## SMU: Lecture 2

## (Model-Free Policy Evaluation in RL + Intro to Model-Free Control)

Monday, February 27, 2023
(Heavily inspired by the Stanford RL Course of Prof. Emma Brunskill, but all potential errors are mine.)

## Plan for The First Part

- Policy evaluation when we do not know the model (neither the statetransition probabilities, nor the reward functions).
- Two kinds of methods today (there are more out there):
- Monte-Carlo Policy Evaluation
- Temporal-Difference Learning


## Part 0: Reminder from Last Lecture

## Markov Reward Process

## Markov reward process $=$ Markov process + Reward

Formally, MRP is given by:

- A set of states $S$.
- A transition model $P\left[X_{t+1}=s^{\prime} \mid X_{t}=s\right]$, which we also denote by $P\left(s^{\prime} \mid s\right)$.
- A reward function $R(s)=\mathbb{E}\left[R_{t} \mid X_{t}=s\right]$, which is the expected reward the agent receives in state $s,(s \in S)$.
- A discount factor $\gamma \in[0 ; 1]$.


## Return from an Episode

- Horizon:
- Number of time steps in an episode (which can also be infinite). We will first assume infinite horizons (they are easier because they will lead to stationary, i.e. time-independent, policies!).
- Return $g_{t}$ :
- Given: An episode $s_{1}, s_{2}, s_{3}, s_{4}, \ldots, s_{H}$.
- Compute: Return $g_{t}=$ discounted sum of rewards from time $t$.
- As a formula:

$$
g_{t}=R\left(s_{t}\right)+R\left(s_{t+1}\right) \cdot \gamma+R\left(s_{t+2}\right) \cdot \gamma^{2}+\ldots=R\left(s_{t}\right)+\sum_{i=1} R\left(s_{t+i}\right) \cdot \gamma^{i}
$$

## Markov Reward Process

## Markov reward process = Markov process + Reward



For example:

$$
R(s)= \begin{cases}0, & s=1 \\ 0, & s=2 \\ 0, & s=3 \\ 0, & s=4 \\ 10, & s=5\end{cases}
$$

We expect that each time we visit $\mathrm{s}_{5}$, there will be ice cream

## Episode (An Example)



Time: $t=1$
Current state: $s_{1}=3$, Current reward: $r_{1}=0$
Episode: 3

## Episode (An Example)



Time: $t=2$
Current state: $s_{2}=4$, Current reward: $r_{2}=0$
Episode: 3, 4

## Episode (An Example)



Time: $t=3$
Current state: $s_{3}=4$, Current reward: $r_{3}=0$
Episode: 3, 4, 4

## Episode (An Example)



Time: $t=4$
Current state: $s_{4}=5$, Current reward: $r_{4}=10$
Episode: 3, 4, 4, 5

## Episode (An Example)



Time: $t=5$
Current state: $s_{4}=5$, Current reward: $r_{5}=10$
Episode: 3, 4, 4, 5, 5

## Episode (An Example)



Time: $t=5$
Current state: $s_{4}=5$
Episode: 3, 4, 4, 5, 5

$$
g_{1}=0+0 \cdot 0.5+0 \cdot 0.5^{2}+10 \cdot 0.5^{3}+10 \cdot 0.5^{4}=1.875
$$

## Episode (An Example)



Time: $t=5$
Current state: $s_{4}=5$
Episode: 3, 4, 4, 5, 5
$q^{[8]}=0+10 \cdot 0.5+10 \cdot 0.5^{2}=7.5$

## Return (Random Variable)

- What we had on the previous slide was return from one specific sampled episode.
- Next we define return of a Markov reward process as a random variable (it is important to understand the distinction between the two):

$$
G_{t}=R\left(X_{t}\right)+\gamma \cdot R\left(X_{t+1}\right)+\gamma^{2} \cdot R\left(X_{t+2}\right)+\ldots=\sum_{i=0}^{\infty} R\left(X_{t+i}\right) \cdot \gamma^{i}
$$

## Markov Decision Process

- Markov decision process = Markov reward process + Actions
- An MDP is given by:
- A set of states $S$.
- A set of actions $A$.

$$
\text { A transition model } P\left[X_{t+1}=s^{\prime} \mid X_{t}=s, A_{t}=a\right] \underbrace{=P\left(s^{\prime} \mid s, a\right)}_{\text {notation }}
$$

- A reward $R(s, a)=\mathbb{E}\left[R_{t} \mid X_{t}=s, A_{t}=a\right]$, i.e. the expected reward that the agent receives when performing action $a$ in state $s$.
- Discount factor $\gamma$.


## Policy

- Policy determines which action to take in each state $S$.
- It can be either deterministic or random - that is also why policy will not simply be a function from states to actions.
- We define policy: $\pi(a \mid s)=P\left(A_{t}=a \mid X_{t}=s\right)$.
- Example (policy for our ladybug
- $A=\{$ left, right $\}$
- $\pi($ left $\mid 1)=0, \pi($ right $\mid 1)=1, \pi($ left $\mid 2)=0.5, \pi($ right $\mid 1)=0.5, \ldots$


## MDP+Policy = MRP

- When we specify a policy for a given MDP, we are effectively turning the MDP into a corresponding MRP.


## - Formally:

- Given an MDP $(A, S, P, R, \gamma)$, we turn it into an MRP $\left(S, P^{\pi}, R^{\pi}, \gamma\right)$ where

$$
\begin{aligned}
& P^{\pi}\left(s^{\prime} \mid s\right)=\sum_{a \in A} \pi(a \mid s) \cdot P\left(s^{\prime} \mid s, a\right) * \\
& R^{\pi}(s)=\sum_{a \in A} \pi(a \mid s) \cdot R(s, a)
\end{aligned}
$$

* In the more verbose notation: $P^{\pi}\left[X_{t+1}=s^{\prime} \mid X_{t}=s\right]=\sum_{a \in A} \pi(a \mid s) \cdot P\left[X_{t+1}=s^{\prime} \mid A_{t}=a, X_{t}=s\right]$.


## MDP+Policy (An Example)

If we take the MDP with $S=\{1,2,3,4,5\}, A=\{$ left, right, eat $\}$ and the state transition probabilties:
$P\left(s^{\prime} \mid s\right.$, left $)=\left\{\begin{array}{ll}0.1 & s=s^{\prime} \\ 0.9 & s-s^{\prime}=1, \\ 0 & \text { otherwise }\end{array} \quad P\left(s^{\prime} \mid s\right.\right.$, right $)=\left\{\begin{array}{ll}0.1 & s=s^{\prime} \\ 0.9 & s^{\prime}-s=1, \\ 0 & \text { otherwise }\end{array} \quad P\left(s^{\prime} \mid s\right.\right.$, eat $)= \begin{cases}1 & s=s^{\prime} \\ 0 & \text { otherwise }\end{cases}$
...and with the policy:
$\pi($ left $\mid s)=\left\{\begin{array}{ll}0 & s=1 \\ 0.5 & s \in\{2,3,4\}, \\ 0.5 & s=5\end{array} \quad \pi(\right.$ right $\mid s)=\left\{\begin{array}{ll}1 & s=1 \\ 0.5 & s \in\{2,3,4\}, \\ 0 & s=5\end{array} \quad \pi(\right.$ eat $\mid s)= \begin{cases}0 & s \in\{1,2,3,4\} \\ 0.5 & s=5\end{cases}$

## The states:



1


2


3


4


5

## MDP+Policy (An Example)

If we take the MDP with $S=\{1,2,3,4,5\}, A=\{$ left, right, eat $\}$ and the state transition probabilties:
$P\left(s^{\prime} \mid s\right.$, left $)=\left\{\begin{array}{ll}0.1 & s=s^{\prime} \\ 0.9 & s-s^{\prime}=1, \\ 0 & \text { otherwise }\end{array} \quad P\left(s^{\prime} \mid s\right.\right.$, right $)=\left\{\begin{array}{ll}0.1 & s=s^{\prime} \\ 0.9 & s^{\prime}-s=1, \\ 0 & \text { otherwise }\end{array} \quad P\left(s^{\prime} \mid s\right.\right.$, eat $)= \begin{cases}1 & s=s^{\prime} \\ 0 & \text { otherwise }\end{cases}$
...and with the policy:
$\pi($ left $\mid s)= \begin{cases}0 & s=1 \\ 0.5 & s \in\{2,3,4\}, \\ 0.5 & s=5\end{cases}$

$$
\pi(\text { right } \mid s)=\left\{\begin{array}{ll}
1 & s=1 \\
0.5 & s \in\{2,3,4\}, \\
0 & s=5
\end{array} \quad \pi(\text { eat } \mid s)= \begin{cases}0 & s \in\{1,2,3,4\} \\
0.5 & s=5\end{cases}\right.
$$

Now we will show the resulting Markov reward process:

## MDP+Policy (An Example)

If we take the MDP with $S=\{1,2,3,4,5\}, A=\{$ left, right, eat $\}$ and the state transition probabilties:
$P\left(s^{\prime} \mid s\right.$, left $)=\left\{\begin{array}{ll}0.1 & s=s^{\prime} \\ 0.9 & s-s^{\prime}=1, \\ 0 & \text { otherwise }\end{array} \quad P\left(s^{\prime} \mid s\right.\right.$, right $)=\left\{\begin{array}{ll}0.1 & s=s^{\prime} \\ 0.9 & s^{\prime}-s=1, \\ 0 & \text { otherwise }\end{array} \quad P\left(s^{\prime} \mid s\right.\right.$, eat $)= \begin{cases}1 & s=s^{\prime} \\ 0 & \text { otherwise }\end{cases}$
...and with the policy:
$\pi($ left $\mid s)=\left\{\begin{array}{ll}0 & s=1 \\ 0.5 & s \in\{2,3,4\}, \\ 0.5 & s=5\end{array} \quad \pi(\right.$ right $\mid s)=\left\{\begin{array}{ll}1 & s=1 \\ 0.5 & s \in\{2,3,4\}, \\ 0 & s=5\end{array} \quad \pi(\right.$ eat $\mid s)= \begin{cases}0 & s \in\{1,2,3,4\} \\ 0.5 & s=5\end{cases}$


## MDP+Policy (An Example)

If we take the MDP with $S=\{1,2,3,4,5\}, A=\{$ left, right, eat $\}$ and the state transition probabilties:
$P\left(s^{\prime} \mid s\right.$, left $)=\left\{\begin{array}{ll}0.1 & s=s^{\prime} \\ 0.9 & s-s^{\prime}=1, \\ 0 & \text { otherwise }\end{array} \quad P\left(s^{\prime} \mid s\right.\right.$, right $)=\left\{\begin{array}{ll}0.1 & s=s^{\prime} \\ 0.9 & s^{\prime}-s=1, \\ 0 & \text { otherwise }\end{array} \quad P\left(s^{\prime} \mid s\right.\right.$, eat $)= \begin{cases}1 & s=s^{\prime} \\ 0 & \text { otherwise }\end{cases}$
...and with the policy:
$\pi($ left $\mid s)=\left\{\begin{array}{ll}0 & s=1 \\ 0.5 & s \in\{2,3,4\}, \\ 0.5 & s=5\end{array} \quad \pi(\right.$ right $\mid s)=\left\{\begin{array}{ll}1 & s=1 \\ 0.5 & s \in\{2,3,4\}, \\ 0 & s=5\end{array} \quad \pi(\right.$ eat $\mid s)= \begin{cases}0 & s \in\{1,2,3,4\} \\ 0.5 & s=5\end{cases}$
...then we get the following Markov reward process:


For example:

$$
\begin{aligned}
& P^{\pi}(2 \mid 3)=\pi(\text { left } \mid 3) \cdot P(2 \mid 3, \text { left })+ \\
& +\pi(\text { right } \mid 3) \cdot P(2 \mid 3, \text { right })+ \\
& +\pi(\text { eat } \mid 3) \cdot P(2 \mid 3, \text { eat })= \\
& =0.5 \cdot 0.9+0.5 \cdot 0+0 \cdot 0=0.45
\end{aligned}
$$

## MDP+Policy (An Example)

If we take the MDP with $S=\{1,2,3,4,5\}, A=\{$ left, right, eat $\}$ and the state transition probabilties:
$P\left(s^{\prime} \mid s\right.$, left $)=\left\{\begin{array}{ll}0.1 & s=s^{\prime} \\ 0.9 & s-s^{\prime}=1, \\ 0 & \text { otherwise }\end{array} \quad P\left(s^{\prime} \mid s\right.\right.$, right $)=\left\{\begin{array}{ll}0.1 & s=s^{\prime} \\ 0.9 & s^{\prime}-s=1, \\ 0 & \text { otherwise }\end{array} \quad P\left(s^{\prime} \mid s\right.\right.$, eat $)= \begin{cases}1 & s=s^{\prime} \\ 0 & \text { otherwise }\end{cases}$
...and with the policy:
$\pi($ left $\mid s)=\left\{\begin{array}{ll}0 & s=1 \\ 0.5 & s \in\{2,3,4\}, \\ 0.5 & s=5\end{array} \quad \pi(\right.$ right $\mid s)=\left\{\begin{array}{ll}1 & s=1 \\ 0.5 & s \in\{2,3,4\}, \\ 0 & s=5\end{array} \quad \pi(\right.$ eat $\mid s)= \begin{cases}0 & s \in\{1,2,3,4\} \\ 0.5 & s=5\end{cases}$
...then we get the following Markov reward process:


$$
\begin{aligned}
& \text { For example: } \\
& P^{\pi}(2 \mid 2)=\pi(\text { left } \mid 2) \cdot P(2 \mid 2, \text { left })+ \\
& +\pi(\text { right } \mid 2) \cdot P(2 \mid 2, \text { right })+ \\
& +\pi(\text { eat } \mid 2) \cdot P(2 \mid 2, \text { eat })= \\
& =0.5 \cdot 0.1+0.5 \cdot 0.1+0 \cdot 1=0.1
\end{aligned}
$$

## MDP+Policy (An Example)

Now, for the rewards, suppose the reward function of the MDP is:
$R(s, a)= \begin{cases}10 & s=5 \text { and } a=\text { eat } \\ 0 & \text { otherwise }\end{cases}$
and we still use the same policy:

then the reward function of the resulting Markov reward process is:
$R^{\pi}(s)=\left\{\begin{array}{ll}5 & s=5 \\ 0 & \text { otherwise }\end{array}\right.$,

## MDP+Policy (An Example)

Now, for the rewards, suppose the reward function of the MDP is:
$R(s, a)= \begin{cases}10 & s=5 \text { and } a=\text { eat } \\ 0 & \text { otherwise }\end{cases}$
and we still use the same policy:

then the reward function of the resulting Markov reward process is:
$R^{\pi}(s)=\left\{\begin{array}{ll}5 & s=5 \\ 0 & \text { otherwise }\end{array}\right.$,
here, for instance.
$R^{\pi}(5)=\pi($ eat $\mid 5) \cdot R(5$, eat $)+\pi($ left $\mid 5) \cdot R(5$, left $)+\pi($ right $\mid 5) \cdot R(5$, right $)=0.5 \cdot 0+0.5 \cdot 10+0 \cdot 0=5$

## (State) Value Function

- Definition:

$$
V(s)=\mathbb{E}\left[G_{t} \mid X_{t}=s\right]=\mathbb{E}\left[R\left(X_{t}\right)+\gamma \cdot R\left(X_{t+1}\right)+\gamma^{2} \cdot R\left(X_{t+2}\right)+\ldots \mid X_{t}=s\right]
$$

- Intuition: Value function $V(s)$ is the expected return when starting from state $s$.


## State Value Function of MDP

## General case:

$$
V^{\pi}(s)=\sum_{a \in A} \pi(a, s) \cdot\left[R(s, a)+\gamma \cdot \sum_{s^{\prime} \in S} P\left(s^{\prime} \mid s, a\right) \cdot V^{\pi}\left(s^{\prime}\right)\right]
$$

Version for deterministic policy:

$$
V^{\pi}(s)=R(s, \pi(s))+\gamma \cdot \sum_{s^{\prime} \in S} P\left(s^{\prime} \mid s, \pi(s)\right) \cdot V^{\pi}\left(s^{\prime}\right)
$$

Part 1: Problem Statement

## Problem: Model-Free Policy Evaluation

- Given a policy and an MDP with unknown parameters (or generally an environment with which we can interact), estimate the value function.


## Example

Agent:


## Rewards??



Actions are given:

$$
A=\{l, r\}
$$

Policy is given, e.g.:

$$
\begin{aligned}
& \pi(l \mid a)=0.2, \pi(r \mid a)=0.8 \\
& \pi(l \mid b)=0.3, \pi(r \mid b)=0.7
\end{aligned}
$$

## Problem: Model-Free Policy Evaluation

- Our task again:
- Given a policy and an MDP with unknown parameters (or generally an environment with which we can interact), estimate the value function.


## An Assumption

- Assumption: In what follows we will assume that our MDP has terminal states and that the probability of infinitely long runs is zero.
- Terminal states: Once the system gets into a terminal state, it stays in it. The reward in the terminal state is always 0 .
- Why do we do this? This assumption will allow us to use the formalism for infinite-horizon problems (which is mathematically simpler).


## Part 2: Statistical Properties of Estimators

(An informal recap of what you already know from statistics)

## Estimators (Statistics)

- Typical setting:
- We are given a sample of random variables $X_{1}, X_{2}, \ldots, X_{n}$.
- Suppose that we want to estimate some parameter $\theta$, e.g., suppose all the $X_{i}$ 's are sampled independently from the same distribution and we want to estimate the mean of this distribution.
- An estimator of $\theta$ is a function $\hat{\theta}$ that maps samples to estimates of the parameter $\theta$.


## Estimators as Random Variables

- Example: Let us have a normal distribution with mean $\mu$ and standard deviation $\sigma$. Denote by $\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{N}\right)$ an independent sample from this distribution. Then the sample mean $\hat{\mu}(\mathbf{X})=\frac{1}{N} \sum_{i=1}^{N} X_{i}$ is an estimator for the population mean $\mu$.
- Note that, in this example, $\hat{\mu}(\mathbf{X})$ is a random variable.


## Bias

Bias of an estimator $\hat{\theta}$ is defined as: $\operatorname{BIAS}_{\theta}(\hat{\theta})=\mathbb{E}_{\theta}[\hat{\theta}(\mathbf{X})]-\theta$.
If $\operatorname{BIAS}_{\theta}(\hat{\theta})=0$ then we say that $\hat{\theta}$ is an unbiased estimator.
Example: $\frac{1}{N} \sum_{k=1}^{N} X_{k}$ is an unbiased estimator of population mean. Why?
Because we have $\mathbb{E}\left[\frac{1}{N} \sum_{k=1}^{N} X_{k}\right]=\frac{1}{N} \sum_{k=1}^{N} \mathbb{E}\left[X_{k}\right]=\frac{1}{N} \cdot N \cdot \mathbb{E}\left[X_{k}\right]=\mu$.

## Mean Squared Error

Mean squared error of an estimator $\hat{\theta}$ is defined as: $\operatorname{MSE}_{\theta}(\hat{\theta})=\mathbb{E}_{\theta}\left[(\hat{\theta}(\mathbf{X})-\theta)^{2}\right]$. It holds $\operatorname{MSE}_{\theta}(\hat{\theta}(\mathbf{X}))=\operatorname{Var}_{\theta}(\hat{\theta}(\mathbf{X}))+\operatorname{BIAS}(\hat{\theta}(\mathbf{X}))^{2}$.

## Consistency

Let $\mathbf{X}_{N}=\left(X_{1}, \ldots, X_{N}\right)$ be an independent sample, used to estimate $\theta$.
A sequence of estimators $\hat{\theta}_{N}\left(\mathbf{X}_{N}\right)$ is said to be consistent if for every $\varepsilon>0$ it holds: $\lim _{N \rightarrow \infty} P\left[\left|\hat{\theta}_{N}\left(\mathbf{X}_{N}\right)-\theta\right|<\varepsilon\right]=1$.

## Why It Matters

- Estimators that we are going to study in this lecture can be analyzed in the same framework. After all, they are just statistical estimators.


## Part 3: Monte-Carlo Policy Evaluation

## Monte-Carlo Policy Evaluation (1/5)

Recall the definition of $G_{t}$, the return at time $t$ (we have not shown it explicitly for MDPs last time):

$$
G_{t}^{\pi}=\underset{\text { (for simplicity, we assume that the reward when } R(a, s, s) \text { is determministic) }}{R\left(X_{t}, A_{t}\right)+\gamma \cdot R\left(X_{t+1}, A_{t+1}\right)+\gamma^{2} \cdot R\left(X_{t+2}, A_{t+2}\right)+\ldots=\sum_{i=0}^{\infty} R\left(X_{t+i}, A_{t+i}\right) \cdot \gamma^{i}}
$$

where $X_{i}^{\prime}$ 's and $A_{i}^{\prime} s$ are random variables $-X_{i}$ is the state at time $t$ and $A_{i}$ is the action at time $i$. We suppose that these random variables are from an MDP with a policy $\pi$ (which together define the distribution of these random variables).

## Monte-Carlo Policy Evaluation (2/5)

The state value function $V^{\pi}(s)$ is:
$V^{\pi}(s)=\mathbb{E}\left[G_{t}^{\pi} \mid X_{t}=s\right]$.
We were computing $V^{\pi}(s)$ by solving the Bellman equation (directly or iteratively):
$V^{\pi}(s)=\sum_{a \in A} \pi(a, s) \cdot\left[R(s, a)+\gamma \cdot \sum_{s^{\prime} \in S} P\left(s^{\prime} \mid s, a\right) \cdot V^{\pi}\left(s^{\prime}\right)\right]$.
But there is also another way to approximate $V^{\pi}(s)$. *
*This method will not be very efficient for MDPs but bear with me... we are getting somewhere)

## Monte-Carlo Policy Evaluation (3/5)

An episode sampled from an MDP under a policy $\pi$ is a sequence of states, actions and rewards which ends in a terminal state:
$s_{1}, a_{1}, r_{1}, s_{2}, a_{2}, r_{2}, s_{3}, a_{3}, r_{3}, \ldots, s_{T}$
where $s_{i}$ is the state at time $i, a_{i}$ is the action taken at time $i$ and $r_{i}$ is the corresponding reward obtained at time $i$.
The return at time $t$ for a concrete episode $s_{1}, a_{1}, r_{1}, s_{2}, a_{2}, r_{2} \ldots, s_{T}$

$$
g_{t}=r_{1}+\gamma \cdot r_{2}+\gamma^{2} \cdot r_{3}+\ldots=\sum_{i=0}^{T-1} r_{i} \cdot \gamma^{i}
$$

## Monte-Carlo Policy Evaluation (4/5)

We will now try to approximate $V^{\pi}(s)$ directly using $V^{\pi}(s)=\mathbb{E}\left[G_{t}^{\pi} \mid X_{t}=s\right]$ using sampled episodes. After all, expectation can be approximated by an average of sampled values.

We will sample finite episodes (after all we can't sample infinitely long episodes in practice). This also means that MC policy estimation can only be used for episodic RL problems.

## Monte-Carlo Policy Evaluation (5/5)

Why the problem is not straightforward: If we only wanted to estimate $\mathbb{E}\left[G_{t}\right]$, that would be easy, but we want to estimate $\mathbb{E}\left[G_{t} \mid X_{t}=s\right]$ that is we need to condition... but we cannot condition arbitrarily... we can only observe episodes sampled under the given policy... so we will need to "wait" for s to occur.

We will see two different MC algorithms to do that: First-Visit MC Estimation and Every-Visit MC Estimation.

## First-Visit Monte-Carlo Evaluation

Initialize: $G(s)=0, N(s)=0, V^{\pi}(s)=$ undefined for all $s \in S$.
For $i=1, \ldots, N$ :
Sample episode $e_{i}:=s_{i, 1}, a_{i, 1}, r_{i, 1}, s_{i, 2}, a_{i, 2}, r_{i, 2}, \ldots, s_{i, T_{i}}$.
For each time step $1 \leq t \leq T_{i}$ :
If $t$ is the first occurrence of state $s$ in the episode $e_{i}$

$$
\begin{aligned}
& g_{i, t}:=r_{i, t}+\gamma \cdot r_{i, t+1}+\gamma^{2} \cdot r_{i, t+2}+\ldots+\gamma^{T_{i}-t} \cdot r_{i, T_{i}} \\
& N(s):=N(s)+1 /^{*} \text { Increment total visits counter */ } \\
& G(s):=G(s)+g_{i, t} / /^{*} \text { Increment total return counter */ } \\
& V^{\pi}(s):=G(s) / N(s) /^{*} \text { Update current estimate */ }
\end{aligned}
$$

## Recall Our Example

Agent:


Actions are given:

$$
A=\{L, R\}
$$

Some policy $\pi$ is given (details not important now).

## First-Visit MC Evaluation (Example)

Given: $S=\{a, b, c$, end $\}, A=\{L, R\}, \gamma=1$
Sampled episodes (using given policy $\pi$ ):
$e_{1}=a, R, 0, b, R, 10, c, L, 0, b, R, 0, c, R, 0$, end $e_{2}=a, R, 0, b, R, 10, c, L, 0, b, R, 10, a, L, 0$, end

## After iteration 1:

$G(a)=10, G(b)=10, G(c)=0, G($ end $)=0$
$N(a)=1, N(b)=1, N(c)=1, N($ end $)=1$
$V^{\pi}(a)=10, V^{\pi}(b)=10, V^{\pi}(c)=0, V^{\pi}($ end $)=0$

## After iteration 2:

Initialize: $G(s)=0, N(s)=0$ for all $s \in S$.
For $i=1, \ldots, N$ :
Sample episode
$e_{i}:=s_{i, 1}, a_{i, 1}, r_{i, 1}, s_{i, 2}, a_{i, 2}, r_{i, 2}, \ldots, s_{i, T_{i}}$.
For each time step $1 \leq t \leq T_{i}$ :
If $t$ is the first occurrence of state $s$ in the episode $e_{i}$

$$
g_{i, t}:=r_{i, t}+\gamma \cdot r_{i, t+1}+\gamma^{2} \cdot r_{i, t+2}+\ldots+\gamma^{T_{i}-t} \cdot r_{i, T_{i}}
$$

$N(s):=N(s)+1 / *$ Increment total visits counter */
$G(s):=G(s)+g_{i, t} /{ }^{*}$ Increment total return counter */
$V^{\pi}(s):=G(s) / N(s) /^{*}$ Update current estimate */

## First-Visit MC Evaluation (Example)

Given: $S=\{a, b, c$, end $\}, A=\{L, R\}, \gamma=1$
Sampled episodes (using given policy $\pi$ ):
$e_{1}=a, R, 0, b, R, 10, c, L, 0, b, R, 0, c, R, 0$, end $e_{2}=a, R, 0, b, R, 10, c, L, 0, b, R, 10, a, L, 0$, end

## After iteration 1:

$G(a)=10, G(b)=10, G(c)=0, G($ end $)=0$
$N(a)=1, N(b)=1, N(c)=1, N($ end $)=1$
$V^{\pi}(a)=10, V^{\pi}(b)=10, V^{\pi}(c)=0, V^{\pi}($ end $)=0$

## After iteration 2:

$G(a)=30, G(b)=30, G(c)=10, G($ end $)=0$
$N(a)=2, N(b)=2, N(c)=2, N($ end $)=2$
$V^{\pi}(a)=15, V^{\pi}(b)=15, V^{\pi}(c)=5, V^{\pi}($ end $)=0$

Initialize: $G(s)=0, N(s)=0$ for all $s \in S$.
For $i=1, \ldots, N$ :
Sample episode
$e_{i}:=s_{i, 1}, a_{i, 1}, r_{i, 1}, s_{i, 2}, a_{i, 2}, r_{i, 2}, \ldots, s_{i, T_{i}}$
For each time step $1 \leq t \leq T_{i}$ :
If $t$ is the first occurrence of state $s$ in the episode $e_{i}$

$$
g_{i, t}:=r_{i, t}+\gamma \cdot r_{i, t+1}+\gamma^{2} \cdot r_{i, t+2}+\ldots+\gamma^{T_{i}-t} \cdot r_{i, T_{i}}
$$

$N(s):=N(s)+1 /{ }^{*}$ Increment total visits counter */
$G(s):=G(s)+g_{i, t} /^{*}$ Increment total return counter */
$V^{\pi}(s):=G(s) / N(s) / *$ Update current estimate */

## Every-Visit Monte-Carlo Evaluation

Initialize: $G(s)=0, N(s)=0$ for all $s \in S$.
For $i=1, \ldots, N$ :
Sample episode $e_{i}:=s_{i, 1}, a_{i, 1}, r_{i, 1}, s_{i, 2}, a_{i, 2}, r_{i, 2}, \ldots, s_{i, T_{i}}$.
For each time step $1 \leq t \leq T_{i}$ :
If $t$ is the first occurrence of state $s$ in the episode $e_{i} / *$ This was for first-visit MC */
$s$ is the state visited at time $t$ in the episode $e_{i}$
$g_{i, t}:=r_{i, t}+\gamma \cdot r_{i, t+1}+\gamma^{2} \cdot r_{i, t+2}+\ldots+\gamma^{T_{i}-t} \cdot r_{i, T_{i}}$
$N(s):=N(s)+1 / *$ Increment total visits counter */
$G(s):=G(s)+g_{i, t}{ }^{*}$ Increment total return counter */
$V^{\pi}(s):=G(s) / N(s) / *$ Update current estimate */

## Every-Visit MC Evaluation (Example)

$$
\begin{aligned}
& \text { Given: } S=\{a, b, c, \text { end }\}, A=\{L, R\}, \gamma=1 \\
& \text { Sampled episodes (using given policy } \pi \text { ): } \\
& e_{1}=a, R, 0, b, R, 10, c, L, 0, b, R, 0, c, R, 0 \text {, end } \\
& e_{2}=a, R, 0, b, R, 10, c, L, 0, b, R, 10, a, L, 0 \text {, end }
\end{aligned}
$$

## After iteration 1:

Initialize: $G(s)=0, N(s)=0$ for all $s \in S$.
For $i=1, \ldots, N$ :
Sample episode
$e_{i}:=s_{i, 1}, a_{i, 1}, r_{i, 1}, s_{i, 2}, a_{i, 2}, r_{i, 2}, \ldots, s_{i, T_{i}}$.
For each time step $1 \leq t \leq T_{i}$ :
$s$ is the state visited at time $t$ in the episode $e_{i}$
$g_{i, t}:=r_{i, t}+\gamma \cdot r_{i, t+1}+\gamma^{2} \cdot r_{i, t+2}+\ldots+\gamma^{T_{i}-t} \cdot r_{i, T_{i}}$
$N(s):=N(s)+1 / *$ Increment total visits counter */
$G(s):=G(s)+g_{i, t}{ }^{*}$ Increment total return counter */
$V^{\pi}(s):=G(s) / N(s) / *$ Update current estimate */

## Every-Visit MC Evaluation (Example)

Given: $S=\{a, b, c$, end $\}, A=\{L, R\}, \gamma=1$
Sampled episodes (using given policy $\pi$ ): $e_{1}=a, R, 0, b, R, 10, c, L, 0, b, R, 0, c, R, 0$, end $e_{2}=a, R, 0, b, R, 10, c, L, 0, b, R, 10, a, L, 0$, end

## After iteration 1:

$G(a)=10, G(b)=10, G(c)=0, G($ end $)=0$
$N(a)=1, N(b)=2, N(c)=2, N($ end $)=1$
$V^{\pi}(a)=10, V^{\pi}(b)=5, V^{\pi}(c)=0, V^{\pi}($ end $)=0$

After iteration 2:

Initialize: $G(s)=0, N(s)=0$ for all $s \in S$.
For $i=1, \ldots, N$ :
Sample episode
$e_{i}:=s_{i, 1}, a_{i, 1}, r_{i, 1}, s_{i, 2}, a_{i, 2}, r_{i, 2}, \ldots, s_{i, T_{i}}$.
For each time step $1 \leq t \leq T_{i}$ :
$s$ is the state visited at time $t$ in the episode $e_{i}$
$g_{i, t}:=r_{i, t}+\gamma \cdot r_{i, t+1}+\gamma^{2} \cdot r_{i, t+2}+\ldots+\gamma^{T_{i}-t} \cdot r_{i, T_{i}}$
$N(s):=N(s)+1 / *$ Increment total visits counter */
$G(s):=G(s)+g_{i, t} /{ }^{*}$ Increment total return counter */
$V^{\pi}(s):=G(s) / N(s) /^{*}$ Update current estimate */

## Every-Visit MC Evaluation (Example)

Given: $S=\{a, b, c$, end $\}, A=\{L, R\}, \gamma=1$
Sampled episodes (using given policy $\pi$ ): $e_{1}=a, R, 0, b, R, 10, c, L, 0, b, R, 0, c, R, 0$, end $e_{2}=a, R, 0, b, R, 10, c, L, 0, b, R, 10, a, L, 0$, end

## After iteration 1:

$$
\begin{aligned}
& G(a)=10, G(b)=10, G(c)=0, G(\text { end })=0 \\
& N(a)=1, N(b)=2, N(c)=2, N(\text { end })=1 \\
& V^{\pi}(a)=10, V^{\pi}(b)=5, V^{\pi}(c)=0, V^{\pi}(\text { end })=0
\end{aligned}
$$

## After iteration 2:

$G(a)=30, G(b)=40, G(c)=10, G($ end $)=0$
$N(a)=3, N(b)=4, N(c)=3, N($ end $)=2$
$V^{\pi}(a)=10, V^{\pi}(b)=10, V^{\pi}(c)=\frac{10}{3}, V^{\pi}($ end $)=0$

Initialize: $G(s)=0, N(s)=0$ for all $s \in S$.
For $i=1, \ldots, N$ :
Sample episode
$e_{i}:=s_{i, 1}, a_{i, 1}, r_{i, 1}, s_{i, 2}, a_{i, 2}, r_{i, 2}, \ldots, s_{i, T_{i}}$.
For each time step $1 \leq t \leq T_{i}$ :
$s$ is the state visited at time $t$ in the episode $e_{i}$ $g_{i, t}:=r_{i, t}+\gamma \cdot r_{i, t+1}+\gamma^{2} \cdot r_{i, t+2}+\ldots+\gamma^{T_{i}-t} \cdot r_{i, T_{i}}$
$N(s):=N(s)+1 / *$ Increment total visits counter */
$G(s):=G(s)+g_{i, t}{ }^{*}$ Increment total return counter */
$V^{\pi}(s):=G(s) / N(s) / *$ Update current estimate */

## Statistical Properties (1/7)

- First-visit MC Policy Evaluation is unbiased (and hence also consistent) estimator.
- Every-visit MC Policy Evaluation is a biased but consistent estimator, which often has better MSE.


## Statistical Properties (2/7)

First-visit MC Policy Evaluation is unbiased (and hence also consistent) estimator.

## Proof Sketch:

Assuming Markov property, the first occurrence* of the state $s$ at time $t$ together with the subsequence starting at $t$ gives us an unbiased estimate of the return starting from $s$ (this is practically from definition), i.e., $\mathbb{E}\left[G_{t}^{\pi} \mid X_{t}=s\right]$, which is by definition equal to $V^{\pi}(s)$. First-visit MC averages such independent samples from different episodes (different episodes => independence).
*Do you see why we cannot take, e.g., the last occurrence? Hint: Are subsequences starting with the last occurrence of $s$ special in some way?

## Statistical Properties (3/7)

- Every-visit MC Policy Evaluation is a biased but consistent estimator, which often has better MSE.
- Example (Showing that it is biased):

$$
\begin{array}{ll}
\substack{1-p \\
2} & p \\
R(1)=1 & R(0)=0 \\
\gamma=1 &
\end{array}
$$

## Statistical Properties (4/7)

- Every-visit MC Policy Evaluation is a biased but consistent estimator, which often has better MSE.
- Example (Showing that it is biased):
- Computing $V$ explicitly using Bellman equation: $V(1)=1+(1-p) \cdot V(1)+p \cdot 0$
Hence, $V(1)=\frac{1}{p}$.



## Statistical Properties (5/7)

- Every-visit MC Policy Evaluation is a biased but consistent estimator, which often has better MSE.
- Example (Showing that it is biased):
- Exact answer: $V(1)=\frac{1}{p}$.
- First-Visit MC:


$$
R(1)=1 \quad R(0)=0
$$

$$
\mathbb{E}\left[\hat{V}_{F V}(1)\right]=p+2(p-1) p+3(p-1)^{2} p+\ldots=p \sum_{n=0}^{\infty}(n+1) \cdot(1-p)^{n}=p \cdot \frac{1}{p^{2}}=\frac{1}{p}
$$

## Statistical Properties (6/7)

- Every-visit MC Policy Evaluation is a biased but consistent estimator, which often has better MSE.
- Example (Showing that it is biased):
- Exact answer: $V(1)=\frac{1}{p}$.
- Every-Visit MC (Bias):

$$
\gamma=1
$$



$$
\mathbb{E}\left[\hat{V}_{E V}(1)\right]=p+\frac{3}{2}(1-p) p+2(1-p)^{2} p+\ldots=p \sum_{n=0}^{\infty} \frac{n+2}{2} \cdot(1-p)^{n}=p \cdot \frac{p+1}{p^{2}}=\frac{p+1}{2 p} \neq \frac{1}{p}
$$

## Statistical Properties (7/7)

- Every-visit MC Policy Evaluation is a biased but consistent estimator, which often has better MSE.
- Example (Showing that it is biased):
- Exact answer: $V(1)=\frac{1}{p}$.

- Every-Visit MC (Consistency):
$\hat{V}_{E V}=\frac{T+1}{2}$ where $T$ is a geometrically distributed r.v. with expectation $\frac{1}{p}$.
Averaging estimators over $n$ independent episodes, one can show with a bit of algebraic manipulations that $P\left[\left|\hat{V}_{n}-\frac{1}{p}\right|<\varepsilon\right]=1$ for all $0<\varepsilon$.


## Statistical Properties (7/7)

- Every-visit MC Policy Evaluation is a biased but consistent estimator, which often has better MSE.
- Example (Showing that it is biased):
- Exact answer: $V(1)=\frac{1}{p}$.

- Every-Visit MC (Consistency):
$\hat{V}_{E V}=\frac{T+1}{2}$ where $T$ is a geometrically distributed r.v. with expectation $\frac{1}{p}$.
Averaging estimators over $n$ independent episodes, one can show with a bit of algebraic manipulations that $P\left[\left|\hat{V}_{n}-\frac{1}{p}\right|<\varepsilon\right]=1$ for all $0<\varepsilon$.


## Incremental Monte-Carlo Evaluation

Initialize: $N(s)=0, V^{\pi}(s)=$ undefined for all $s \in S$.
For $i=1, \ldots, N$ :
Sample episode $e_{i}:=s_{i, 1}, a_{i, 1}, r_{i, 1}, s_{i, 2}, a_{i, 2}, r_{i, 2}, \ldots, s_{i, T_{i}}$
For each time step $1 \leq t \leq T_{i}$ :
$s$ is the state visited at time $t$ in the episode $e_{i}$

$$
\begin{aligned}
& g_{i, t}:=r_{i, t}+\gamma \cdot r_{i, t+1}+\gamma^{2} \cdot r_{i, t+2}+\ldots+\gamma^{T_{i}-t} \cdot r_{i, T_{i}} \\
& N(s):=N(s)+1 / * \text { Increment total visits counter*/ } \\
& V^{\pi}(s):=V^{\pi}(S)+\alpha \cdot\left(g_{i, t}-V^{\pi}(s)\right) / * \text { Update value function */ }
\end{aligned}
$$

Special case: When we use $\alpha=\frac{1}{N(s)}$ then the resulting incremental MC becomes equivalent to every-visit MC.

## Summary (So Far)

- MC Methods:
- Try to estimate $V^{\pi}(s)=\mathbb{E}\left[G_{t}^{\pi} \mid X_{t}=s\right]$ directly as an average over sampled episodes (which is also why they need the episodic settings).
- They do not use the Markov assumption!
- Converge to the true values.
- Can have high variance and some of them are also biased (first-visit MC is one which is not biased).


## Part 4: Temporal Difference Learning

(We are still dealing with policy evaluation)

## Temporal Difference Learning: A Teaser

- TD learning combines Monte-Carlo estimation and dynamic programming ideas.
- TD learning can be used both in episodic and infinite-horizon nonepisodic settings,
- TD learning updates estimates of $V^{\pi}$ continually, after every consecutive tuple state-action-reward-state (therefore we do not need to wait till the end of an episode).


## TD-Learning: Basic Idea

Recall: $g_{i, t}:=r_{i, t}+\gamma \cdot r_{i, t+1}+\gamma^{2} \cdot r_{i, t+2}+\ldots+\gamma^{T_{i}-t} \cdot r_{i, T_{i}}$
Incremental MC:

$$
\left.V^{\pi}(s):=V^{\pi}(s)+\alpha \cdot g_{i, t}-V^{\pi}(s)\right) .
$$

Temporal Difference Learning:

$$
V^{\pi}\left(s_{t}\right):=V^{\pi}\left(s_{t}\right)+\alpha\left(r_{i, t}+\gamma \cdot V^{\pi}\left(s_{t+1}\right)-V^{\pi}\left(s_{t}\right)\right)
$$

## TD-Learning: Relationship to Bellman Backup

Recall: $g_{i, t}:=r_{i, t}+\gamma \cdot r_{i, t+1}+\gamma^{2} \cdot r_{i, t+2}+\ldots+\gamma^{T_{i}-t} \cdot r_{i, T_{i}}$
Bellman equation update rule:

$$
V_{k+1}^{\pi}(s):=R(s, \pi(s))+\gamma \cdot \sum_{s^{\prime} \in S} P\left(s^{\prime} \mid s, \pi(s)\right) \cdot V_{k}^{\pi}\left(s^{\prime}\right) \text { Expectation }
$$

Temporal Difference Learning update rule:

$$
\begin{aligned}
V^{\pi}\left(s_{t}\right) & :=V^{\pi}\left(s_{t}\right)+\alpha\left(r_{i, t}+\gamma \cdot V^{\pi}\left(s_{t+1}\right)-V^{\pi}\left(s_{t}\right)\right) \\
& =(1-\alpha) \cdot V^{\pi}\left(s_{t}\right)+\alpha \cdot\left(r_{i, t}+\gamma \cdot V^{\pi}\left(s_{t+1}\right)\right)
\end{aligned}
$$

## TD-Learning: Pseudocode

Initialize: $V^{\pi}(s)=0$ for all $s \in S$
Loop:
Sample tuple ( $\left.s_{t}, a_{t}, r_{t}, s_{t+1}\right)$.
Update $V^{\pi}\left(s_{t}\right):=V^{\pi}\left(s_{t}\right)+\alpha \cdot\left(r_{i, t}+\gamma \cdot V^{\pi}\left(s_{t+1}\right)-V^{\pi}\left(s_{t}\right)\right)$
TD target

## TD-Learning: Example

Initialize: $V^{\pi}(s)=0$ for all $s \in S$
Loop:
Sample tuple $\left(s_{t}, a_{t}, r_{t}, s_{t+1}\right)$.

$$
\alpha=0.5, \gamma=1
$$

Update $V^{\pi}\left(s_{t}\right):=V^{\pi}\left(s_{t}\right)+\alpha \cdot\left(r_{i, t}+\gamma \cdot V^{\pi}\left(s_{t+1}\right)-V^{\pi}\left(s_{t}\right)\right)$
TD target
$e_{1}=a, R, 0, b, R, 10, c, L, 0, b, R, 0, c, R, 0$, end
Iteration 1: $V^{\pi}(a):=0$,
Iteration 2: $V^{\pi}(b):=5$,
Iteration 3: $V^{\pi}(c):=0.5(0+5)=2.5$,
Iteration 4: $V^{\pi}(b):=5+0.5 \cdot(0+2.5-5)=3.75$,
Iteration 5: $V^{\pi}(c):=2.5+0.5 \cdot(0+0-2.5)=1.25$.

## TD-Learning: Example

Initialize: $V^{\pi}(s)=0$ for all $s \in S$
Loop:
Sample tuple $\left(s_{t}, a_{t}, r_{t}, s_{t+1}\right)$.

$$
\alpha=0.5, \gamma=1
$$

Update $V^{\pi}\left(s_{t}\right):=V^{\pi}\left(s_{t}\right)+\alpha \cdot\left(r_{i, t}+\gamma \cdot V^{\pi}\left(s_{t+1}\right)-V^{\pi}\left(s_{t}\right)\right)$
TD target
$e_{1}=a, R, 0, b, R, 10, c, L, 0, b, R, 0, c, R, 0$, end
Iteration 1: $V^{\pi}(a):=0$,
Iteration 2: $V^{\pi}(b):=5$,
Iteration 3: $V^{\pi}(c):=0.5(0+5)=2.5$,
Iteration 4: $V^{\pi}(b):=5+0.5 \cdot(0+2.5-5)=3.75$,
Iteration 5: $V^{\pi}(c):=2.5+0.5 \cdot(0+0-2.5)=1.25$.

## TD-Learning: Example

Initialize: $V^{\pi}(s)=0$ for all $s \in S$
Loop:
Sample tuple $\left(s_{t}, a_{t}, r_{t}, s_{t+1}\right)$.

$$
\alpha=0.5, \gamma=1
$$

Update $V^{\pi}\left(s_{t}\right):=V^{\pi}\left(s_{t}\right)+\alpha \cdot\left(r_{i, t}+\gamma \cdot V^{\pi}\left(s_{t+1}\right)-V^{\pi}\left(s_{t}\right)\right)$
TD target
$e_{1}=a, R, 0, b, R, 10, c, L, 0, b, R, 0, c, R, 0$, end
Iteration 1: $V^{\pi}(a):=0$,
Iteration 2: $V^{\pi}(b):=5$,
Iteration 3: $V^{\pi}(c):=0.5(0+5)=2.5$,
Iteration 4: $V^{\pi}(b):=5+0.5 \cdot(0+2.5-5)=3.75$,
Iteration 5: $V^{\pi}(c):=2.5+0.5 \cdot(0+0-2.5)=1.25$.

## TD-Learning: Example

Initialize: $V^{\pi}(s)=0$ for all $s \in S$
Loop:
Sample tuple $\left(s_{t}, a_{t}, r_{t}, s_{t+1}\right)$.

$$
\alpha=0.5, \gamma=1
$$

Update $V^{\pi}\left(s_{t}\right):=V^{\pi}\left(s_{t}\right)+\alpha \cdot\left(r_{i, t}+\gamma \cdot V^{\pi}\left(s_{t+1}\right)-V^{\pi}\left(s_{t}\right)\right)$
TD target
$e_{1}=a, R, 0, b, R, 10, c, L, 0, b, R, 0, c, R, 0$, end
Iteration 1: $V^{\pi}(a):=0$,
Iteration 2: $V^{\pi}(b):=5$,
Iteration 3: $V^{\pi}(c):=0.5(0+5)=2.5$,
Iteration 4: $V^{\pi}(b):=5+0.5 \cdot(0+2.5-5)=3.75$,
Iteration 5: $V^{\pi}(c):=2.5+0.5 \cdot(0+0-2.5)=1.25$.

## TD-Learning: Example

Initialize: $V^{\pi}(s)=0$ for all $s \in S$
Loop:
Sample tuple $\left(s_{t}, a_{t}, r_{t}, s_{t+1}\right)$.

$$
\alpha=0.5, \gamma=1
$$

Update $V^{\pi}\left(s_{t}\right):=V^{\pi}\left(s_{t}\right)+\alpha \cdot\left(r_{i, t}+\gamma \cdot V^{\pi}\left(s_{t+1}\right)-V^{\pi}\left(s_{t}\right)\right)$
TD target
$e_{1}=a, R, 0, b, R, 10, c, L, 0, b, R, 0, c, R, 0$, end
Iteration 1: $V^{\pi}(a):=0$,
Iteration 2: $V^{\pi}(b):=5$,
Iteration 3: $V^{\pi}(c):=0.5(0+5)=2.5$,
Iteration 4: $V^{\pi}(b):=5+0.5 \cdot(0+2.5-5)=3.75$,
Iteration 5: $V^{\pi}(c):=2.5+0.5 \cdot(0+0-2.5)=1.25$.

## TD-Learning: Example

Initialize: $V^{\pi}(s)=0$ for all $s \in S$
Loop:
Sample tuple $\left(s_{t}, a_{t}, r_{t}, s_{t+1}\right)$.

$$
\alpha=0.5, \gamma=1
$$

Update $V^{\pi}\left(s_{t}\right):=V^{\pi}\left(s_{t}\right)+\alpha \cdot\left(r_{i, t}+\gamma \cdot V^{\pi}\left(s_{t+1}\right)-V^{\pi}\left(s_{t}\right)\right)$
TD target

$$
e_{1}=a, R, 0, b, R, 10, c, L, 0, b, R, 0, c, R, 0, \text { end }
$$

Iteration 1: $V^{\pi}(a):=0$,
Iteration 2: $V^{\pi}(b):=5$,
Iteration 3: $V^{\pi}(c):=0.5(0+5)=2.5$,
Iteration 4: $V^{\pi}(b):=5+0.5 \cdot(0+2.5-5)=3.75$,
Iteration 5: $V^{\pi}(c):=2.5+0.5 \cdot(0+0-2.5)=1.25$.

## TD-Learning: Example

Initialize: $V^{\pi}(s)=0$ for all $s \in S$
Loop:
Sample tuple $\left(s_{t}, a_{t}, r_{t}, s_{t+1}\right)$.

$$
\alpha=0.5, \gamma=1
$$

Update $V^{\pi}\left(s_{t}\right):=V^{\pi}\left(s_{t}\right)+\alpha \cdot\left(r_{i, t}+\gamma \cdot V^{\pi}\left(s_{t+1}\right)-V^{\pi}\left(s_{t}\right)\right)$
TD target
$e_{1}=a, R, 0, b, R, 10, c, L, 0, b, R, 0, c, R, 0$, end
Iteration 1: $V^{\pi}(a):=0$,
Iteration 2: $V^{\pi}(b):=5$,
Iteration 3: $V^{\pi}(c):=0.5(0+5)=2.5$,
Iteration 4: $V^{\pi}(b):=5+0.5 \cdot(0+2.5-5)=3.75$,
Iteration 5: $V^{\pi}(c):=2.5+0.5 \cdot(0+0-2.5)=1.25$.
Every-Visit Monte-Carlo: $V^{\pi}(a)=10, V^{\pi}(b)=5, V^{\pi}(c)=0, V^{\pi}($ end $)=0$

## What About the $\alpha$ 's?

- One thing we can do is to have $\alpha$ depend on the number of iterations so far, i.e., we can have $\alpha_{k}$ instead of just $\alpha$.
- Convergence is guaranteed when $\alpha_{k}^{\prime} s$ satisfy the following conditions (follows from RobbinsMunro algorithm):

$$
\sum_{k=1}^{\infty} \alpha_{k}=\infty, \quad \sum_{k=1}^{\infty} a_{k}^{2}<\infty .
$$

- A sequence which satisfies the above conditions is, e.g., $a_{k}=\frac{1}{k}$. However, in practice, similar sequences do not have to converge very fast...
- Note: It was also proved by Sutton (1988) that, for tabular MDPs, there always exists some small enough learning rate $\alpha$ such that TD converges but this result is not very practical.


## Policy Evaluation: Summary



- $\operatorname{DPCE}=$ Dynamic Programming w/certainty equivalence estimates, $\mathrm{MC}=$ Monte Carlo, TD = Temporal Difference

Table from slides by Prof. Emma Brunskill

Next Time: Model-Free Control

## Model-Free Control

- Given an MDP with unknown parameters (or generally an environment with which we can interact), find the optimal policy $\pi$.


## Important Concepts to Refresh...

- Besides the things we discussed today, in the next lecture, we will also again use the following concepts:
- the state-action value function $Q^{\pi}(s, a)$,
- policy iteration and policy improvement.

