Question 1.

Let X contain all real numbers from $[0 ; 1]$ which can be represented using 256 bits. Let $\mathcal{H}=X$, and let the decision be given by $H \in \mathcal{H}$ as

$$
h(x)=1 \text { iff } x>H
$$

Determine an m such that with probability at least $0.9, \operatorname{err}(h)<0.1$, where h is an arbitrary hypothesis from \mathcal{H} consistent with m i.i.d. examples from X. Estimate it
(a) without using any upper bounds seen in the lecture
(b) using the upper bound with $\ln |\mathcal{H}|$
(c) using the upper bound with $\operatorname{VC}(\mathcal{H})$

Question 2.

Consider the following decision tree:

(a) Express the tree as a 3 -DNF.
(b) Express the tree as a $3-\mathrm{CNF}$.
(c) How can we use (modify) the generalization algorithm to learn k-decision trees in the PAC learning model?

