
SMU: Lecture 3
Monday, March 6, 2023


(Heavily inspired by the Stanford RL Course of Prof. Emma Brunskill, but all potential errors are mine.)



Plan for Today

• Recap of important concepts from lectures 1 and 2.


• Model-free control:


• Monte-Carlo Online Control 

• SARSA 

• Q-Learning



Part 1: Where are we?  
(Recap from the previous two lectures)



State Value Function of MDP
Definition: 




. 

Computing it as a solution of a system of linear equations: 




Gπ
t = R(Xt, At) + γ ⋅ R(Xt+1, At+1) + γ2 ⋅ R(Xt+2, At+2) + … =

∞

∑
i=0

R(Xt+i, At+i) ⋅ γi

Vπ(s) = 𝔼[Gπ
t |Xt = s]

Vπ(s) = ∑
a∈A

π(a, s) ⋅ [R(s, a) + γ ⋅ ∑
s′ ∈S

P(s′ |s, a) ⋅ Vπ(s′ )]

4

(Bellman equation for MDP)
Lecture 1



MDP Control Problem

How to find    ???π*(s) = arg max
π

Vπ(s)

5
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MDP Control Problem

How to find    ???π*(s) ∈ arg max
π

Vπ(s)

6

Lecture 1

To be fully rigorous, we should write it like this, 
because there may be multiple optimal policies 

but only one optimal state-value function.



State-Action Value Q
• Definition: 

       . 

• Intuition: 

• The value of the return that we obtain if we first take the action  in the 
state  and then follow the policy  (including when we visit  again).


• Think of it as perturbing the policy  — we deviate from following the policy 
 only in the first step in .

Qπ(s, a) = R(s, a) + γ ⋅ ∑
s′ ∈S

P(s′ |s, a) ⋅ Vπ(s′ )

a
s π s

π
π s

7
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Policy Improvement Step
• Given: An MDP and a policy  that we want to improve (if possible).


• DO: 

• For all , compute  as defined on the previous slide, i.e. 
.


• Compute new policy for all : 

      

πi

s ∈ S Qπi(s, a)
Qπi(s, a) = R(s, a) + γ ⋅ ∑

s′ ∈S

P(s′ |s, a) ⋅ Vπi(s′ )

s ∈ S

πi+1(s) = arg max
a∈S

Qπi(s, a)

Here, we use the fact that our policy is deterministic 
for simpler notation (treating policy as a function). 
Using our previous notation we could write: 

       π(a |s) = {1  if a = arg maxa∈A Qπi(s, a)
0  otherwise 

8
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Policy Iteration



Initialize  randomly. 
DO 

  .

  .


   
WHILE  

Policy iteration finds the globally optimal policy!

i = 0
π0

Vπi =  Compute the state-value function, evaluating πi

πi+1 =  Policy improvement of πi

i = i + 1
∥πi − πi−1∥1 > 0 /* if policy changed */

9
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“Greedy Policy w.r.t. ”Qπ(s, a)
Terminological note: 

The policy satisfying





is called greedy policy w.r.t. the Q-function . 

(again, formally, we should be writing  but we will 

just assume for simplicity thtat  breaks ties in some consistent way 
and returns always only one state).

π′ (s) = arg max
a∈S

Qπ(s, a)

Qπ(s, a)

π′ (s) ∈ arg max
a∈S

Qπ(s, a)

arg max

10

Lecture 1



Value Iteration 
Set 

Initialize  for all 

DO: 

 

WHILE  

• To extract an optimal policy, we can extract a deterministic (not necessarily 
unique) policy: 

.

k = 1
V0(s) = 0 s ∈ S

Vk(s) = max
a∈A [R(s, a) + γ ⋅ ∑

s′ ∈S

P(s′ |s, a) ⋅ Vk−1(s′ )]
∥Vk − Vk−1∥∞ ≥ ε

π(s) = arg max
a∈A [R(s, a) + ∑

s′ ∈S

P(s′ |s, a) ⋅ V(s′ )]
11

Bellman backup B[V]
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Problem: Model-Free Policy Evaluation

• Given a policy and an MDP with unknown parameters (or generally an 
environment with which we can interact), estimate the value function.

Lecture 2



Example
🐸Agent: 

States are given:  

c

b

a

END

??

1

??

??

??

??

??
??

??

????

??
??

Rewards??  

Actions are given: 
  A = {l, r}
🐸
📡

Policy is given, e.g.: 
 
 

…

π(l |a) = 0.2, π(r |a) = 0.8,
π(l |b) = 0.3, π(r |b) = 0.7,

Lecture 2



First/Every-Visit Monte-Carlo Evaluation
Lecture 2

Initialize: . 
For : 

Sample episode .


For each time step :

If  is the first occurrence of state  in the episode 





 /* Increment total visits counter */ 
 /* Increment total return counter */ 

 /* Update current estimate */

G(s) = 0, N(s) = 0, Vπ(s) = undefined for all s ∈ S
i = 1,…, N

ei := si,1, ai,1, ri,1, si,2, ai,2, ri,2, …, si,Ti

1 ≤ t ≤ Ti

t s ei

gi,t := ri,t + γ ⋅ ri,t+1 + γ2 ⋅ ri,t+2 + … + γTi−t ⋅ ri,Ti

N(s) := N(s) + 1
G(s) := G(s) + gi,t

Vπ(s) := G(s)/N(s)



Temporal Difference Learning
• TD learning combines Monte-Carlo estimation and dynamic 

programming ideas.


• TD learning can be used both in episodic and infinite-horizon non-
episodic settings,


• TD learning updates estimates of  continually, after every consecutive 
tuple state-action-reward-state (therefore we do not need to wait till the 
end of an episode).


….

Vπ

Lecture 2



TD-Learning: Pseudocode

Initialize: 

Loop: 

Sample tuple .

Update 

Vπ(s) = 0 for all s ∈ S

(st, at, rt, st+1)
Vπ(st) := Vπ(st) + α ⋅ (ri,t + γ ⋅ Vπ(st+1)

TD target

− Vπ(st))

Lecture 2



Part 2: Model-Free Control 
(Problem Statement)



Model-Free Control

• Given an MDP with unknown parameters (or generally an environment 
with which we can interact), find an optimal policy .π



Running Example
• Example we will use: 

• Agent (ladybug)


• State space: ,  is the terminal state.


• Action space: .


• We do not know ,  and .


• We want to learn some optimal policy!

S = {b, c, d, e, END} END

A = {left, right, eat}

P(s′ |s, a) R(s, a) π(a |s)

🐞 🍦

b c d e END



Running Example
• Here, is what the system will behave like - this is just for you to have some 

intuition, the RL algorithm will not have access to this information.

🐞

🍦

b
c

d

e

T

P(c |b, right) = 1

P(b |c, left) = 1

P(d |c, right) = 1

P(c |d, left) = 1

P(END |c, eat) = 1

P(END |b, eat) = 1 P(END |d, eat) = 1

P(d |e, left) = 1

P(e |d, right) = 1

P(e |b, left) = 1

P(b |e, right) = 1

P(e |e, eat) = 1

R(s, a) =
1 s ∈ {b, c, d}
10 s = e and a = eat
0 otherwise



Part 3: Model-Free Policy 
Iteration



An Idea

• What if we wanted to use policy iteration to find the optimal policy?


• What would we need?


• Answer: We would need to be able to compute the state-action value function 
 for any policy . But that’s not possible because we do not know the 

parameters of the MDP…


• Idea: Could we estimate  in a similar way as we were estimating  
last week? And then use policy improvement on that estimated ?

Qπ(s, a) π

Qπ(s, a) Vπ(s)
Qπ(s, a)

🐞 🍦

b c d e END



MC Estimation of Qπ(s, a)

Last time we talked about MC Estimation of the value function. 


We can use the same idea for the estimation of the state-action value 
function … 


…then use that estimated  as in policy iteration…


Qπ(s, a)

Qπ(s, a)



MC Estimation of Qπ(s, a)

Last time we talked about MC Estimation of the value function. 


We can use the same idea for the estimation of the state-action value 
function … 


…then use that estimated  as in policy iteration…


…and see how it fails if done naively.

Qπ(s, a)

Qπ(s, a)



A Naive Idea
• THIS WILL NOT WORK (YET): 

Initialize: ,  (the given policy). 
For : 

Sample episode  using .

For each time step :


(If  is the first occurrence of state  in the episode   -  Use this if you want first-visit MC)

    is the state visited at time  in the episode  
    is the action taken at time  in the episode 




 /* Increment total visits counter */ 

 /* Increment total return counter */ 
 /* Update current estimate */ 

Set greedy policy w.r.t. , i.e.,  /* breaking ties consistently */. 

G(s, a) = 0, N(s, a) = 0 for all s ∈ S π1 = π
i = 1,…, N

ei := si,1, ai,1, ri,1, si,2, ai,2, ri,2, …, si,Ti
πi

1 ≤ t ≤ Ti
t s ei

st t ei
at t ei
gi,t := ri,t + γ ⋅ ri,t+1 + γ2 ⋅ ri,t+2 + … + γTi−t ⋅ ri,Ti

N(s) := N(s) + 1
G(st, at) := G(st, at) + gi,1
Q(st, at) := G(st, at)/N(st, at)
πi+1 = Q π(s) = arg max

a∈A
Q(s, a)



Let’s see why it will not work!
, 


, 




How can we ever estimate, e.g., ??


The problem is we may never update the 
estimate for  because the action 
taken in the state  is always .

S = {b, c, d, e, END} A = {left, right, eat}
π(b) = π(c) = π(e) = left π(d) = eat
e1 = c, left,1,b, left,1,e, left,1,d, eat,0,END

Qπ(b, right)

Qπ(b, right)
b left

• A simple idea (that will not work yet… and will illustrate why 
we need to think about exploration): 

• THIS WILL NOT WORK (YET): 
Initialize: . 
For : 

Sample episode  
using .

For each time step :


(If  is the first occurrence of state  in the episode   
-  Use this if you want first-visit MC)

    is the state visited at time  in the episode  
    is the action taken at time  in the episode 





 /* Increment total visits counter 
*/ 

 /* Increment total 
return counter */ 

 /* Update current 
estimate */

G(s, a) = 0, N(s, a) = 0 for all s ∈ S
i = 1,…, N

ei := si,1, ai,1, ri,1, si,2, ai,2, ri,2, …, si,Ti

π
1 ≤ t ≤ Ti

t s ei

st t ei
at t ei

gi,t := ri,t + γ ⋅ ri,t+1 + γ2 ⋅ ri,t+2 + … + γTi−t ⋅ ri,Ti

N(s) := N(s) + 1

G(st, at) := G(st, at) + gi,1

Qπ(st, at) := G(st, at)/N(st, at)

🐞



-Greedy Policyε
• Given a Q-function , we define the -greedy policy w.r.t.  as





Q(s, a) ε Q

π(a |s) =
1 − ε + ε

|A |
 when a = arg maxa∈A Q(s, a)

ε
|A |

 when a ≠ arg maxa∈A Q(s, a)

We assume ties are decided consistently



MC On Policy Iteration
Initialize: . 
Initialize:  
For : 

Sample episode  given .


For each time step :

(If  is the first occurrence of state  in the episode   -  Use this if you want first-visit MC)

    is the state visited at time  in the episode  
    is the action taken at time  in the episode 





 /* Increment total visits counter */ 
 /* Increment total return counter */ 

 /* Update current estimate * 
EndFor 

 

G(s, a) = 0, N(s, a) = 0, Q(s, a) = 0 for all s ∈ S, a ∈ A
ε = 1, k = 1

i = 1,…, N
ei := si,1, ai,1, ri,1, si,2, ai,2, ri,2, …, si,Ti

πk

1 ≤ t ≤ Ti

t s ei

st t ei
at t ei

gi,t := ri,t + γ ⋅ ri,t+1 + γ2 ⋅ ri,t+2 + … + γTi−t ⋅ ri,Ti

N(s) := N(s) + 1
G(st, at) := G(st, at) + gi,1

Q(st, at) := G(st, at)/N(st, at)

k = k + 1, ε = 1/k
πk = ε−greedy policy w.r.t. Q



Running Example (Initialization)
Let’s run MC On-Policy Iteration on our running example ( ):γ = 0.5

🐞 🍦

b c d e END
k = 1, ε = 1

G(s,a) left right eat

b 0 0 0

c 0 0 0

d 0 0 0

e 0 0 0

N(s,a) left right eat

b 0 0 0

c 0 0 0

d 0 0 0

e 0 0 0

Q(s,a) left right eat

b 0 0 0

c 0 0 0

d 0 0 0

e 0 0 0



Running Example (Episode 1)
Let’s run MC On-Policy Iteration on our running example ( ):γ = 0.5

🐞 🍦

b c d e END
k = 1, ε = 1

Q(s,a) left right eat

b 0 0 0

c 0 0 0

d 0 0 0

e 0 0 0

e1 = d

π1(a |d) =
1/3 a = left
1/3 a = right
1/3 a = eat



Running Example (Episode 1)
Let’s run MC On-Policy Iteration on our running example ( ):γ = 0.5

🐞 🍦

b c d e END
k = 1, ε = 1

Q(s,a) left right eat

b 0 0 0

c 0 0 0

d 0 0 0

e 0 0 0

e1 = d, right

π1(a |d) =
1/3 a = left
1/3 a = right
1/3 a = eat



Running Example (Episode 1)
Let’s run MC On-Policy Iteration on our running example ( ):γ = 0.5

🐞🍦

b c d e END
k = 1, ε = 1

Q(s,a) left right eat

b 0 0 0

c 0 0 0

d 0 0 0

e 0 0 0

e1 = d, right,1,e

π1(a |e) =
1/3 a = left
1/3 a = right
1/3 a = eat



Running Example (Episode 1)
Let’s run MC On-Policy Iteration on our running example ( ):γ = 0.5

🐞🍦

b c d e END
k = 1, ε = 1

Q(s,a) left right eat

b 0 0 0

c 0 0 0

d 0 0 0

e 0 0 0

e1 = d, right,1,e, right

π1(a |e) =
1/3 a = left
1/3 a = right
1/3 a = eat



Running Example (Episode 1)
Let’s run MC On-Policy Iteration on our running example ( ):γ = 0.5

🐞 🍦

b c d e END
k = 1, ε = 1

Q(s,a) left right eat

b 0 0 0

c 0 0 0

d 0 0 0

e 0 0 0

e1 = d, right,1,e, right,1,b

π1(a |b) =
1/3 a = left
1/3 a = right
1/3 a = eat



Running Example (Episode 1)
Let’s run MC On-Policy Iteration on our running example ( ):γ = 0.5

🐞 🍦

b c d e END
k = 1, ε = 1

Q(s,a) left right eat

b 0 0 0

c 0 0 0

d 0 0 0

e 0 0 0

,e1 = d, right,1,e, right,1,b eat

π1(a |b) =
1/3 a = left
1/3 a = right
1/3 a = eat



Running Example (Episode 1)
Let’s run MC On-Policy Iteration on our running example ( ):γ = 0.5

🍦

b c d e
🐞

END
k = 1, ε = 1

Q(s,a) left right eat

b 0 0 0

c 0 0 0

d 0 0 0

e 0 0 0

,e1 = d, right,1,e, right,1,b eat,0,END



Running Example (Episode 1)
Now we use First-Visit MC to update ,  and . G N Q

🍦

b c d e
🐞

END
k = 1, ε = 1

,e1 = d, right,1,e, right,1,b eat, T

G(s,a) left right eat

b 0 0 0

c 0 0 0

d 0 1.5 0

e 0 1 0

N(s,a) left right eat

b 0 0 1

c 0 0 0

d 0 1 0

e 0 1 0

Q(s,a) left right eat

b 0 0 0

c 0 0 0

d 0 1.5 0

e 0 1 0



Running Example (Episode 1)
Now we use First-Visit MC to update ,  and . G N Q

🍦

b c d e
🐞

END
k = 1, ε = 1

,e1 = d, right,1,e, right,1,b eat, T

G(s,a) left right eat

b 0 0 0

c 0 0 0

d 0 1.5 0

e 0 1 0

N(s,a) left right eat

b 0 0 1

c 0 0 0

d 0 1 0

e 0 1 0

Q(s,a) left right eat

b 0 0 0

c 0 0 0

d 0 1.5 0

e 0 1 0



Running Example (Episode 1)
Now we use First-Visit MC to update ,  and . G N Q

🍦

b c d e
🐞

END
k = 1, ε = 1

,e1 = d, right,1,e, right,1,b eat, T

G(s,a) left right eat

b 0 0 0

c 0 0 0

d 0 1.5 0

e 0 1 0

N(s,a) left right eat

b 0 0 1

c 0 0 0

d 0 1 0

e 0 1 0

Q(s,a) left right eat

b 0 0 0

c 0 0 0

d 0 1.5 0

e 0 1 0



Running Example (Episode 1)
Now we use First-Visit MC to update ,  and . G N Q

🍦

b c d e
🐞

END
k = 1, ε = 1

,e1 = d, right,1,e, right,1,b eat, T

G(s,a) left right eat

b 0 0 0

c 0 0 0

d 0 1.5 0

e 0 1 0

N(s,a) left right eat

b 0 0 1

c 0 0 0

d 0 1 0

e 0 1 0

Q(s,a) left right eat

b 0 0 0

c 0 0 0

d 0 1.5 0

e 0 1 0



Running Example (Episode 1)
Now we update the policy . First, we get the greedy policy w.r.t. π Q(s, a)

🍦

b c d e
🐞

END
k = 1, ε = 1

Q(s,a) left right eat

b 0 0 0

c 0 0 0

d 0 1.5 0

e 0 1 0




.

πgreedy(d) = πgreedy(e) = right,

πgreedy(b) = πgreedy(c) = left

Let us suppose that if there is tie in  then the 

preference is  (i.e. we prefer  over  
and right over )

arg max
a∈A

eat ≺ right ≺ left left right
eat



Running Example (Episode 1)
Now we update the policy . First, we get the greedy policy w.r.t. π Q(s, a)

🍦

b c d e
🐞

END

Now, we update k = 2; ε = 0.5

The new policy  will be the -greedy policy:


We then run the next iteration with this new policy .

π ε

π

π(a |s) =
1 − ε + ε

|A |
 when a = πgreedy(s)

ε
|A |

 when a ≠ πgreedy(s)



Running Example (Episode 1)

As  increases, the algorithm will converge to the optimal policy:k

🍦

b c d e
🐞

END

π(b) = left, π(c) = left, π(d) = right, π(e) = eat



GLIE
• We say that an algorithm has the GLIE property (= “greedy in the limit of infinite 

exploration”), if it satisfies the following two conditions):


• Definition (GLIE conditions): 

1. If a state  is visited infinitely often, then each action in that state is 
chosen infinitely often (with probability 1)


2. In the limit (as t → ∞), the learning policy is greedy with respect to the learned 
Q-function (with probability 1). By greedy we mean (ignoring the possibility of ties 
in the  for simplicity) that 

s ∈ S

arg max

πk+1(a |s) = {1  for a = arg maxa∈A Qk(s, a),
0  otherwise. 



MC Policy Iteration with  is GLIEεi = 1/i
• For a proof, see, e.g. Singh, S., Jaakkola, T., Littman, M. L., & Szepesvári, 

C. (2000). Convergence results for single-step on-policy reinforcement-
learning algorithms. Machine learning, 38(3), 287-308. 

• The formal proof is a bit tricky…


• Note: There are other seauences of  which guarantee GLIE as well.εi



A Theorem (Why GLIE Matters)
• Theorem: GLIE Monte-Carlo Control converges to the optimal state-

action value function, i.e.  as .Qk(s, a) → Q*(s, a) k → ∞



Part 4: SARSA and Q-Learning



General Form of TD-Based Methods

• Basic idea:  

• Replace Monte Carlo Policy Evaluation by a temporal-difference 
method.


• Still use -greedy policies to guarantee that exploration will take place.ε



Bellman Equations for Q-Function
(Something we skipped when we talked about Q-functions for MDPs but 
something that will be useful now.) 
We have: 







Combining the above: 

Vπ(s) = ∑
a∈A

π(a |s) ⋅ Qπ(s, a)

Qπ(s, a) = R(s, a) + γ ⋅ ∑
s′ ∈S

P(s′ |s, a) ⋅ Vπ(s′ )

Qπ(s, a) = R(s, a) + γ ⋅ ∑
s′ ∈S

P(s′ |s, a) ⋅ ∑
a′ ∈A

π(a′ |s′ ) ⋅ Qπ(s′ , a′ )



TD-Target
Bellman for Q-function: 

 

Temporal difference update (SARSA)… 

Qπ(st, at) = R(st, at) + γ ⋅ ∑
st+1∈S

P(st+1 |st, at) ⋅ ∑
at+1∈A

π(at+1 |st+1) ⋅ Qπ(st+1, at+1)

Q(st, at) := Q(st, at) + α (rt + γQ(st+1, at+1) − Q(st, at))

𝔼[Qπ(Xt+1, At+1) |Xt = st, At = at]



SARSA

1. Initialize: set  to be some -greedy policy, set , initialize .

2. Sample  using the distribution given by  in the state  (for sampling, 

we will use the notation ). 

3. While  is not a terminal state:


1. Take action  and observe .

2. Sample  and store it for the next iteration.

3. 


4. 

5. Set . Update   /* see next slides */

π ε t = 1 Q(s, a)
a1 π s1

a1 ∼ π(s1)
st

at rt, st+1

at+1 ∼ π(st)
Q(st, at) := Q(st, at) + α (rt + γQ(st+1, at+1) − Q(st, at))
π := ε-greedy(Q)

t := t + 1 ε, α



Running Example (Initialization)
Let’s run SARSA on our running example ( ):γ = 0.5

🍦

b c d e END

Q(s,a) left right eat

b 0 0 0

c 0 0 0

d 0 0 0

e 0 0 0

t = 1, ε = 1, α = 0.1
We will use .εt = 1/t



Running Example (Initialization)
Let’s run SARSA on our running example ( ):γ = 0.5

🍦

b c d e END

Q(s,a) left right eat

b 0 0 0

c 0 0 0

d 0 0 0

e 0 0 0

t = 1, ε = 1, α = 0.1
We will use .εt = 1/t



Running Example (Initialization)
Let’s run SARSA on our running example ( ):γ = 0.5

🍦

b c d e END

Q(s,a) left right eat

b 0 0 0

c 0 0 0

d 0 0 0

e 0 0 0

t = 1, ε = 1, α = 0.1
We will use .εt = 1/t



Running Example (Initialization)
Let’s run SARSA on our running example ( ):γ = 0.5

🐞 🍦

b c d e END

Q(s,a) left right eat

b 0 0 0

c 0 0 0

d 0 0 0

e 0 0 0

t = 1, ε = 1, α = 0.1
We will use .εt = 1/t

World samples the state s1 = d

s1 = d



Running Example (Initialization)
Let’s run SARSA on our running example ( ):γ = 0.5

🐞 🍦

b c d e END

Q(s,a) left right eat

b 0 0 0

c 0 0 0

d 0 0 0

e 0 0 0

a1 ∼ π1(a |d) =
1/3 a = left
1/3 a = right
1/3 a = eat

t = 1, ε = 1, α = 0.1
We will use .εt = 1/t

We sample  (we do not take it yet)a1

World samples the state s1 = d

s1 = d



Running Example ( )t = 1
Let’s run SARSA on our running example ( ):γ = 0.5

🐞 🐞 🍦

b c d e END
t = 1, ε = 1, α = 0.1
We will use .εt = 1/t

Q(s,a) left right eat

b 0 0 0

c 0 0 0

d 0 0 0

e 0 0 0

We observe:  and r1 = 1 s2 = c
We take the action a1 = left

s2 = c s1 = d



Running Example ( )t = 1
Let’s run SARSA on our running example ( ):γ = 0.5

t = 1, ε = 1, α = 0.1
We will use .εt = 1/t

Q(s,a) left right eat

b 0 0 0

c 0 0 0

d 0 0 0

e 0 0 0

a2 ∼ π1(a |c) =
1/3 a = left
1/3 a = right
1/3 a = eat

We sample  (we are not taking it yet)a2

We have:  and r1 = 1 s2 = c

 Say, it is .a2 = left

🐞 🐞 🍦

b c d e END

s2 = c s1 = d



Running Example ( )t = 1
Let’s run SARSA on our running example ( ):γ = 0.5

t = 1, ε = 1, α = 0.1
We will use .εt = 1/t

Q(s,a) left right eat

b 0 0 0

c 0 0 0

d 0 0 0

e 0 0 0

a2 ∼ π1(a |c) =
1/3 a = left
1/3 a = right
1/3 a = eat

We sample  (we are not taking it yet)a2

We have:  and r1 = 1 s2 = c

 Say, it is .a2 = left

🐞 🐞 🍦

b c d e END

s2 = c s1 = d



Running Example ( )t = 1
Let’s run SARSA on our running example ( ):γ = 0.5

t = 1, ε = 1, α = 0.1
We will use .εt = 1/t

Q(s,a) left right eat

b 0 0 0

c 0 0 0

d 0 0 0

e 0 0 0

a2 ∼ π1(a |c) =
1/3 a = left
1/3 a = right
1/3 a = eat

We sample  (we are not taking it yet)a2

We have:  and r1 = 1 s2 = c

 Say, it is .a2 = left

🐞 🐞 🍦

b c d e END

s2 = c s1 = d



Running Example ( )t = 1
Let’s run SARSA on our running example ( ):γ = 0.5

t = 1, ε = 1, α = 0.1
We will use .εt = 1/t


Q(d, left) := 0 + 0.1 (1 + 0.5 ⋅ 0 − 0) = 0.1
Q(s,a) left right eat

b 0 0 0

c 0 0 0

d 0.1 0 0

e 0 0 0

Q(st, at) := Q(st, at) + α (rt + γQ(st+1, at+1) − Q(st, at))

We now update the Q-function:
We have:  and r1 = 1 s2 = c

🐞 🐞 🍦

b c d e END

s2 = c s1 = d



Running Example ( )t = 2
Let’s run SARSA on our running example ( ):γ = 0.5

🐞🐞 🍦

b c d e END
t = 2, ε = 0.5, α = 0.1
We will use .εt = 1/t

Q(s,a) left right eat

b 0 0 0

c 0 0 0

d 0.1 0 0

e 0 0 0

We observe:  and r2 = 1 s3 = b
We take the action a2 = left

s2 = cs3 = b



Running Example ( )t = 2
Let’s run SARSA on our running example ( ):γ = 0.5

🐞🐞 🍦

b c d e END
t = 2, ε = 0.5, α = 0.1
We will use .εt = 1/t

Q(s,a) left right eat

b 0 0 0

c 0 0 0

d 0.1 0 0

e 0 0 0

We observe:  and r2 = 1 s3 = b
We take the action a2 = left

s2 = cs3 = b



Running Example ( )t = 2
Let’s run SARSA on our running example ( ):γ = 0.5

🐞🐞 🍦

b c d e END
t = 2, ε = 0.5, α = 0.1
We will use .εt = 1/t

Q(s,a) left right eat

b 0 0 0

c 0 0 0

d 0.1 0 0

e 0 0 0

We observe:  and r2 = 1 s3 = b
We take the action a2 = left

s2 = cs3 = b



Running Example ( )t = 2
Let’s run SARSA on our running example ( ):γ = 0.5

We will use .εt = 1/t

Q(s,a) left right eat

b 0 0 0

c 0 0 0

d 0.1 0 0

e 0 0 0

We sample  (we are not taking it yet)a3

 Say, it is .a3 = right

We have:  and r2 = 1 s3 = b

π1(a |b) =
1 − 0.5 + 1/6 = 2/3 a = left
1/6 a = right
1/6 a = eat

What happened here: Even though we did not update the estimates of the Q-function for the 
state , the policy changed. Recall that we break ties (we have the preference 

 and recall how we define greedy and -greedy policies.
c

eat ≺ right ≺ left ε

🐞🐞 🍦

b c d e END

s2 = cs3 = b

t = 2, ε = 0.5, α = 0.1



Running Example ( )t = 2
Let’s run SARSA on our running example ( ):γ = 0.5

We will use .εt = 1/t

Q(s,a) left right eat

b 0 0 0

c 0 0 0

d 0.1 0 0

e 0 0 0

We sample  (we are not taking it yet)a3

 Say, it is .a3 = right

We have:  and r2 = 1 s3 = b

π1(a |b) =
1 − 0.5 + 1/6 = 2/3 a = left
1/6 a = right
1/6 a = eat

What happened here: Even though we did not update the estimates of the Q-function for the 
state , the policy changed. Recall that we break ties (we have the preference 

 and recall how we define greedy and -greedy policies.
c

eat ≺ right ≺ left ε

🐞🐞 🍦

b c d e END

s2 = cs3 = b

t = 2, ε = 0.5, α = 0.1



Running Example ( )t = 2
Let’s run SARSA on our running example ( ):γ = 0.5

We will use .εt = 1/t

Q(s,a) left right eat

b 0 0 0

c 0 0 0

d 0.1 0 0

e 0 0 0

We sample  (we are not taking it yet)a3

 Say, it is .a3 = right

We have:  and r2 = 1 s3 = b

π1(a |b) =
1 − 0.5 + 1/6 = 2/3 a = left
1/6 a = right
1/6 a = eat

What happened here: Even though we did not update the estimates of the Q-function for the 
state , the policy changed. Recall that we break ties (we have the preference 

 and recall how we define greedy and -greedy policies.
c

eat ≺ right ≺ left ε

🐞🐞 🍦

b c d e END

s2 = cs3 = b

t = 2, ε = 0.5, α = 0.1



Running Example ( )t = 2
Let’s run SARSA on our running example ( ):γ = 0.5

We will use .εt = 1/t


Q(c, left) := 0 + 0.1 (1 + 0.5 ⋅ 0 − 0) = 0.1
Q(s,a) left right eat

b 0 0 0

c 0.1 0 0

d 0.1 0 0

e 0 0 0

Q(st, at) := Q(st, at) + α (rt + γQ(st+1, at+1) − Q(st, at))

We now update the Q-function:
We have:  and r2 = 1 s3 = b

🐞🐞 🍦

b c d e END

s2 = cs3 = b

t = 2, ε = 0.5, α = 0.1



Running Example ( )t = 3
Let’s run SARSA on our running example ( ):γ = 0.5

t = 1, ε = 1, α = 0.1
We will use .εt = 1/t

Q(s,a) left right eat

b 0 0 0

c 0.1 0 0

d 0.1 0 0

e 0 0 0

We observe:  and .r3 = 1 s4 = c
We take the action a3 = right

🐞🐞 🍦

b c d e END

s4 = cs3 = b



Running Example ( )t = 3
Let’s run SARSA on our running example ( ):γ = 0.5

t = 1, ε = 1, α = 0.1
We will use .εt = 1/t

Q(s,a) left right eat

b 0 0 0

c 0.1 0 0

d 0.1 0 0

e 0 0 0

We observe:  and .r3 = 1 s4 = c
We take the action a3 = right

🐞🐞 🍦

b c d e END

s4 = cs3 = b



Running Example ( )t = 3
Let’s run SARSA on our running example ( ):γ = 0.5

t = 1, ε = 1, α = 0.1
We will use .εt = 1/t

Q(s,a) left right eat

b 0 0 0

c 0.1 0 0

d 0.1 0 0

e 0 0 0

We sample  (we are not taking it yet)a4

 Say, it is .a4 = left

We have:  and r3 = 1 s4 = c

π1(a |c) =
7/9 a = left
1/9 a = right
1/9 a = eat

🐞🐞 🍦

b c d e END

s4 = cs3 = b



Running Example ( )t = 3
Let’s run SARSA on our running example ( ):γ = 0.5

t = 1, ε = 1, α = 0.1
We will use .εt = 1/t

Q(s,a) left right eat

b 0 0 0

c 0.1 0 0

d 0.1 0 0

e 0 0 0

We sample  (we are not taking it yet)a4

 Say, it is .a4 = left

We have:  and r3 = 1 s4 = c

π1(a |c) =
7/9 a = left
1/9 a = right
1/9 a = eat

🐞🐞 🍦

b c d e END

s4 = cs3 = b



Running Example ( )t = 3
Let’s run SARSA on our running example ( ):γ = 0.5

t = 1, ε = 1, α = 0.1
We will use .εt = 1/t


Q(c, left) := 0.1 + 0.1 ⋅ (1 + 0.5 ⋅ 0.1 − 0.1) = 0.195
Q(s,a) left right eat

b 0 0 0

c 0.195 0 0

d 0.1 0 0

e 0 0 0

Q(st, at) := Q(st, at) + α (rt + γQ(st+1, at+1) − Q(st, at))

We now update the Q-function:

We have:  and , r3 = 1 s4 = c a4 = left

AND SO ON….

🐞🐞 🍦

b c d e END

s4 = cs3 = b



Note: Breaking Ties
It is usually suggested as a good idea to break ties randomly.  

Indeed, as we saw in our example, without tie breaking our Q-values were 
prefering some actions in states we have not even visited yet, just because of 
the arbitrary tie breaking. 

Let us rerun the example where we define the greedy policy with random tie 
breaking and -greedy policy as:


.


Note: We will not be showing all details of the updates in the next slides (that 
would be redundant to what we already saw). Focus mostly on the -policies.

ε

πε(a |s) = (1 − ε) ⋅ πgreedy(a |s) +
ε

|A |

ε



Running Example (Initialization)

🐞 🍦

b c d e END

Q(s,a) left right eat

b 0 0 0

c 0 0 0

d 0 0 0

e 0 0 0

t = 1, ε = 1, α = 0.1
We will use .εt = 1/t

a1 ∼ π(a |d) =
1/3 a = left
1/3 a = right
1/3 a = eat

a1 ∼ π(a |d) =
1/3 a = left
1/3 a = right
1/3 a = eat

Without random tie-breaking:

With random tie-breaking:



Running Example ( )t = 1

Q(s,a) left right eat

b 0 0 0

c 0 0 0

d 0 0 0

e 0 0 0

a2 ∼ π(a |c) =
1/3 a = left
1/3 a = right
1/3 a = eat

a2 ∼ π(a |c) =
1/3 a = left
1/3 a = right
1/3 a = eat

Without random tie-breaking:

With random tie-breaking:

🐞 🐞 🍦

b c d e END

s2 = c s1 = d



Running Example ( )t = 2

Q(s,a) left right eat

b 0 0 0

c 0 0 0

d 0.1 0 0

e 0 0 0
a3 ∼ π(a |b) =

2/3 a = left
1/6 a = right
1/6 a = eat

a3 ∼ π(a |b) =
1/3 a = left
1/3 a = right
1/3 a = eat

Without random tie-breaking:

With random tie-breaking:

🐞🐞 🍦

b c d e END

s2 = cs3 = b



Running Example ( )t = 3

Q(s,a) left right eat

b 0 0 0

c 0.1 0 0

d 0.1 0 0

e 0 0 0
a4 ∼ π(a |c) =

7/9 a = left
1/9 a = right
1/9 a = eat

Without random tie-breaking:

With random tie-breaking:

a4 ∼ π(a |c) =
7/9 a = left
1/9 a = right
1/9 a = eat

AND SO ON….

🐞🐞 🍦

b c d e END

s4 = cs3 = b



Note: Optimistic Initialization
What happens if we initialize the Q values differently?


For instance, what would happen if we started with:

Q(s,a) left right eat

b 5 5 5

c 5 5 5

d 5 5 5

e 5 5 5

Answer: The agent would be “exploring” more than with the initialization we used.


This is a general property. If you want to promote exploration, initialize higher 
estimate of the Q function.



Convergence (SARSA)
• SARSA converges to the optimal state-value function  if the following conditions are 

satisfied:


1. The sequence of policies  satisfies the GLIE conditions (enough to have 
).


2. Step-sizes satisfy the Robbins-Monro conditions:


,


.

Q*

πt
εt = 1/t

∞

∑
t=1

αt = ∞

∞

∑
t=1

α2
t < ∞



Note: Why “SARSA”?

Why the name? Because of the update rule 





which uses the tuple  ~ s a r s a.


Q(st, at) := Q(st, at) + α (rt + γQ(st+1, at+1) − Q(st, at))
st, at, rt, st+1, at+1



Q-Learning (1/2)
• The Optimal Bellman Equation (we have not talked about it yet but it is 

similar to what we already saw):


.


• Q-Learning update rule:


Q*(s, a) = R(s, a) + γ ∑
st+1∈S

P(st+1 |s1, at) ⋅ max
at+1∈A

Q*(st+1, at+1)

Q(st, at) := Q(st, at) + α (rt + γ max
a∈A

Q(st+1, a) − Q(st, at))

𝔼 [ max
at+1∈A

Q*(Xt+1, at+1) Xt = st, At = at]



Q-Learning (2/2)

1. Initialize: set  to be some -greedy policy, set 

2. Observe the initial state 

3. While  is not a terminal state:


1. Take action  and observe .


2. 


3. 

4. Set . Update   /* see next slides */

π ε t = 1
s1

st

at ∼ π(st) rt, st+1

Q(st, at) := Q(st, at) + α (rt + γ max
a∈A

Q(st+1, a) − Q(st, at))
π := ε-greedy(Q)

t := t + 1 ε, α



Convergence (Q-Learning)
• For convergence of the state-value Q-function, we need only the Robbins-

Monro conditions + every state-action pair needs to be visited infinitely 
often (with probability 1).


• For convergence of the policy to the optimal policy, we need GLIE (i.e. it 
needs to also be greedy in the limit…).



On-Policy and Off-Policy Methods

• On-policy methods: samples must be from the policy that we are 
learning. Example: SARSA, MC Policy Iteration.


• Off-policy methods: samples do not have to be from the policy that we 
are learning. Example: Q-Learning.



END OF SLIDES


