
least .


We will use this in a moment. 

** We actually do not need this fancy result to get the constant 2 (see the additional 
slide)

∞

∑
t=1

1
t2

=
π2

6

P [
T

⋁
t=1

m

⋁
i=1

Ut(ai) ∉ [Lt(ai); Ut(ai)]] ≤ 2mδ

1 − 2mδ



Proof (8/12)
Let  be the action selected at time .


We will now bound the probability that at least one of the upper bounds , ,  is 
lower than .


We can notice that the event that at least one action has wrong confidence bounds over the course 
of  time steps, formally written as





is a necessary condition for at least one of the upper bounds , ,  to be lower than 
.


Therefore we can bound this probability also by .

At t
U1(A1) U2(A2) …

U(a*)

T
T

⋁
t=1

m

⋁
i=1

Ut(ai) ∉ [Lt(ai); Ut(ai)]

U1(A1) U2(A2) …
U(a*)

1 − 2δm



Proof (9/12)
Let us now compute the regret of this algorithm:





We have that  with probability at least  (from the previous 
slide!) Hence we can bound the above as:


.

Regret(T) =
T

∑
t=1

(Q(a*) − Q(At)) =
T

∑
t=1

(Ut(At) − Q(At) + Q(a*) − Ut(At))

Q(a*) < Ut(At) 1 − 2mδ

Regret(T) ≤
T

∑
t=1

(Ut(At) − Q(At))



Proof (10/12)
Now we will play with


.


Recall that we defined  for all .


Hence we get


.


Regret(T) ≤
T

∑
t=1

(Ut(At) − Q(At))

Ut(ai) = Q̂(ai) +
1

2Nt(ai)
log

2t2

δ
ai ∈ A

Regret(T) ≤
T

∑
t=1

Q̂(At) +
1

2Nt(At)
log

2t2

δ
− Q(At)



Proof (11/12)
Now we need to do something with


.


Since we have that, with probability at least , we have for all 


.


We can bound the regret, with probability at least , as


.

Regret(T ) ≤
T

∑
t=1

Q̂(At) +
1

2Nt(At)
log

t2

δ
− Q(At)

1 − 2δm at ∈ A

Q̂(at) − Q(at) ≤
1

2Nt(At)
log

t2

δ

1 − 2δm

Regret(T ) ≤
T

∑
t=1

2
1

2Nt(At)
log

t2

δ
=

T

∑
t=1

2
Nt(At)

log
t2

δ



Proof (12/12)

Finally we have, with probability at least , 





.

1 − 2δm

Regret(T) ≤
T

∑
t=1

2
Nt(At)

log
t2

δ
= log

t2

δ

T

∑
t=1

2
Nt(At)

=

= 2 log
t2

δ

m

∑
i=1

NT(ai)

∑
j=1

1
j

≤ 2
Tm
2

log
T2

δ

Sublinear regret!!!!



Additional Slide 


(Why  is not needed)
∞

∑
t=1

1
t2

=
π2

6

Bounding


.
∞

∑
t=1

1
t2

≤ 1 + ∫
∞

1

1
t2

dt = 1 + [−
1
t ]

∞

1
= 2



END OF SLIDES


